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Abstract: Epileptic seizure is a sudden alteration of behavior owing to a temporary change in the
electrical functioning of the brain. There is an urgent demand for an automatic epilepsy detection
system using electroencephalography (EEG) for clinical application. In this paper, the EEG signal is
divided into short time frames. Discrete wavelet transform is used to decompose each frame into a
number of subbands. Different entropies as well as a group of features with which to characterize the
spike events are extracted from each subband signal of an EEG frame. The features extracted from
individual subbands are concatenated, yielding a high-dimensional feature vector. A discriminative
subset of features is selected from the feature vector using a graph eigen decomposition (GED)-based
approach. Thus, the reduced number of features obtained is effective for differentiating the underlying
characteristics of EEG signals that indicate seizure events and those that indicate nonseizure events.
The GED method ranks the features according to their contribution to correct classification. The selected
features are used to classify seizure and nonseizure EEG signals using a feedforward neural network
(FINN). The performance of the proposed method is evaluated by conducting various experiments
with a standard dataset obtained from the University of Bonn. The experimental results show that
the proposed seizure-detection scheme achieves a classification accuracy of 99.55%, which is higher
than that of state-of-the-art methods. The efficiency of FINN is compared with linear discriminant
analysis and support vector machine classifiers, which have classification accuracies of 98.72% and
99.39%, respectively. Hence, the proposed method is confirmed as a potential marker for EEG-based
seizure detection.

Keywords: discrete wavelet transform; electroencephalography; feature selection; epilepsy; seizure

1. Introduction

Seizureis a central nervous system disorder in which brain activity becomes abnormal. The changes
in the brain’s electrical activity can cause dramatic, noticeable symptoms or, in other cases, no symptoms
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at all. Sometimes, seizure becomes the source of unusual behavior, sensations, and loss of awareness [1].
The number of seizure patients globally indicates the need for a robust automatic seizure-detection
technique. Recently, automatic detection of seizure events using efficient algorithms has become a
challenging task for the biomedical engineering community. Electroencephalography (EEG) is an
effective diagnostic modality for epilepsy seizure detection. In practice, to detect seizures based on
EEG signals, epileptologists need to observe long-term multichannel EEG signals, which is tedious and
cumbersome. Therefore, an efficient algorithm for detecting seizures based on long-term multichannel
EEG signals would be invaluable for epileptologists. EEG records electrical activities of the brain
containing potentially pathological information. An epileptiform pattern that is effectively used for
epileptic-seizure detection is the presence of spikes in EEG signals [2,3]. This pattern has become
a valuable tool for assessing brain disorders, especially epileptic seizure [4]. An automatic system
for seizure detection makes a significant contribution to long-term epilepsy monitoring, as well as
to rehabilitation and diagnosis [5]. Various feature parameters have been proposed for the analysis
of EEG signals. Notably, most existing methods rely on decomposing the EEG signal into several
levels to attain better classification results [6]. In this study, the EEG signal is decomposed into a
set of narrowband signals from which a number of features are extracted. The dominant features
are then selected from the training data. The seizure event is detected in the EEG using an artificial
neural network.

The rest of the paper is organized as follows. Previous research related to the study is discussed in
Section 2. Section 3 describes the dataset used in this study. The proposed methodology is presented
in Section 4, and the experimental results are presented in Section 5. Section 6 offers a discussion
of the proposed work and its comparison with state-of-the-art methods. Section 7 concludes with
overall remarks.

2. Related Works

The detection of seizure events in EEG signals is a classification problem. It involves the extraction
of the discriminative features from an EEG signal in order to perform classification. Several researchers
have proposed feature-extraction methods for the automated detection of epileptic seizure. It is
necessary to review the existing methods to understand the importance of the current state-of-the-art,
future trends, and limitations of existing approaches. The following paragraphs provide an overview
of the related state-of-the-art methods for the classification of seizure and nonseizure EEG signals.

The EEG signal is nonlinear and nonstationary [7]. A two-stage hybrid system with feature
extraction using fast Fourier transform (FFT) and decision-making using a decision tree classifier
has been implemented for seizure detection, considering that EEG is stationary in short duration [8].
Although the method has achieved 98.72% classification accuracy, it is not compliant with EEG
characteristics. The Fourier-transform-based time—frequency (t—f) representation has been performed,
considering that EEG is nonstationary in short duration [9]. The fractional energy of each t—f window is
used as a feature, and the classification has been accomplished using neural network, which has achieved
89.1% average classification accuracy. The wavelet transform [10] and multiwavelet transform [11]
are also potential approaches to signal decomposition, leading to the extraction of features from each
subband of the EEG for seizure detection. A variety of methods have been developed for epilepsy
recognition using entropy-based features derived from the EEG signal [11-15].

In [11], multiple orthogonal and symmetric wavelet functions have been used to decompose the
EEG signal into multiple subbands. The approximate entropy (APE) has been extracted from each
subband. An artificial neural network has been used for seizure detection using the subband APE
with a classification accuracy of 98.27%. The entropy computed from wavelet packet coefficients has
been effectively used in epilepsy recognition, with an average classification accuracy of 99.44% [12].
Automated epileptic seizure detection has been effectively implemented with a support vector
machine (SVM) using the permutation entropy (PE) of a short-term EEG segment, achieving 86.10%
accuracy [13]. Notably, PE has a lower value for epileptic EEG than for nonepileptic EEG. The SVM
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has also been utilized for seizure event recognition using wavelet-decomposition-based subband fuzzy
APE (fAPE) [14] and weighted PE (WPE) [15] as potential features. The abrupt change in the EEG
signal is tracked effectively by WPE. The value of fAPE for epileptic segment of EEG is higher than
that of the normal EEG segment. The classification accuracies of subband fAPE and WPE are 98.45%
and 93.37%, respectively. The entropy-based feature is not effective in all respects for characterizing
spikes in EEG for epilepsy detection, and hence it is necessary to introduce other features.

The Burg autoregressive (AR) coefficients have been used as features for epilepsy detection in [16],
considering that the short-term frame of EEG is stationary. The least square SVM (LS-SVMs) has been
implemented in epilepsy classification with an accuracy of 99.56%. A seizure-detection method has been
implemented in [17] with genetic programming (GP)-based feature extraction and a k-nearest neighbors
(KNN) classifier. An ensemble model of pyramidal one-dimensional convolutional neural network
(P-1D-CNN) has been used in [18] for seizure detection. Learning with a lower number of parameters
has been implemented with this model, attaining 99.10% classification accuracy. Learning-based
feature extraction requires a high volume of training data. In [6], the matrix determinant of EEG has
been used as a significant feature for epilepsy recognition. The artifact-free filtered EEG time series has
been arranged sequentially to form a square matrix with which to compute the matrix determinant
feature, and a multilayer perceptron has been employed as the classifier, with an accuracy of 97.15%.
A Gabor filter bank has been used to derive 1D-LBP (local binary pattern)-based features in [19], and a
KNN classifier is utilized to recognize seizure events in recorded EEG. The improved correlation-based
feature selection (ICFS) method has been proposed by Mursalin et al. [20] to detect epileptic seizure
with a random forest (RF) classifier. The entropy-based features, as well as different time and frequency
domain features, have been used. The prominent feature selection has been performed by applying ICFS.
A set of 28 features have been extracted from time, frequency, and statistical domains, and significant
features have been selected using neighborhood component analysis (NCA) [21]. In NCA, optimization
of regularization parameters has ensured better classification accuracy (less classification loss) with
seven features, with an accuracy of 96.1% using the Bern-Barcelona dataset. The feature-selection
approach requires a high volume of labeled data for the purpose of training.

Empirical mode decomposition (EMD) has been used to analyze nonstationary and nonlinear
signals. It has also been used in the classification of epileptic seizures recorded by EEG [22].
EMD decomposes any signal into a finite set of basis functions called intrinsic mode functions (IMFs).
The ellipse area of the second-order difference plot (SODP) of selected IMF(s) has been used as the
seizure-detection feature [7], with an accuracy of 97.75%. The signal-processing task using EMD
requires a computational cost higher than Fourier and wavelet-based approaches. Moreover, EMD is a
nonconsistent form of decomposition. It may generate a different number of IMFs while decomposing
the same signal at different times. A set of selected IMFs has been used to detect seizure in [7].
The selection of the appropriate IMFs to obtain maximum classification accuracy has been performed
heuristically, and hence it is difficult to reproduce the results.

In this study, discrete wavelet transform (DWT) is used to decompose the analyzing EEG signal
into a set of subbands. A set of significant features extracted from all the subband signals is utilized
in the seizure classification scheme. All the subbands obtained by DWT are used to extract features.
In addition to the subbands, the same features are extracted from the EEG signal. Here, three features are
used to characterize the spike events in the EEG signal. It is well known that an EEG signal indicating a
seizure event has more spike events than a nonseizure EEG signal [2]. Moreover, several entropy-related
features are utilized to quantify the complexity of EEG signals for characterizing the seizure event. It has
been reported that the combination of different entropies of EEG signal improves seizure-detection
performance [23-25]. Therefore, four entropy-based features are employed here. The seven features
are extracted from each subband and concatenated to obtain the feature vector. The combination of
spike-detecting features, as well as entropy features, has a significant ability to effectively distinguish
an EEG signal with a seizure event from a normal one. Feature selection is essential to improving the
performance of the machine-learning-based classification approach [26]. Its objective is the selection of
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a minimal feature subset that permits a problem to be defined clearly. By selecting a minimal subset of
features, the redundant and irrelevant features are removed based on the criterion that the original
task is achieved equally well, if not better. It reduces the computational cost as well. An effective
feature-selection approach potentially plays the role of improving the classification performance [27-29].
Here, a graph-based eigen decomposition approach is implemented to select the potential features
from a high-dimensional feature vector for seizure detection. The selected features are used to classify
EEG signals into seizure and nonseizure categories using a feedforward neural network (FfNN).
The narrowband features of the EEG signal are used as effective features for seizure detection.

3. Data Description

The EEG dataset provided by the Department of Epileptology, University of Bonn, Germany,
is used to evaluate the performance of the proposed method [30]. It is publicly available and consists
of five sets of EEG data, labeled A, B, C, D, and E. Each of the five sets contains 100 segments of
single-channel EEG of 23.6 s duration. The segments were collected from continuous recordings of
multichannel EEG. Visual inspection was performed in prior for artifacts of eye movement and other
muscle activities. Surface EEG recordings were carried out for sets A and B on five healthy volunteers
using a standardized electrode placement scheme during their awake state with eyes open (A) and
eyes closed (B), respectively. Sets C, D, and E were collected from EEGs of presurgical diagnosis.
The EEGs from five patients were selected. All had achieved complete seizure control after resection of
one of the hippocampal formations, which was thus correctly diagnosed as the epileptogenic zone.
The EEGs in sets C and D were recorded from the hippocampal formation of the opposite hemisphere
and within the epileptogenic zone of the brain. In turn, sets C and D contained the activity measured
during seizure-free intervals, and set E contained only seizure activity. A summary of the EEG dataset
is shown in Table 1.

Table 1. Summary of the electroencephalography (EEG) dataset used in this study.

Subjects Healthy Subjects Epileptic Subjects
Set A Set B Set C Set D SetE
Alternative Set Z Set O Set N Set F Set S
representation
Patients state Eyesopenand  Eyes closed and Seizure-free Seizure-free Seizure activity
awake (normal) awake (normal) (interictal) (interictal) (ictal)
Number of epochs 100 100 100 100 100
Time duration (s) 23.6 23.6 23.6 23.6 23.6
Electrode type Surface Surface Intracranial Intracranial Intracranial
Electrode International International eog(epotitifloic o ﬂ‘:ev ltzlr:enic o 11‘2] lizlr;nic
placement 10-20 System 10-20 System PLepLos plieptog prieptog
zone zone zone

All EEG signals were recorded using the same 128-channel amplifier system with an average
common reference. The data were discretized at a sampling rate of 173.61 Hz and 12-bit analog-to-digital
conversion. A band-pass filter with frequency range 0.53-40 Hz was used to preprocess the data.
As examples, EEG frames of 5 s length selected from each of the five sets (sets A-E) are illustrated in
Figure 1.
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Figure 1. Electroencephalography (EEG) subframes selected from each of five sets (A-E).

4. Methodology

Here, a novel method is proposed for subband feature extraction: potential feature selection to

classify epileptic and nonepileptic EEG signals using a neural network. The block diagram of the
method is shown in Figure 2. It has the following steps:

@)
(ii)
(iif)

(iv)

(vi)

The segment of the EEG signal is divided into fixed length frames.

Each frame is decomposed into a number of subband signals using DWT.

Three spike-related features, namely, ellipse area of SODP, fluctuation index, and squared
coefficient of variation of the absolute series, as well as four entropy features, are computed from
each subband of a frame. The same features are also extracted from the original frame before
subband decomposition.

All the extracted features of a frame are combined to derive the feature vector.

A graph eigen decomposition (GED)-based approach is implemented to select the
discriminative features.

An FINN is trained with the selected features, and classification of the EEG frame into ictal and
interictal categories is performed.

EEG Signal

subband; || subband; | subband;+

>~

Features extracted from
subbands and original frame

\A

| Feature selection by GED

v

Classification by
Feedforward Neural
Network

v

Seizure or Non-seizure

Figure 2. Block diagram of the proposed method (GED: graph eigen decomposition).
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Each of the five sets of EEG data has 100 segments of 23.6 s length. The framing of each EEG
segment is performed with an overlapping of reasonable portion. On the basis of the requirement of
the medical application, the size of the frame is set at 10 s with 50% overlapping. The EEG frame of
10 s length is decomposed into subband signals using DWT. The desired features are extracted from
each subband as well as each EEG frame. All the features (obtained from subbands and EEG frames)
are combined to derive the raw feature vector corresponding to each frame. The proper selection of
dominant features enhances classification accuracy in the machine learning paradigm. A GED-based
method is implemented to select the potential feature subset. It suppresses the redundant features that
have no significant role in epilepsy classification. Thus, the significant features of the training dataset
obtained are used to train the FfNN classifier. Then, the performance is evaluated by the test dataset.
The following subsections describe the steps of the proposed seizure-detection method.

4.1. Subband Decomposition

The narrowband features provide discriminative information for seizure detection [12,20]. EEG is
characterized as a nonstationary signal, and hence Fourier transformation is not an appropriate tool
for analyzing it. Most physiological signals with a nonstationary pattern are effectively analyzed by
DWT [31]. It is effectively used for subband decomposition of EEG frames. The method is based on a
filter bank decomposition on an orthogonal base realized by a convolution between the original signal
x(n) and the filter. There are two filters: the highpass filter (g), which computes the detail coefficient
d'(n); and the lowpass filter (1), which computes the approximate coefficient () at decomposition
level I. The convolution realized by the highpass and lowpass filters is d'(n) = ¥ g(k) *a"~1(2n — k)

k

and d'(n) = Y h(k) »a'~1(2n — k), respectively, where [ is the current wavelet decomposition level, n
k

is the number of time observations, and g(k) and h(k) are the filter coefficients of the lowpass and
highpass filters. Note that both approximation and detail coefficients at level / depend only on the
approximation coefficient at level (I — 1). The db4 wavelet function is utilized for EEG decomposition
into subbands. The one approximate and L detail coefficients are obtained by DWT with L level
of decomposition [28]. The subband signals are reconstructed using the coefficients. Hence, (L+1)
subbands’ (s, s, ... , sp+1) signals are obtained by L levels of wavelet decomposition. The epileptic
and nonepileptic EEGs and their five subbands obtained by four levels of wavelet decomposition are
shown in Figure 3. The cutoff frequencies of the five subbands Sb1, Sb2, Sb3, Sb4, and Sb5 are 43-86 Hz,
22-43 Hz, 11-22 Hz, 6-11 Hz, and 0-6 Hz, respectively. The first subband Sb1 (43-86 Hz) corresponds
to the gamma rhythm. None of other four subbands relate to a single rhythmic component, but a
combination of the parts of two rhythms. The second subband Sb2 (22-43 Hz) includes the high
frequency part of beta rhythm in addition to gamma, Sb3 (11-22 Hz) contains the low frequency part
of beta as well as high frequency part of alpha rhythm, Sb4 mostly includes the mu band, and Sb5
comprises the low frequency part of theta in addition to delta rhythm. The high-frequency ripples
contain significant information for seizure detection. Although the gamma rhythm (>30 Hz) has a
substantial role in seizure detection, the other rhythms also carry important evidence related to the
same task. The four-level DWT decomposition is used in this study. The experimental validation of
the number of decomposition level is illustrated in Section 5.
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Figure 3. The EEG signals and their different subbands obtained by applying four levels of DWT.
Left column: nonseizure EEG signal (from set A) and its five subbands; right column: seizure EEG
signal (from set E) and its five subbands. Note that the signals of 5 s length (out of 10 s frames) are
plotted here for better illustration.

4.2. Feature Extraction

A feature is an individual measurable property or characteristic of an object. The extraction of
informative, discriminating, and independent features is a crucial step for effective algorithms of
pattern classification in machine learning. The feature-extraction method is useful for reducing the
volume of data required for processing without losing important or relevant information. It reduces
the amount of redundant data for a given analysis. Feature extraction is a general term for methods of
constructing combinations of variables to get around these problems while still describing the data
with sufficient accuracy. The features are very much application-dependent. Two broad types of
features are used in this study. The first three features illustrate the spike characteristics of the EEG
signals, and the other group of four entropy-based features represents the complexity of the signal.
The combination of these two categories of features is used to characterize the EEG signals with respect
to seizure events. The features are described immediately below.

4.2.1. Ellipse Area of SODP

The second-order difference plot (SODP) is a graphical representation of successive increments
against each other, and it provides the signal’s rate of variability. It is widely used to determine the
spike events of a signal. The SODP of signal x(n) is a graph of y,(n) against y; (1), which are defined
as [7]

v = x(n + 1) - x(n) (1)

Yo=x(n+2)-x(n+1) 2)

The lengths of x(n), y1(n), and y,(n) are N, (N — 1), and (N — 1), respectively.

Figure 4 shows the SODP of seizure and nonseizure EEG signals and their five subbands illustrated
in Figure 3. The area of the ellipse covering the SODP is calculated for the plots. The epileptic EEG
has a higher number of transient events, and hence provides a bigger elliptical structure than the
seizure-free signal. The 95% confidence area is used to determine the ellipse area occupied by the data
points of the subband signal [24,32]. The ellipse area A, of SODP with 95% confidence is defined as [7]

A, = Tap, 3)
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where @ and f are the major and minor radii of the 95% confidence ellipse area, respectively, and the
terms are defined as follows:

o= {3(x+13+0) 4)
B= 3(F + x5 -0) (5)
o= \/(K% + K%) —4(1{%1{% - K%z) (6)

Here, 6 represents dispersion for the radii a and . The parameters x; and «, represent the root mean
squares of 11 and y», respectively. The term «1; is the covariance of y; and y,. These parameters are

calculated as
1 N-1
K1 = \/m anl yi(n)? @)

@ =g Lo w0’ ®

K12 = ﬁ Zyl(")yz(n) )

As already illustrated in Figure 4, the spread area of the second order plot for the ictal EEG is
higher than that for the interictal signal. The epileptic EEG signal produces a larger elliptical structure
than the nonepileptic signal. In addition to the subbands’ (narrowband) signals, the ellipse area
of SODP of fullband EEG also carries significant discriminative information for seizure detection.
It motivates the use of the SODP ellipse area of the EEG signal, including its subbands, as a potential
feature for seizure detection.
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Figure 4. Second-order difference plot (SODP) of five subbands obtained from nonseizure (left) and
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4.2.2. Squared Coefficient of Variation of the Absolute Series

The squared coefficient of variation of the absolute series denoted by V. provides a quantitative
measure of the amount of amplitude fluctuation in any signal x(1). The seizure EEG signal has a higher
number of spikes and fluctuations in amplitude, which results in a larger value of V. compared with
the nonepileptic signal. It is defined as [4]

2
o
VSC = _2 (10)

where y = & Zy=1|x(n)( and 0 = \/l%] 2]:1 (x(n) - & Zyzl x(n))2 for any signal x(n) of length N.
The value of the squared coefficient of variation of the absolute series for the epileptic EEG signal is
supposed to be larger than that for the nonepileptic EEG signal.

4.2.3. Fluctuation Index

The fluctuation index (F;) measures the degree of the changes in the amplitude of any signal.
The value of F; refers to the amount of frequent changes in the amplitude of a signal. The epileptic
EEG has frequent changes in amplitude, yielding a higher value of F; compared with the nonepileptic
EEG. It is measured by the mean absolute of all first-order increments of x(1) and defined as [4]

F; = ﬁ Zf;ll)x(n +1)—x(n)|, (11)

where x(n) is the analyzed signal of length N.

4.2.4. Permutation Entropy

The complexity of a time series is estimated by permutation entropy (PE). It is a simple and robust
method used for automated seizure detection [33]. For any time series x(1), each vector X(k) can be
represented as X(k) = [x(k), x(k+ 1), ..., x(k+ (6—-1)7)],fork=1,2,..., N -6+ 1, where 6 and
represent the embedding dimension and time lag, respectively. The permutation of [1, 2, ... , 5] can be
defined asIT = [ji, jo, ..., js|, whichsatisfiesx(n+ (j1 —1)7) < x(n+ (j—1)7) < ... < x(n+ (js — 1)7).
The probability of each possible permutation IT)(I = 1,2,..., 8!) for the set of vectors {X(k) }5(\12—1(6—1)1 can be
estimated as p(I1}) = C(IT;)/(N — (6 — 1)), where N is the length of the analyzing signal x(n) and C(IT))
represents the number of occurrences of the order pattern I'l;. The PE can be defined as

pE= =Y " p(I1) logp(IL), 12)

In this study, the parameters 6 and T were set to 3 and 1, respectively [34,35]. Several studies in
epilepsy seizure detection were suggested to use the value of the parameter 6 from 3 to 7 [13,33,36,37].
Sharma et al. proposed an automatic epileptic seizure detection system with entropy measures [36].
Their used parameters were 0 = 3 and 7 = 1 by motivating the previous epilepsy studies [13,33,37].

4.2.5. Approximate Entropy

Approximate entropy (APE) was first proposed by Pincus et al. [38] to measure the amount of
regularity in a time series. APE is extensively used in many areas of biomedical signal processing,
including EEG and ECG signals. For any time series x() with length N, we can define the set of vectors
as {X(k) }kN:_f 1 and each X(k) vector can be represented as

X(k) = [x(k), x(k+1),...,x(k+6-1)]for1<k <N-6+1, (13)
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where 0 is the embedding dimension. In recent epilepsy studies [34,39], the value of 6 for approximate
entropy was chosen as 2 for designing the automatic system. In this work, we have taken 6 = 2 for the
computation of APE. To measure the complexity of a time series, the approximate entropy is defined as

1 N-6+1 1 N=6

QPE((S, a, N) = m =1 log(C;z(a))— N_—6 =1 10g(c2+1 (a))/ (14)

where a defines the tolerance limit with 0.2 times the standard deviation of data used in different
studies [24], and C]‘z(a) is the correlation integral and is defined as

Ca) = gy L DG -X() = ), (15)

where I(-) represents the indicator function and the D(:) is the distance between two vectors X(k)
and X(j).

4.2.6. Renyi’s Entropy

The Renyi’s entropy has been used for seizure classification purposes in [40]. It generalizes the
Shannon entropy and offers a more flexible tool, allowing for a better characterization of the process
than just the Shannon entropy [41]. Several studies related to epileptic seizure detection have proposed
the use of Renyi’s entropy [40,42—44]. Let X(f) forf = 1,2, ... ., F be the Fourier transform of the signal
x(n) of length N. The normalized power spectral density py can be estimated as

(A
X(H : 16

y - KL
TR X

where F is the number of frequency bins (here, F = N/2). The Renyi’s entropy with order-o [34,35] can
be calculated as

enE(a) = ——log Zf(pf)“ (17)

1-«a
Here, we use only a = 2 [24,36,40,44], while omitting a discussion of other orders of the
Renyi’s entropy.

4.2.7. Phase Entropy

Phase entropy is defined based on the bispectrum, the simplest case of higher-order spectra [23].
The bispectrum of a time series can be defined as

d(fi, f2) = EX(A)X(L)X' (A + f2)], (18)

where X(f) (f=1,2, ..., F) represents the Fourier transform of signal x(n) of length N, F is the number
of frequency bins (here, F = N/2), and E represents the expected value. The terms f; and f, represent
the fi and f,"" frequency bins of X(f), respectively, and (f; + f») is the harmonic component of f;
and f,. Then, the phase entropy phE of x(n) can be defined as

phE = — 22:1 2;2:1 p(fi, f2)1og(p(fi, f2)), (19)

2
wherep(fi, f2) = = |3(Ff 12| 5> and p( f1, f2) represent the probability of d( f1, f2) in the bispectrum
Zflzl Zf2:1|‘9(f1rf2)|

Withfl, fz =1,2,...,F
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4.3. Feature Combination

The EEG frame is decomposed into five subbands’ signals using DWT. The three spike-related
features (A, Vs, and F;) and four entropy features (pE, apE, RenE, and phE) are computed from each
subband as well as from the full signal. All the features extracted from the six signals are combined to
produce the feature vector Z of dimension (L + 2) X 7 for each epoch of the EEG signal. Thus, the feature
vector derived is used in feature selection, leading to seizure detection with the neural network.

4.4. Discriminative Feature Selection

The feature-selection scheme is defined as selecting a subset of significant features for a problem by
ranking them according to their importance in the classification model. A GED-based feature selection
is implemented to select the dominant features according to the measure of graph centrality [45].
Consider that a set of features Z = {z(1), z®@ ... , z™M}. An undirected graph G = (H, W) is built, where H
is the set of vertices corresponding to the features and W contains the weighted edges connecting the
vertices. Consider that the adjacency matrix U for the graph G defines the nature of the weighted
edges; each element wj; of W, 1 <ij < M, signifies a pairwise weight [46].

The weight of the graph represents significant criteria associated with class separation for
addressing the classification problem. In other words, features are ranked according to their importance
classification. On the basis of best practice in feature selection, a combination of two different measures
to capture both redundancy and relevance is implemented to define a kernel-based adjacency matrix.
The probability distribution is estimated for each feature z"). Consider the Fisher criterion,

- uia|

2 2
0i1 T 05

D; (20)

where u; . and o;, represent mean and standard deviation, respectively, of the i-th feature and samples
from the c-th class. A larger value of D; indicates that the i-th feature is more discriminative.

For the given class labels, only the features that are related to or lead to these classes are kept.
The mutual information is used to rank the features that score high among the features that are highly
predictive for the respective class.

Ri= ZteT Zmez(i) P(m’ t) log(%)’ (21)

where T is the set of target class labels and p(-,) is the joint probability distribution. Then, the kernel is
defined as [47]

@ = DR”, (22)
where ()7 represents the transpose operation, D and R are M X 1 column vectors normalized in [0, 1],
and O results in an M X M matrix. Another feature-evaluation metric is introduced based on standard

deviation [48]. It is a measure of the dispersion of features from their mean and is defined as
pij = max(ai,aj) , (23)

where o; represents the standard deviation of ith feature and p is an M x M matrix with each element
p € [0, 1]. Finally, the adjacency matrix U is given by

U=y0+(1-y)p, (24)

where 7 is a loading coefficient €[0, 1]. Each entry u;; accounts for the degree to which the features
i and j are discriminative when they are considered jointly. At the same time, u;; is regarded as the
weight of the edge connecting the nodes i and j in graph G. Then, a set of eigenvalues A and a set of
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eigenvectors V of U are computed. The absolute value of principal eigenvector vy associated with
Ap = I/I\Ia/i(|/\| is used as the weight for ranking the features. The required number of features is selected
€

based on the rank of the individual features.

Case study: Seven features denoted by Ae, Vsc, Fi, pE, apE, RenE, and phE are extracted from each
of the five subbands as well as the fullband EEG signal. A set of 42 features is obtained from each EEG
frame. The features of seizure and nonseizure frames (shown in Figure 3) are presented in the top
panel of Figure 5. For better illustration, the logarithmic scale is used to represent feature value. It is
observed that the feature vectors obtained from seizure and nonseizure EEG are distinguishable from
each other.

T T T T T T
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S
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)
E Sb,
S2f 1
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<
(2
20t |
| | | | | | | |
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T T T T T T
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=02

5 10 15 20 25 30 35 40
Feature index

Figure 5. Features and corresponding weights assigned for feature selection. Top panel: feature vectors
of length 42 obtained from nonseizure (set A) and seizure (set E) EEG frames. Bottom panel: weight
vector derived by the GED approach for feature selection. Each feature is assigned a weight.

The GED-based feature-selection approach assigns a weight to each feature, and the features are
ranked based on their weight. Considering the classification task of nonseizure (set A) and seizure
(set E), feature selection with GED is applied to the feature vectors extracted from all labeled EEG
frames of A and E. The weight vector derived by GED is used to rank the features. Then, the top-ranked
features are used for classification. The weight vector used to rank the features in the case of A-E
classification is illustrated in the bottom panel of Figure 5. For instance, the weights of the top-ranked
8 features out of 42 are marked in green (bottom panel of Figure 5). It is observed that the feature with
higher weight has significant interclass distances (represented by amplitude). The other features make
a less significant contribution to A-E classification.

4.5. Classification

Artificial neural networks (ANNs) have been widely used in pattern recognition problems for the
last few decades [49]. In this study, FINN is used for the classification of epileptic and nonepileptic
EEG signals. Such models are called feedforward because the information only travels forward in the
neural network, through the input neuron, then through hidden layers (single or multiple), and finally
through the output neuron. It is represented by a combination of many simpler neurons and the
connections among them. It works well for nonlinearly separable data. The neuron is the building
block of FENN. When multiple neurons are connected in an effective way, it establishes the required
relationship between the neurons to deal with nonlinear data.
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A set of selected features is fed into the neural network to perform the classification. The efficient
configuration of FINN to address this problem includes one input, one hidden, and one output layer.
The output layer contains one neuron to classify two classes of data. The number of neurons in the
hidden later is chosen on the basis of maximizing the performance. On the basis of the selection of
discriminative features using the proposed GED-based method, the number of input neurons varies
according to the selected number of features. The target values are set to 1 and 0 to represent epileptic
and nonepileptic EEG signals, respectively. The hyperbolic tangent sigmoid (HTS) function is used for
the input- and hidden-layer transfer function. The Softmax function is assigned to the output layer.
The definition of HTS and the Softmax function are given by Equations (25) and (26), respectively.

2
f(h) = T o0 1, (25)
hi
flh) = —— (26)
Zj:l e’

where ; represents the hypothesis of the i neuron and N is the total number of neurons in the output
layer. Scaled conjugate gradient backpropagation is used as a network training function to update the
weight and bias values of FINN. Classification accuracy is also assessed using an SVM [50,51] as well
as linear discriminant analysis (LDA) [52].

5. Experimental Results

As described in Section 3, a well-known EEG dataset is used to conduct the experiments in order
to evaluate the performance of the proposed method. The dataset is arranged to evaluate nine different
cases of binary class, as shown in Table 2. The feature-selection task, as well as the performance
evaluation, is done for each case individually. The details of each set (A-E) are presented in the data
description (Section 3).

Table 2. Different cases derived from the dataset for epileptic seizure classification.

Case
4 5 6 7 8 9

1 2 3
Class 1 (nonseizure) A B C D ACD BCD CD ABCD AB
Class 2 (seizure) E E E E E E E E E

Class

The data of each set of length 23.6 s are segmented into fixed length frames with reasonable
overlapping. The size of the frame plays an important role in seizure detection. A smaller frame size is
practically more applicable, whereas it may miss the desired seizure pattern. On the other hand, a larger
size of frame could include both seizure and nonseizure events, which can lead to misclassification.

The frame size is set to 10 s with 50% overlapping on the basis of the clinical diagnosis aspect.
Each of the five sets having 100 segments of EEG produces 400 frames of 10 s length. Each frame is
decomposed by DWT into five mutually orthogonal subbands. The original frame is also kept as an
additional subsignal. Hence, each frame contains an array of six subsignals. The features are extracted
from each of the six subsignals representing a frame. Three features (A., V., and F;) with which to
characterize the spike events and four entropy features (permutation, approximate, Renyi’s, and phase
entropy) are extracted from each subsignal. The thus obtained six sets of features are combined to
produce the feature vector for a frame. The dominant features are selected using the GED-based
supervised method.
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Epileptic seizure detection for each frame is a binary classification problem. The FINN is used
to classify any frame as epileptic or nonepileptic. The performance is quantified by classification
accuracy (ACC), sensitivity (SEN), and specificity (SPE) measured in percentage (%) defined as follows:
ACC =100 x (Tp + Tn)/(Tp + Tn + Fp + Fy), SEN = 100 X Tp/(Tp + Fy), and SPE = 100 x Tn/(Tn + Fp),
respectively, where Tp, Ty, Fp, and Fy represent the number of correctly detected positive,
correctly detected negative, erroneously detected positive, and erroneously detected as negative
patterns, respectively. In addition to FINN, the classification performances of LDA and SVM classifiers
are also investigated. A K-fold (K = 5) cross-validation is implemented to accomplish stable and
reliable performance of the proposed method [31]. The overall accuracy is the mean of the results
obtained from K folds. In all cases, 80% of the total frames are used in training, and the remaining 20%
are used for validation. For example, in Case 1, there are 800 frames (A-E), among which 640 frames
are used in training and 160 EEG frames are used for validation.

The performance is evaluated using the three spike-related features (SrF), four entropy-related
features (ErF), with all (seven) combined features (CF), and the combined features with GED (CFGED).
Table 3 presents the comparative performance in terms of SEN, SPE, and ACC in percentage (%)
averaged over all nine combinations for different feature schemes with three classifiers. With any
group of feature combination, the FINN outperforms SVM and LDA in terms of any of the performance
measuring criteria. The higher SEN and SPE of CFGED with FINN indicate that the proposed method
is able to classify both of the classes effectively.

Table 3. Comparative performance in terms of average sensitivity (SEN), specificity (SPE), and classification
accuracy (ACC) measured in percentage (%) over all nine cases with different groups of features and classifiers.
StE spike-related features; ErE, entropy related features; CF, combined features; CFGED, combined features
with graph eigen decomposition; FINN, feedforward neural network; SVM, support vector machine; LDA,
linear discriminant analysis.

SrF ErF CF CFGED
SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC

FINN 99.45 9886 99.03 99.05 9825 9885 9948 9875 99.32 100.00 99.46  99.55
SVM 98.81 9810 9847 98.60 98.08 9824 9942 99.17 9929 99.77 99.21 99.39
LDA 9835 9786 98.15 9820 9695 9791 99.08 9812 98.69 9895 9810 98.72

Classifier

After measuring the performance of different classifiers with various feature groups,
the Tukey—Kramer-based post hoc test is performed [53] to test the statistical significance of classification
accuracy over different feature groups. According to the results of the post hoc test, FINN significantly
improves performance (in term of classification accuracy) across the feature groups compared with the
other classifiers (FINN versus SVM: p < 0.04; FINN versus LDA: p < 0.01). The best performance is
accomplished using the CFGED method with FINN; that is, this study’s proposed method. The other
performance matrices (SEN, SPE) also demonstrate the superiority of CFGED with FINN over
other classifiers.

In the previous work [54], only the three spike-related features (SrF) were used. The EEG data
were segmented into epochs of 10 s length and 70% overlapping, whereas 50% overlapping is used in
this study. Collectively, the combination of spike-related features with entropy-related features and
the GED-based discriminative feature-selection approach improve the classification accuracy of the
proposed method. Moreover, the proposed method outperforms the recently developed ICFS [20]
algorithm. The comparative results are illustrated in Figure 6. It is evident that the proposed CFGED
performs better than the recently developed ICFS method [20] and our previous work with SrF [54].
The average performance (in terms of classification accuracy) across all nine cases confirms the
superiority of the CFGED method.
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Figure 6. Comparison of the performance of the proposed combined features with graph eigen
decomposition (CFGED) method with improved correlation-based feature selection (ICFS) [20] and
previous work on spike-related features (SrF) [54].

The statistical Friedman test is performed to examine the significance levels of different methods.
It is a nonparametric test [55,56] designed to detect differences in methods, including the proposed
CFGED. According to the results of the Friedman test, there is a significant main effect of the methods
on accuracy (p < 0.02). To test the statistical significance of the methods, the Tukey—Kramer-based
post hoc test is performed [53]. According to the results of the post hoc test, the CFGED method
significantly improves the performance of classification across the nine cases compared with the other
methods (CFGED versus SrF [54]: p < 0.02; CFGED versus ICFS [20]: p < 0.007). It is observed that the
maximum performance is achieved using the CFGED method.

The number of subbands obtained by applying DWT to EEG is a significant factor of classification
performance. It depends in turn on the level of wavelet decomposition. The classification accuracies
of nine cases with different levels of wavelet decomposition are illustrated in Figure 7. It is evident
that the highest average classification accuracy is accomplished with four levels. In most of the cases,
the accuracy increases up to the fourth level and remains almost constant at levels greater than four.
The subbands obtained by a wavelet decomposition level higher than four have a negligible impact on
the performance of EEG classification into seizure and nonseizure signals. The higher-order subbands
contain lower-frequency components, which do not carry sufficient variance to detect seizure events in
EEG signals. Considering the performance issue, four-level wavelet decomposition (five subbands) is
implemented in this study.
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Figure 7. Classification accuracies of different cases and the mean accuracy as a function of wavelet
decomposition levels to generate the subbands.

6. Discussion

In this study, the features of two different domains are combined, and an effective feature-selection
approach is implemented to detect seizure events in EEG signals. The first category has three
features that represent the fluctuation characteristics, and the second category includes four different
entropies that illustrate the complexity of the signal. The combined feature space has seven features
corresponding to each EEG frame. In total, seven different classification problems are considered.
The performance with the selected features is evaluated using three supervised classifiers, namely,
SVM, LDA, and FfNN, with a fivefold cross-validation technique. The simulation results show that the
proposed method has effective performance in epileptic seizure classification.

A number of previous works are summarized in this section with results (in terms of classification
accuracy) to realize their performance in seizure detection. The results of several existing works
in which the Bonn university dataset is used for performance evaluation are compared with the
proposed CFGED method, as presented in Table 4. Among the algorithms, the mean accuracy of
SrF [54] (averaged over nine cases) outperforms all the previously developed algorithms, whereas the
average classification accuracy of the proposed method is higher than that of SrF [54]. It is necessary
to consider the average accuracy over the possible cases to compare the overall performance of any
method. Although the average classification accuracy of [14,20] are similar (98.45%), the evaluation
case CD-E is included in [20], but not in [14]. Sets C and D are recorded from epileptic subjects while
seizure is not present. On the other hand, set E is recorded from epileptic subjects at the time of
seizure. It is often difficult to distinguish set C and set D from seizure EEG signals taken from set E.
The issue is evaluated by case 7 (CD-E) with a classification accuracy of 99.49% using the CFGED
method. The same evaluation case (CD-E) is considered in [18] and achieves an accuracy of 98.80%.

The proposed method achieves the highest average accuracy over nine different evaluation cases.
Notably, the maximum number binary classification cases are considered in this study. The highest
classification accuracy of 100% is achieved with CFGED in case 1 (A-E), case 2 (B-E), and case 9
(AB-E). The lowest accuracy is 98.60% in case 4 (D-E), which is still 0.10% greater than that of ICFS [20]
(98.50%). The accuracies for case 4 (D-E) of all other methods mentioned in Table 4 are lower than the
accuracy achieved by ICFS [20].



Sensors 2020, 20, 4639 17 of 23

Only one case, A-E, is considered in [12,16,17], with classification accuracies of 99.44%, 99.56%,
and 99.20%, respectively, whereas the accuracy of the CFGED method is 100% for case A-E. The accuracy
of case 1 (A-E) and case 9 (AB-E) achieved by the method SrF [54] is 100%, whereas the average
performance of the proposed method is higher than that of SrF [54]. Nine different evaluation cases are
also considered in [6], which attains 97.15% verage accuracy, which is 2.40% less than the classification
accuracy achieved by CFGED. Considering the overall situation, the average classification accuracy
of the proposed CFGED method outperforms all the recently developed algorithms with minimum
standard deviation. In CFGED, the EEG frame is decomposed into narrowband signals to localize
the feature in frequency scale. The subband features used in CFGED are very effective for epilepsy
detection, yielding higher accuracy. Two categories of features are combined in the proposed method.
The spike-related features capture the transient events in EEG signals that are caused mostly by seizure
events. On the other hand, the entropy-based features measure the seizure-related complexity of the
signals. Three spike-based features and four entropy features are collectively used in this study to
detect seizure events, and hence improvement in the classification performance is achieved.

Table 4. Comparison of performance (in terms of classification accuracy) of the proposed method with
recently developed algorithms for seizure classification. LS, least square; GP, genetic programming;
KNN, k-nearest numbers; ICFS, improved correlation-based feature selection; SODP, second-order
difference plot; EMD, empirical mode decomposition.

Reference Methods Cases Accuracy (%)
Ubeyli et al. [16], 2010 LS-SVM model A-E 99.56
Wang et al. [12], 2011 Wavelet packet entropy A-E 99.44
Guo etal. [17], 2011 GP with KNN classifier A-E 99.2
A-E 100
B-E 100
C-E 99.6
Fuzzy approximate D-E 95.85
Y. Kumar [14], 2014 entropy and SVM ACD-E 0815
BCD-E 98.22
ABCD-E 97.38
Mean + STD 98.45 + 1.53
A-E 98.5
. . B-E 85
. Weighted permutation
N. S. Tawfik [15], 2015 entropy (WPE) and SVM C-E 93.5
D-E 96.5
Mean + STD 93.37 £ 5.95
T. S. Kumar [19], 2015 Gabor filter with KNN CD-E 98.3
R. B. Pachori [7], 2014 SODP with EMD CD-E 97.75
A-E 100
B-E 98
C-E 99
. D-E 98.5
M. Mursalin [20], 2017 I(IZFS.;]lth random forest ACD-E 985
classifier BCD-E 975
CD-E 98.66
ABCD-E 97.4

Mean + STD 98.45 + 0.84
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Table 4. Cont.

Reference Methods Cases Accuracy (%)
A-E 99.9
B-E 99
Convolution neural C-E 98.8
I. Ullah [18], 2018 network (CNN)-based D-E 98.1
deep learning AB-E 97.4
CD-E 98.8
Mean = STD 98.67 + 0.85
A-E 99.45
B-E 96.06
C-E 97.6
Matrix-determinant-based D-E 97.6
S. Raghu [6], 2019 features with multilayer AB-E 97.1
perceptron (MLP) AC-E 96.5
CD-E 96.85
ACD-E 96
ABCD-E 97.2
Mean = STD 97.15 +1.04
A-E 100
B-E 99.57
C-E 98.84
Multiband implementation D-E 98.01
of three spike-related ACD-E 98.85
Hassan et al. [54], 2019 features (SrF)—A,, Vo,and  BCD-E 087
F; with FINN CD-E 98.29
ABCD-E 99.04
AB-E 100
Mean + STD 99.03 +0.70
A-E 100
Multiband implementation B-E 100
. C-E 99.9
of three spike-related D-E 98.6
Proposed method feitures ESrtF) and fgﬁr ACD-E 99.34
(CEGED) entropy features wi BCD-E 99.25
GED-based feature
selection with FINN CD-E 9949
classifier ABCD-E 99.39
AB-E 100
Mean + STD 99.55 + 0.47

18 of 23

The number of selected features is another factor that affects the performance of the proposed
method. The features are ranked based on the performance of any feature in the discrimination between
the classes. Each feature is assigned a weight using a GED-based feature-selection method. The features
with higher weights are more discriminative and have greater potential for seizure/nonseizure event
classification. The inclusion of low-rank features reduces the class discrimination that leads to a
decrease in the classification accuracy. A number of high-rank features are selected for seizure detection
in an effort to maximize the performance.

Another important parameter that influences the performance is the number of neurons used in
hidden layer of FINN. This issue has yet to be investigated properly. It depends mostly on the different
factors, including feature dimension as well as its characteristics, the target outputs, and the learning
algorithm. It has already been mentioned that the average accuracy rather than that of the individual
case is more effective for comparing the performance. To obtain the maximum average accuracy,
a grid-search method is used to select the number of features as well as the hidden neurons. Figure 8
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illustrates the average classification accuracies over the nine cases as a function of the number of
selected features as well as the number of hidden neurons. The number of features and hidden neurons
is minimized to obtain maximum average accuracy, aiming to reduce the computation complexity. It is
observed that the maximum average accuracy is obtained with 16 selected features and 10 hidden
neurons. In this study, all the experiments are conducted using these selected parameters to perform
the comparison with other methods.
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Figure 8. Average performance over nine cases as a function of the number of selected features (using
GED) and number of neurons used in the hidden layer of FNN. The maximum average accuracy is
achieved with 18 selected features and 10 hidden neurons.

Besides different entropies, the features to characterize the spike events in EEG are also used in this
study. A potential feature-selection approach is implemented to enhance the classification performance
of the seizure/nonseizure event using scalp EEG. The features are extracted from the EEG signal as
well as its different subbands obtained by DWT. The raw feature vector has high dimensionality.
Various features might be inaccurate and mislead the classifier, leading to a weakening of the overall
system performance [57].

A discriminative subset of features extracted from EEG is more suitable to correctly classifying the
seizure event, whereas the others must be removed to reduce performance degradation. The selection
of the subset of appropriate features also requires the removal of the irrelevant or redundant elements
in the feature vector. It also reduces overfitting of training time in machine learning. A GED-based
supervised feature-selection method is implemented here. The weights assigned by GED to each
of 42 features of an EEG epoch of case 4 (D-E) are shown in Figure 9. It is observed that the 38th
feature has the maximum weight, and hence is the top-ranked feature. The feature vector is sorted
based on the weight assigned to each one. The top-ranked 16 features are selected (from the sorted
feature vector) to be used in seizure detection. Another interesting phenomenon is the effectiveness of
using subband features. The 16 features are selected from different subbands rather than from the
original EEG. Each subband produces seven features. Five, two, two, two, and two features are selected
from subbands Sby, Sby, Sbs, Sby, and Sbs, respectively, and the remaining three from a fullband EEG
signal (S). This provides evidence that, without employing the subband features, the seizure-detection
performance is likely to be reduced. The subband features represent discriminative components
localized in narrowband signals.
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colors). The 16 features are selected (black color) from different subbands according to their weights.
Sb; ... Sbs represent five subbands and fullband EEG signal (before subband decomposition) for
case D-E.

7. Conclusions

Automatic detection of epileptic seizure in EEG is a challenging task owing to its subject
dependency and lack of available training data. A publicly available EEG dataset is used to evaluate
the efficiency and effectiveness of the proposed method. The main contribution in this study includes
the development of an effective feature vector to detect the epileptic seizure event in EEG within a
reasonable time duration and a discriminative feature-selection scheme. The EEG is decomposed into
subband signals using DWT to compute subband features. Two categories of features are extracted
from each of the subbands as well as from the fullband signal: (1) three features that characterize
the signal’s spike events and (2) four different entropies that quantify the complexity carried by
the signal. The combination of the features obtained from the subbands and the EEG signal itself
yield the high-dimensional feature vector. All the features are not equally important to perform
seizure/nonseizure classification. A discriminative subset of features is selected from the feature
vector using a GED-based approach. The irrelevant features are removed from the feature vector
to defend the degradation of classification performance. The selected features are fed to FINN to
recognize the seizure event in EEG. The performances of state-of-the-art algorithms are compared
to the proposed CFGED method. The experimental results provide evidence that the proposed
approach outperforms other methods of classifying seizure and seizure-free EEG signals. The use
of the mentioned features derived on the basis of the underlying characteristics of epileptic EEG as
well as the selection of discriminative features make the proposed CFGED method robust, with high
classification accuracy. The results obtained are promising and applicable in the implementation
of an automatic seizure-detection system. The related research community will benefit greatly
from the proposed seizure and nonseizure classification of EEG signals collected from the scalp.
Considering performance, it will assist neurologists in detecting epilepsy, greatly reduce examination
time, and increase their efficiency. There are many future directions related to the proposed work.
Although the proposed seizure-detection method achieves good performance on an experimental
benchmark dataset, its clinical validation and examination of its suitability for deployment in a clinical
setting are considered future work.
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