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Texture analysis- and support
vector machine-assisted diffusional
kurtosis imaging may allow in vivo
gliomas grading and IDH-mutation
status prediction: a preliminary
study

Sotirios Bisdas(®¥%3, Haocheng Shen*, SteffiThust!2, Vasileios Katsaros>¢, George Stranjalis®,
Christos Boskos®’, Sebastian Brandner®?° & Jianguo Zhang*

We sought to investigate, whether texture analysis of diffusional kurtosis imaging (DKI) enhanced by
support vector machine (SVM) analysis may provide biomarkers for gliomas staging and detection of
the IDH mutation. First-order statistics and texture feature extraction were performed in 37 patients
on both conventional (FLAIR) and mean diffusional kurtosis (MDK) images and recursive feature
elimination (RFE) methodology based on SVM was employed to select the most discriminative
diagnostic biomarkers. The first-order statistics demonstrated significantly lower MDK values in the
IDH-mutant tumors. This resulted in 81.1% accuracy (sensitivity = 0.96, specificity = 0.45, AUC 0.59)
for IDH mutation diagnosis. There were non-significant differences in average MDK and skewness
among the different tumour grades. When texture analysis and SVM were utilized, the grading accuracy
achieved by DKI biomarkers was 78.1% (sensitivity 0.77, specificity 0.79, AUC 0.79); the prediction
accuracy for IDH mutation reached 83.8% (sensitivity 0.96, specificity 0.55, AUC 0.87). For the IDH
mutation task, DKI outperformed significantly the FLAIR imaging. When using selected biomarkers
after RFE, the prediction accuracy achieved 83.8% (sensitivity 0.92, specificity 0.64, AUC 0.88). These
findings demonstrate the superiority of DKI enhanced by texture analysis and SVM, compared to
conventional imaging, for gliomas staging and prediction of IDH mutational status.

Exciting advances and an improved understanding of the brain has been facilitated by diffusion-weighted (DWTI)
MRI, which for brain tumors supplies a measure of tumor cellularity based on the restriction of the free diffu-
sion of water in proliferating tissue'. The tumor cellularity, as estimated through diffusion restriction, has been
correlated with the degree of tumor malignancy?. Noteworthy, the clinically disseminated DWT is based on the
assumption of a Gaussian distribution of signal values interpreted as uniform diffusion of the water molecules in a
certain direction, which ideally would be the case only in a bucket of water. However in vivo, the water molecules
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in brain diffuse through a highly heterogeneous environment leading to deviation from the assumed Gaussian
distribution. Diffusion kurtosis imaging (DKI) is an attempt to account for this variation and in a more refined
approach overcomes this problem by quantifying the deviation from the Gaussian distribution of diffusion prop-
erties in brain tissue’.

Raab et al. demonstrated differences for mean kurtosis (MK) and ADC values in WHO grade 2-4 astrocyto-
mas, with statistically significant higher MK values for high-grade gliomas (HGGs)*. van Cauter ef al. showed a
high accuracy for the distinction of HGGs from the low-grade gliomas (LGGs) based on mean axial and radial
kurtosis values>®. Mean kurtosis has outperformed diagnostically the remainder of the diffusion metrics for
grading (WHO grade 2-4) and predicting Ki-67 as a measure of cellularity’. Tietze et al. proposed the usage of
MK’ (derived from a fast kurtosis sequence) for glioma grading and demonstrated that the mean value of MK’
in the tumor core was significantly higher in HGGs than in LGGs®. Common outcome in the aforementioned
studies is the degree of the diagnostic accuracy of DKI for the conventional glioma grading (HGG vs. LGG). In
light of the 2016 update of the WHO brain tumor classification that stipulates an integrated, ‘layered’ diagnosis
based on histological and molecular features’, isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) mutations
play a key role in the classification of gliomas. Elkhaled at al. found a significantly negative relationship between
IDH-mutation status, as identified via 2-HG (2-hydroxyglutatarate) levels in tissue, and the rather lump apparent
diffusion coeflicient - ADC)"?. Xiong et al. demonstrated significantly lower minimum ADC in IDH wild-type
oligodendrogliomas than in IDH-mutant by using DTI'!. According to the new biomarker-driven WHO classifi-
cation, a proportion of these tumours, in particular those without IDH mutation and 1p/19q co-deletion, proba-
bly have represented IDH wild-type glioblastomas. Hence, the results of this study contradict the previous work
by Elkhaled et al.® but essentially highlight that (i) the methodology for obtaining DWI parameters in tumor
plays a crucial role given the spatial heterogeneity and (ii) the ADC might be not the most appropriate parameter
to gauge any altered diffusion properties related to the IDH mutation, and DKI should be employed to improve
the diagnostic accuracy'?. Preliminary evidence supports the potential role for DKI as a biomarker in the context
of the new integrated glioma diagnosis'.

Apart from the DWI studies, Patel ef al.'* made an important contribution by introducing the “T2-FLAIR mis-
match’ sign as a highly specific morphological feature of the IDH-mutant, 1p/19q non-codeleted molecular sub-
type of astrocytomas; Park et al.’® have used the Visually AcceSAble Rembrandt Images (VASARI) library in lower
grade gliomas and shown that features like larger proportion of enhancing tissue, multifocal/multicentric distri-
bution, and poorly marginated non-enhancing tumour tissue were independent predictors of an IDH1 wild type
tumour. Though suitable for application in routine clinical settings, the morphological features utilize subjective
MRI interpretation by readers commonly of variable experience, rather than quantitative or semi-quantitative
image analysis. In theory, this might limit the reproducibility of the results.

Commonly, the analysis of advanced MRI results involves histogram analysis, which is considered a first-order
statistical method where global features such as mean and standard deviation can be extracted from the average
of pixel intensities. Second-order statistical features are measured based on the relationship between two pix-
els, whereas the higher-order statistical features are based on the relationship between more than two pixels.
Therefore, first-order statistical methods do not convey spatial information, whereas the second and higher order
statistical methods maintain spatial information and may reflect better the lesion heterogeneity. Texture analysis
(TA) is a higher-order analysis and constitutes a mathematical method, which has shown preliminary potential to
gain detailed insight into tissue composition'®-!8. Ideally, machine learning could be used to assist the diagnostic
by enhancing its accuracy. Specifically, a computer algorithm could be trained on a set of training samples, to
discover the most distinctive set of features samples from a large range of potential imaging biomarkers, whilst
progressively eliminating non-discriminating lesion patterns in a recursive feature elimination manner.

Obviously, the moderate diagnostic accuracy of the conventional DWI metrics (based on the assumption of
the Gaussian distribution) dictates the need to apply more elaborated solutions, such as DKI, for predicting the
IDH mutational status. Moreover, the use of structural imaging for this purpose is usually confined within the
usual visual assessment and texture features with machine learning have not been widely utilized. There is also
scarce evidence for the use of DKI assisted by texture analysis with machine learning for imaging-based IDH
phenotyping'*!°. The purpose of this study is to validate the previous reports on DKI for IDH mutation status
prediction and investigate, whether the diagnostic performance of DKI, either as stand-alone modality or com-
bined with conventional structural imaging, may be enhanced by means of computerized texture analysis assisted
by machine learning.

Results

The final study population included 37 patients (21 males and 16 females, mean age 63.2 years = 7.6 [stand-
ard deviation], age range 27-76 years). The median Karnofsky performance score (KPS) was 80 (range:70-90).
Table 1 shows the clinical as well as the integrated histopathological and molecular findings in our cohort accord-
ing to the 2016 WHO CNS tumor classification. There was no statistical difference in the age, gender and KPS
between the IDH-mutant and wild-type tumours, between the astrocytomas and oligodendrogliomas, and
between grade 2 and 3 tumours.

First-order statistics. The first-order (descriptive) DKI statistics (incl. average MDK values and their
skewness in the segmented tumors) for the different subgroups are also given in Table 1. One-way ANOVA
demonstrated a non-significant difference for average MDK and skewness among the different histological sub-
groups (p=0.06 and 0.56, respectively). After classifying the tumors according to their IDH mutation status, the
average skewness did not demonstrate significant difference among the two groups (p =0.22). Nonetheless, the
pooled IDH tumors demonstrated lower average MDK (p =0.003), median MDK (p = 0.01), 5th percentile MDK
(p=0.02) and 95th percentile MDK (p = 0.008).
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Astrocytoma 2 11 (4657/4) 90 516.19+£97.20 1.03+£0.91
Anaplastic astrocytoma 3 4(49;1/2) 80 482.69 +107.76 0.82+0.77
IDH1/2 mutation | Oligodendroglioma 2 6 (52;2/4) 80 504.60 £ 40.65 1.66£2.95
Anaplastic oligodendroglioma 3 5(46;2/3) 80 586.15+64.70 —0.114+0.74
Pooled 26 (48;12/13) 80 521.81+£85.62 0.93+1.61
Astrocytoma 2 2 (5051/1) 90 648.58 +171.56 0.88+0.34
IDH1/2 wild type | Anaplastic astrocytoma 3 9 (49;2/1) 80 634.97 £137.77 2.05+3.17
Pooled 11(50;3/2) 80 637.45+134.75 1.84+2.88

Table 1. Subgroups in the patient cohort classified according to the 2016 Update of the WHO Classification of
Brain Tumors, and mean kurtosis as well as skewness values of the respective tumor subgroups.
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Figure 1. ROC curves and AUC values (in the legend) for the WHO gliomas grade (A) and the IDH mutation
status (B). Three ROCs are shown in each case: using biomarkers from DKI (red), using biomarkers from
FLAIR (blue) and using biomarkers from both DKI and FLAIR (green). The AUCs are also annotated in each
experiment.

Support vector machine analysis

DKI first-order statistics biomarkers. DKI first-order statistics biomarkers (mean, median, standard
deviation, kurtosis, 5th and 95th percentile) were entered SVM analysis to test the diagnostic performance of
prediction of IDH mutation using a LOOCYV to avoid over-fitting. In each iteration of the LOOCYV, biomarkers
are selected on the training set only using one-way ANOVA test with p < 0.05; an SVM was then trained based
on the selected biomarkers and tested on the remaining example, thus there is no overlap between training and
testing. Four statistical biomarkers (mean, median, 5th and 95th percentile) were consistently selected across
different iterations of LOOCYV. This resulted in 81.1% accuracy (sensitivity = 0.96, specificity = 0.45, AUC = 0.59).

DKI and FLAIR texture biomarkers for gliomas WHO grade differentiation and IDH mutation.
For the task of gliomas grade determination, gliomas WHO grade 2 was treated as “negative” and grade 3 as
“positive”. The classification accuracy achieved by using 54 DKI biomarkers was 78.1% (sensitivity 0.77, specificity
0.79). The accuracy by using 54 FLAIR biomarkers was 68.8% (sensitivity 0.54, specificity 0.79). For the combined
DKI and FLAIR 108 biomarkers, an accuracy of 50% was obtained (sensitivity 0.31, specificity 0.63). The ROC
curves for three tests in this task are shown in Fig. 1A. The corresponding AUCs were 0.79 (DKI), 0.66 (FLAIR),
0.57 (both modalities), respectively. Using DKI biomarkers alone outperformed others. The AUCs of DKI and
“both modalities” were significantly different (p =0.01), while the other pairs (DKI vs FLAIR and FLAIR vs both)
were not. The boxplots of SVM probability outputs for differentiating gliomas WHO grade using different modal-
ities biomarkers are shown in Fig. 2A.

For IDH mutation determination task, wild-type status was treated as “negative” and mutant status as “posi-
tive”. The experiment using 54 DKI biomarkers resulted in a mutation prediction accuracy of 83.8% (sensitivity
0.96, specificity 0.55). The prediction accuracy by using 54 FLAIR biomarkers was 73% (sensitivity 0.88, specific-
ity 0.36), and the classifier trained on both modalities (108) biomarkers achieved a prediction accuracy of 83.8%
(sensitivity 0.96, specificity 0.55). Figure 1B shows the ROC curves for the classifiers trained in the three cases.
The corresponding AUCs were 0.87 (DKI), 0.56 (FLAIR), 0.74 (both modalities) respectively, which indicates
that using DKI alone outperforms the others. The AUCs of DKI and FLAIR were significantly different (p=0.01),
while the other pairs (DKI vs both and FLAIR vs both) were not. The boxplots of SVM probability outputs for
determination of the IDH mutation status using different modalities biomarkers are shown in Fig. 2B.
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Figure 2. SVM probability outputs for WHO gliomas grade (A) and IDH mutation status (B) for the DKI and
FLAIR as standalone modalities and for their combination. The predictive superiority of DKI as standalone
modality is evident for both WHO tumor grade and IDH status tumor classification.

1 5th percentile value of Gaussian filter response

gth standard deviation value of Gaussian filter response
52nd kurtosis value of bar filter (scale = [12,4]) response

47t 5th percentile value of bar filter (scale =[6,2]) response

Table 2. The four most discriminative DKI-biomarkers selected by RFE for gliomas grading classification.

1 5th percentile value of Gaussian filtered response

14 median value of Laplacian of Gaussian filter response
4204 95th percentile value of bar filter (scale = [3,1]) response
7% mean value of Gaussian filter response

Table 3. The four most discriminative DKI-biomarkers selected by RFE for IDH mutation status.

Biomarkers selection for gliomas WHO grade differentiation and IDH mutation. For a fair com-
parison, we applied RFE with RBF kernel for identifying the most four discriminative DKI texture biomarkers. As
DKI is the phenotyping modality and shows better performance than FLAIR and combination of DKI and FLAIR
based on the above experiments, the biomarker selection was then performed on 54 DKI biomarkers for both
classification tasks of gliomas grade and IDH mutation status.

For gliomas grade determination, the selected 4 biomarkers are the 11%, 9%, 527 and 47" biomarkers in the
DKI biomarkers set, the according texture filter response for each selected biomarker for gliomas grade determi-
nation is shown in Table 2. For IDH mutation status determination, the selected biomarkers are the 11t%, 14, 4274
and 7™ biomarkers in the DKI biomarkers set, the according texture filter response for each selected biomarker
for IDH mutation status determination is shown in Table 3.

We then performed classification based on the selected 4 biomarkers shown in Table 2 for differentiating
gliomas WHO grade and in Table 3 for determination of IDH mutation status, respectively, using the nested
LOOCYV. An accuracy of 75.0% (sensitivity = 0.69, specificity =0.79, AUC = 0.85) was achieved for gliomas grade
classification and an accuracy of 83.8% (sensitivity = 0.92, specificity = 0.64, AUC = 0.88) for IDH mutation sta-
tus classification.

Discussion

Preliminary evidence supports the potential role for DKI as a biomarker in the context of the new integrated
glioma diagnosis'>!?, but our study sought to test this hypothesis using texture features beyond the conventional
statistical approaches. Compared to Hempel et al.'?, we achieved remarkably better sensitivity (96% vs 82%) with
a similar AUC (0.87 vs 0.85) but our specificity was considerably lower (0.55 vs 0.81). The different cohort com-
position might be the most important reason for this discrepancy. The IDH wild-type tumors in their study were
predominantly GBMs (15 out of 16), whereas in our study the IDH wild-type tumours did not demonstrate GBM
features, though some of them (most likely captured early during the natural history of tumour development)
had EGFR amplification and TERT mutation, which are molecular hallmarks of GBMs. Histologically distinct
GBMs have different intravoxel kurtosis features compared to the other astrocytomas and oligodendrogliomas,
based on the different intrinsic heterogeneity?>*!. Therefore, the high prevalence of IDH wild-type GBMs in the
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work of Hempel et al. is biased favoring high MK specificity in prediction of the IDH mutation status. On the
contrary, our comparable in size IDH wild-type subgroup (n=11) consisted of astrocytomas with indeterminate
for grading imaging findings. This tumor class poses greater difficulties than conventionally radiologically diag-
nosed GBMs difficulties for IDH mutation stratification and is challenging the current imaging modalities. Thus,
we firmly believe that texture feature analysis and SVM are valuable add-ons in the analysis and helped to meet
the exigent demand for non-invasive molecular phenotyping of the IDH status.

We tested the diagnostic performance of the biomarkers from DKI, FLAIR and their combination of both for
each task. It was noted that the difference between the AUCs using pairwise comparison of all ROC curves did
not show significant difference between the DKI and FLAIR for gliomas grade determination and this might be
due to the small number of patients, worth further exploration. However, in our experiments, the AUC of DKI
(0.79) is higher than FLAIR (0.66) by a large margin (20% improvement). It is reasonable to conclude that using
DKI biomarkers alone outperformed others. The same holds for IDH mutation determination with AUC of DKI
(0.87) and both (0.74), which has 18% improvement. After all, the results using the 4 respective selected DKI
biomarkers were very competitive in terms of accuracy compared to those using all 54 DKI biomarkers (gliomas
grading: 75% vs 78.1%, IDH mutation status: 83.8% vs 83.8%) and higher AUC value (gliomas grading: 0.85 vs
0.79, IDH mutation status: 0.88 vs 0.87), which reflects the effectiveness of the feature selection procedure and
also substantially simplifies the application, thereby maximizing its potential for clinical use.

Our DKI texture features are extracted from filters designed at multiple scales, orientations and frequencies,
which was inspired by the study of the receptive fields in the primary visual cortex?. Distinct from the commonly
used univariate statistical features, our filters capture the spatial information of a voxel in its local neighborhood
in DKI images, where our bar and edge filter could detect the enhanced vascular structure of tumor typing at dif-
ferent scales, and capture its local context cues. Our features also differ from another set of texture features using
popular Grey-Level Concurrence Matrix (GLCM) and its associated statistics, which usually considered features
at a single scale (e.g., on raw intensities) and sensitive to image resolutions®. Our study has also demonstrated
the superiority of using texture features for determination of IDH mutation status, given the same number of
biomarkers (e.g., we selected 4 biomarkers in our study), the AUC value of using texture biomarkers has improved
by 49% (0.88 vs 0.59) compared with that of using first-order statistical biomarkers.

The classification was performed using a SVM model with a nonlinear Gaussian kernel on all of the features.
This approach leveraged the powerful machine learning model due to its capability of producing nonlinear sepa-
ration hyperplane in the primal feature space, thus avoiding the assumption that distributions of data are linearly
separable**. Our feature selection was carried out in a recursive elimination manner to find the best combina-
tion of DKI features for tumor grade or mutation prediction. By doing so, our method could avoid redundancy
between selected features (the redundancy refers to the case where the two features essentially carry the same
information) but include features which has complementary information for tumor grade or mutation prediction.
This can be treated as an advantage compared with the methods that rank features individually?>*.

Our method used a rigor setting of nested LOOCV to avoid an optimistic performance estimate (for example,
features are selected based on whole set or using only one loop, which usually results in an optimistic estimate
of accuracy), and overfitting (i.e., selected features perform perfectly on training set, yet poorly on test set). The
resulting feature sets will normally have robust generalisation performance on unseen images. SVM feature selec-
tion (e.g., recursive feature elimination-SVM) critically depends on having clean data since the feature outliers
may play an essential role?>. Also, the heterogeneity of patient data results in some inconsistency of selected
features in each fold of LOOCYV when the dataset is relatively small. This variation was alleviated by using the
maximum voting across different folds in the inner LOOCYV loop to reduce the effect of data noise.

In parallel with our work, an independent study by Eichinger et al.?%, also used the texture feature based
machine learning method to predict IDH genotype in newly diagnosed grade 2-3 gliomas with 95% accuracy in
the validation cohort. However, our method differs significantly from theirs in three aspects: 1) different modal-
ities; their study is based on b0 and fractional anisotropy diffusion (FA) images, while we explored DKI and
anatomical FLAIR; compared to FA, DKI is a novel imaging technique with great potential; 2) different texture
features; Eichinger et al. used local binary pattern (LBP) features, while we calculated multi-scale maximum
response filter (MR8) features which is rotation invariant; 3) Eichinger et al. trained a neural network with a single
hidden layer to predict IDH and used the Garson’s algorithm for feature selection, while we performed a recursive
feature elimination based on support vector machine (RFE-SVM) for feature selection and IDH prediction.

Since this study was performed prospectively, it includes a comparatively small number of patients, the results
presented here require confirmation in a larger study. The used DKI algorithm is restricted to an isotropic dif-
fusion model, which may have introduced inaccuracy into the kurtosis tensor estimation. However, considering
the anisotropic features on the kurtosis model would add to the post-processing time, which might be inexpe-
dient for the dissemination of the method, whereas any diagnostic advance is doubtful®. To optimize DKI preci-
sion, our study adopted the technique proposed by Poot et al., which minimizes the mathematical lower bound
(Cramer-Rao lower bound) on the variance of any unbiased estimator; the diagnostic gain of this process can be
invested either to increase DKI estimation accuracy or image resolution®.

In conclusion, our findings expand the current scarce but promising evidence on the diagnostic ability of DKI
to predict IDH mutational status, and by employing texture analysis and SVM on the DKI maps we rendered a
small selection of biomarkers to distinguish satisfactorily IDH-mutant from IDH-wild-type tumors as well as
grade II from grade III gliomas. Although the focus of this study is on gliomas, our approach demonstrated herein
is expected to have applications in other tumor disease entities and encourage the larger-scale implementation in
clinical studies, allowing for investigation of its accuracy.
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Figure 3. Visualization of MR8 filter responses on the mean kurtosis images in a patient with a glioma on the
left frontal lobe. (A) original DKI image; (B) Gaussian response; (C) LoG response; (D-F) responses of edge
filters at 3 scales; (G-I) responses of bar filters at 3 scales. The red curves are the tumor VOIs annotated by two
experienced neuroradiologists in consensus.

Methods

Patient cohort. Between January 2015 and March 2017, 94 consecutive patients with suspected primary
gliomas, who underwent multi-modality MRI (incl. DKI) as part of the pre-surgical workup, were prospectively
examined. We aimed at morphologically (conventional MRI findings) presumably low-grade or indeterminate
grade gliomas excluding tumors with intense contrast-enhancement, considerable perifocal edema and necrosis,
which are universally encountered suggestive of glioblastomas. General exclusion criteria were also any contrain-
dications to MRI exams, and agitated or non-cooperating patients.

Tumour diagnosis was based on histological examinations of surgical specimens, aided by immunohisto-
chemical testing for known biomarkers (ATRX, IDH1 R132H) and molecular tests for rarer IDH 1 and all IDH
mutations, 1p/19q co-deletion and TERT promoter mutations (see details in the Histopathology section). All
histological and molecular studies were completed within 2 weeks of diagnosis and before initiating treatment.
None of the patients received steroid treatments at the time of analysis.

The study was approved by the institutional review board (“St.Savvas” General Anti-Cancer and Oncological
Hospital) and was conducted based on the principles of the International Conference on Harmonisation of Good
Clinical Practice guidelines and according to the revised version of the Declaration of Helsinki. All patients pro-
vided written informed consent for the imaging surveys and the subsequent use of images for scientific and
research purposes.

Image acquisition. All exams were performed at a 3 Tesla (3 T) MRI scanner (Skyra, Siemens Healthineers,
Erlangen, Germany). The conventional MR examination protocol included high-resolution 3D FLAIR and
T1-weighted sequences before and after gadolinium administration (Gadovist®; Bayer-Schering, Germany). DKI
was acquired using a spin-echo echo-planar imaging DWI sequence with the following parameters: b-values
included 0, 500, 1000, 1500, 2000, and 2800 sec/mm? with 30 directions and for each b-value diffusion encod-
ing; TR 5900 ms; TE 95 ms; field of view 25 X 25 cm? matrix 128 x 128; bandwidth, 965 Hz/pixel; slice thickness,
2.5 mm; number of signal averages, 2; and parallel imaging with a sensitivity encoding (SENSE) factor of 2. The
total time of the DKI acquisition was 8 min 28s.
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Figure 4. Visualization of MRS filter responses on the FLAIR images in a patient with a glioma on the left
frontal lobe. (A) original FLAIR image; (B) Gaussian response; (C) LoG response; (D-F) responses of edge
filters at 3 scales; (G-I) responses of bar filters at 3 scales. The red curves are the tumor VOIs annotated by two
experienced neuroradiologists in consensus.

Image post-processing and analysis. The selection of the acquisition parameters for the kurtosis imaging
was based on the suggestions of a recent consensus paper?. The mean DK (MDK) images were generated using
in-house written software (R2014a MATLAB, MathWorks, Natick, MA, USA) and previously described mod-
els?®. Parametric maps of MDK were calculated as the average of all 30 directions of the 6 b-values. The applied
methodology, is based on the previous work by Jensen and Helpern® and is briefly explained in the Supplement.

Image registration between the FLAIR-weighted images and MDK parametric maps was performed using
the optimised automatic 3D registration tool in MIPAV (http://mipav.cit.nih.gov). Volumes of interest (VOIs)
were manually drawn around the whole FLAIR abnormality. The tumor segmentations were performed in con-
sensus by 2 board-certified neuroradiologists (each with 10-year experience in neurooncology imaging) who
were blinded to the clinical diagnoses, using ITK-SNAP (http://www.itksnap.org)?. The tumor VOIs were then
transferred MDK maps for texture analysis.

Histopathology. All gliomas were diagnosed according to the WHO 2016 guidelines®*!. Initial stratifica-
tion and diagnosis were achieved by morphological assessment and immunostaining for Ki67, ATRX, and IDH1
R132H. Subsequently, all IDH R132H immuno-negative tumors underwent further characterization by Sanger
sequencing of the established tumor-associated mutations of IDH1, IDH2, histone H3F3A, TERT promoter and
BRAF genes®?. A qPCR based copy number assay was used to determine 1p/19q status, EGFR amplification and
10q loss.

Texture Feature Extraction. The following features were extracted from both DKI and FLAIR VOIs: i)
original intensity values; i) responses of maximum response filter (MR8)?. Briefly, MR8 consists of 38 filters (one
Gaussian, one Laplacian of Gaussian, 18 edge filters and 18 bar filters, which are at 3 scales and 6 orientations) and
measures the maximum responses across 6 orientations for edge and bar filters, resulting in 8 rotation invariant
filter responses. The orientations were set to [0°, 30°, 60°, 90°, 120°, 150°]. The standard deviation o was set to 1
for rotationally symmetric filters (Gaussian and Laplacian of Gaussian filter). The standard deviations of [q,, 0,]
were set to [3,1], [6,2], [12,4] for anisotropic filters (edge and bar filters) at 3 scales. The responses of each filter for
FLAIR and DKI images are illustratively shown in Figs 3 and 4. For each type of texture feature (e.g., intensity and
each response of MR8), we calculated the mean, median, standard deviation, kurtosis and 5th and 95th percentiles
as biomarker candidates, resulting in 54 biomarker candidates in each modality (FLAIR and DKI).
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Support vector machine analysis. Support vector machine (SVM) is a state-of-the-art classifier that con-
structs a hyperplane (in the primal or mapped space) as a decision boundary that, in our case, was used to sepa-
rate the two groups (i.e. IDH-wild type and IDH-mutant tumors)*. A mathematical overview of the applied SVM
algorithm is given in the Supplement. We conducted experiments for two binary classification tasks: 1) differen-
tiating gliomas grade (2 vs 3); and 2) differentiating IDH mutation status (wildtype vs mutated). For each task,
three tests were carried out: 1) 54 DKI biomarkers; 2) 54 FLAIR biomarkers; and 3) 108 biomarkers from both
DKI and FLAIR. Support vector machine (SVM) with RBF kernel was used as the classifier. Different weights
were assigned to different classes to handle the problem of class imbalance in both tasks (see the appendix for
details). The SVM outputs (i.e., the distance to the hyperplane) were then calibrated into posterior probabilities
using Platt scaling by training an additional sigmoid function®.

Due to limited number of patients, a nested leave-one-out cross validation (LOOCV) setting was used with
the inner loop for parameter selection and the outer for model assessment, as the nested cross-validation is an
almost unbiased estimate of the true error*. Specifically, the optimal parameters of SVM (C, ~) was found by grid
search using the inner LOOCYV and the outer one was used to assess the prediction performance. In this study,
all the experiments including feature extraction, feature selection, classification were performed using MATLAB
R2014a (MathWorks, Natick, MA).

Biomarker selection by recursive feature elimination. We performed biomarker selection using
recursive feature elimination based on SVM (RFE-SVM) to select the most discriminative biomarkers for each
task?®. The ranking criterion of each biomarker in RFE-SVM is based on its weight in SVM model, which indi-
cates the importance of its contribution to the hyperplane. Recursive feature elimination iteratively eliminates the
least important biomarker and retrain the SVM until reaching a pre-defined number of biomarker. Class weights
were applied to address the class imbalance during each elimination procedure.

For each loop of nested LOOCY, we first selected N initial candidate biomarkers using RFE with RBF kernel.
In order to reduce the influence of data outliers and noise, N > 4 was set (e.g., N=4, 5, 6 in our experiment set-
ting). The chosen N initial candidate biomarkers from each loop were then put in a candidate pool. All the can-
didate biomarkers in the candidate pool were ranked according to the frequency of being selected during nested
LOOCYV loops with different N values. The top four ranked biomarkers in the candidate pool were subsequently
treated as the final selected biomarkers.

Based on the selected biomarkers, two classification tasks were then performed using SVM with RBF kernel to
evaluate the effectiveness of the selected biomarkers.

Statistical Analysis. The Shapiro-Wilk test for normal distributions was applied for all continuous variables.
The Kruskal-Wallis test, a nonparametric method for testing the equality of population medians among groups,
was used on the selected biomarkers to determine whether the median feature value differed significantly between
two groups. Chi-Square test of independence was used to detect any significant relationship between categorical
variables, whereas parametric and non-parametric tests as well one-way ANOVA was utilised to test the hypoth-
esis whether the average values differ among groups. Receiver operating characteristic (ROC) curves were gen-
erated for the DKI- and FLAIR-derived variables to determine sensitivity, specificity and area under ROC curve
(AUC). The statistical significance of the difference between the AUCs was tested using pairwise comparison of all
ROC curves™. Statistical significance was defined at p < 0.05. All analyses were performed with using MATLAB
R2014a (MathWorks, Natick, MA).
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