
Received: 15 September 2021 | Revised: 18 January 2022 | Accepted: 23 February 2022

DOI: 10.1002/humu.24362

I N FORMAT I C S

An expanded phenotype centric benchmark of variant
prioritisation tools

Denise Anderson | Timo Lassmann

Telethon Kids Institute Precision Health

Computational Biology, The University of

Western Australia, Subiaco,

Western Australia, Australia

Correspondence

Timo Lassmann, Telethon Kids Institute,

Northern Entrance, Perth Children's Hospital,

15 Hospital Avenue, Nedlands, Western

Australia, 6009, Australia.

Email: Timo.Lassmann@telethonkids.org.au

Funding information

McCusker Charitable Foundation; Stan Perron

Charitable Foundation; Feilman Foundation

Abstract

Identifying the causal variant for diagnosis of genetic diseases is challenging when

using next‐generation sequencing approaches and variant prioritization tools can

assist in this task. These tools provide in silico predictions of variant pathogenicity,

however they are agnostic to the disease under study. We previously performed a

disease‐specific benchmark of 24 such tools to assess how they perform in different

disease contexts. We found that the tools themselves show large differences in

performance, but more importantly that the best tools for variant prioritization are

dependent on the disease phenotypes being considered. Here we expand the

assessment to 37 tools and refine our assessment by separating performance for

nonsynonymous single nucleotide variants (nsSNVs) and missense variants (i.e.,

excluding nonsense variants). We found differences in performance for missense

variants compared to nsSNVs and recommend three tools that stand out in terms of

their performance (BayesDel, CADD, and ClinPred).
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Next‐generation sequencing for clinical diagnosis of genetic diseases

is routinely used, however, filtering and interpreting the tens of

thousands (whole exome sequencing) or millions (whole genome

sequencing) of variants identified by these approaches remains

challenging (Caspar et al., 2018). Variant prioritization tools assist in

this task by predicting the likely pathogenicity of variants in silico,

thereby enabling ranking and filtering of variants. We previously

performed a benchmark study of 24 variant prioritization tools and

reported that performance differs depending on the disease

phenotype and recommended use of five top performing tools

(Anderson & Lassmann, 2018). Here we present an update to our

benchmark that incorporates additional variant prioritization tools

added to the latest version of dbNSFP (Liu et al., 2020), increasing the

number of assessed tools to 37. Furthermore, we refined our

assessment by considering the performance of tools for nonsynon-

ymous single nucleotide variants (nsSNVs) and missense variants (i.e.,

excluding nonsense variants) separately. In total, for missense

variants we tested 37 tools across 4890 disease phenotypes and

for nsSNVs we tested 22 tools across 5723 disease phenotypes.

Performance of the variant prioritization tools was assessed

through creation of disease specific benchmark datasets. To create

these datasets we (1) used terms for human phenotypic abnormalities

from the Human Phenotype Ontology (HPO) resource (Köhler

et al., 2014), (2) obtained the genes associated with each HPO term

from the disease to gene mapping tool Phenolyzer (Yang, Robinson, &

Wang, 2015) and (3) obtained the pathogenic variants residing in

these genes from ClinVar (Landrum et al., 2016). For each HPO term,

performance of tools was based on how well they could discriminate
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pathogenic variants from a set of benign variants (Niroula &

Vihinen, 2019) based on the area under the precision‐recall curve

(auPRC) which is suitable for inherently unbalanced data (i.e., the

ratio of pathogenic to benign variants is small). We also assessed each

tool based on the proportion of ClinVar pathogenic variants

contained in the top 25 variants after ranking by predicted

pathogenicity (PP25).

We categorized the variant prioritization tools into those that

predict pathogenicity based primarily on (1) conservation scores derived

from sequence alignments, (2) machine learning classifiers incorporating a

diverse set of functional genomic features and (3) ensemble methods that

incorporate pathogenicity scores from a number of variant prioritization

tools. We used 16 conservation scores (bStatistic, FATHMM,

GERP++, LIST‐S2, LRT, MutationAsssessor, phastCons17way‐primate,

phastCons30way‐mammalian, phastCons100way‐vertebrate, phyloP17

way‐primate, phyloP30way‐mammalian, phyloP100way‐vertebrate,

PROVEAN, SIFT, SIFT4G and SiPhy), 15 machine learning scores (CADD,

DANN, DEOGEN2, Eigen, Eigen‐PC, fathmm‐MKL, fathmm‐XF, fitCons‐

i6, GenoCanyon, MPC, MutationTaster, PolyPhen2‐HDIV, PolyPhen2‐

HVAR, PrimateAI, and VEST4) and 6 ensemble scores (BayesDel with

allele frequency, BayesDel without allele frequency, ClinPred, MetaLR,

MetaSVM, and REVEL). Though our focus is on classification of nsSNVs, a

small number of these tools (BayesDel, CADD, MutationTaster2,

PROVEAN, and SIFT) also classify insertion/deletion variants (InDels)

which may be relevant for the disease under study.

Not all variant prioritization tools predict pathogenicity of

nonsense variants, hence we evaluated performance for nsSNVs

and missense variants separately. For missense variants, the top

performing tools based on the auPRC included all of the ensemble

scores (BayesDel_addAF, BayesDel_noAF, ClinPred, MetaLR, Me-

taSVM, and REVEL) and two machine learning scores (DEOGEN2 and

VEST4) (Figure 1a and Table S1). The types of tools that perform well

is more mixed when considering the PP25, with three conservation

scores (LRT, phastCons100way, and SIFT), two machine learning

scores (MutationTaster and Polyphen2‐HDIV) and one ensemble

score (BayesDel_addAF) being the best performers (Figure S1a and

Table S2). For nsSNVs, the top performing tools based on the

auPRC included both ensemble scores (BayesDel_addAF and

BayesDel_noAF) and four of the machine learning scores (CADD,

Eigen, Eigen‐PC, and VEST4) (Figure 1b and Table S3). Of note,

CADD, Eigen and Eigen‐PC were overall weak performers when

prioritizing missense variants but were excellent at prioritizing

nsSNVs. Again, for PP25, performance is mixed with three

conservation scores (LRT, phastCons30way, and phastCons100-

way), two machine learning scores (CADD and MutationTaster) and

two ensemble scores (BayesDel_addAF and BayesDel_noAF)

showing very strong performance (Figure S1b and Table S4). The

50 HPO terms with the most variable performance across the tools

for the auPRC and PP25 are shown for both missense variants and

nsSNVs in Figures S2 through S5.

(a) (b)

F IGURE 1 Heatmaps showing performance (auPRC) of variant prioritization tools for missense variants (a) and nsSNVs (b). Color coding of
columns is based on the method used to predict pathogenicity, where black = conservation scores, yellow =machine learning scores and
red = ensemble scores. Hierarchical cluster analysis with Euclidean distance and complete agglomeration was used to cluster both the tools and
the HPO terms. HPO, Human Phenotype Ontology
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Next, we examined performance of the top performing tools

across different disease contexts. We limited this to the auPRC as

there was more variability in performance across the HPO terms in

comparison to the PP25 where performance was strong for most

terms. We included four top level HPO terms and their descendant

terms. The four top level terms were Abnormality of metabolism/

homeostasis (HP:0001939), Abnormality of the immune system

(HP:0002715), Abnormality of the nervous system (HP:0000707)

and Neoplasm (HP:0002664).

BayesDel_addAF was clearly the strongest performer across

the four top level HPO terms for missense variants, with median

auPRC values ranging from 0.8 to 0.94 (Figure 2). ClinPred was the

second best performer for missense variants (median auPRC range:

0.65–0.82), however, the interquartile range (IQR) was wider than

that seen for BayesDel_addAF. Again, for nsSNVs, BayesDel_ad-

dAF was the best performer and auPRCs were higher and IQRs

smaller than those seen for missense variants (median auPPRC

range: 0.93–0.99). For both BayesDel_addAF and BayesDel_noAF,

performance was stronger for nsSNVs compared to missense

variants across all four top level terms. This is in contrast to VEST4,

the only other tool with scores for both missense variants and

nsSNVs, where performance was similar for Abnormality of

metabolism/homeostasis and Abnormality of the immune system

but improved for Abnormality of the nervous system and

F IGURE 2 Boxplots showing auPRC of the top performing variant prioritization tools across selected top level HPO phenotypic abnormality
terms and all their descendant terms for missense variants and nsSNVs. Abnormality of metabolism/homeostasis includes 340 terms for
missense variants and 443 for nsSNVs. Abnormality of the immune system includes 242 terms for missense variants and 288 for nsSNVs.
Abnormality of the nervous system includes 806 terms for missense variants and 898 for nsSNVs. Neoplasm includes 227 terms for missense
variants and 291 for nsSNVs. auPRC, area under the precision‐recall curve; nsSNV, nonsynonymous single nucleotide variant
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Neoplasm. Though CADD was not a top performer for missense

variants, it did exhibit strong performance for nsSNVs for terms

associated with Neoplasm (median auPRC = 0.83) and moderate

performance for the other three top level HPO terms (median

auPRC range: 0.48–0.61).

When comparing the four top level HPO terms, strongest

performance was seen across all tools for HPO terms associated

with Neoplasm for both missense variants (median auPRC range:

0.48–0.94) and nsSNVs (median auPRC range: 0.38–0.99). For

missense variants, all tools showed weakest performance for terms

associated with Abnormality of the immune system (median auPRC

range: 0.23–0.80). For nsSNVs, weakest performance was seen for

terms associated with Abnormality of metabolism/homeostasis

(median auPRC range: 0.12–0.93) and Abnormality of the immune

system (median auPRC range: 0.13–0.93). In summary we found

BayesDel_addAF to be the best performing tool for both missense

variants and nsSNVs. Additionally, all tools exhibited stronger

performance when prioritizing missense variants and nsSNVs for

HPO terms associated with Neoplasm versus terms associated

with abnormalities of metabolism/homeostasis, the immune

system and the nervous system.

In summary, we found that the best performing variant

prioritization tools differ depending on whether they are being

used to prioritize missense variants or nsSNVs. Prioritization of

missense variants is a more challenging task when compared to

nonsense variants as nonsense variants usually affect protein

function due to truncation. Whilst missense variants can also

cause loss of protein function, the occurrence of this is rarer

(around 20%) than that seen for nonsense variants (Kryukov

et al., 2007).

The top performing tool in terms of auPRC for both missense

variants and nsSNVs was BayesDel_addAF, with strongest per-

formance seen for prioritization of nsSNVs. We also recommend

ClinPred, the second best performer for missense variants as it

showed consistent performance across a range of disease

phenotypes. Whilst CADD was an overall weak performer for

prioritizing missense variants, its overall performance for prioritiz-

ing nsSNVs was much improved. Hence, we also recommend

CADD as a tool for prioritization of nsSNVs.

When considering performance based on PP25, BayesDel_ad-

dAF was again a top performer, consistently ranking ClinVar

pathogenic variants within the top 25 ranked variants for both

missense variants and nsSNVs across most HPO terms. However, in

contrast to auPRC, strong performance was seen for conservation

scores for both missense variants (LRT, phastCons100way and SIFT)

and nsSNVs (LRT, phastCons30way, and phastCons100way). Simi-

larly to the auPRC, CADD was also a strong performer for nsSNVs

but not for missense variants.

Performance of the variant prioritization tools differs, even

amongst the top performers, across the four top level HPO terms.

Strongest performance for both missense variants and nsSNVs

was seen for disease phenotypes associated with Neoplasm

(HP:0002664). This is likely due to cancer being a more common

disease that is better studied than rare diseases associated with

Abnormality of metabolism/homeostasis (HP:0001939), Abnor-

mality of the immune system (HP:0002715) and Abnormality of

the nervous system (HP:0000707). This means pathogenic

variants related to cancer will be overrepresented when com-

pared to rarer diseases and hence also be overrepresented in

training datasets of machine learning and ensemble methods.

Furthermore, this points to the importance of developing tools

that prioritize variants in a disease aware manner rather than the

agnostic approach of the tools assessed here (Masica &

Karchin, 2016).

In line with estimates of auPRC from our previous benchmark

study (Anderson & Lassmann, 2018), we find that machine

learning scores and ensemble scores show far superior perform-

ance than conservation scores when prioritizing variants across

disease phenotypes. However, we do note that the training

datasets used by machine learning and ensemble methods

overlap in terms of the variants being assessed in this benchmark.

This will result in more optimistic auPRC values for these

methods in comparison to conservation methods. BayesDel and

ClinPred in particular were trained on ClinVar pathogenic variants

and given that our benchmark includes the same variants this will

be contributing to their strong performance. Therefore, we

cannot comment on whether the performance generalizes to

yet unseen variants. Regardless of this, machine learning and

ensemble methods can be expected to be superior to conserva-

tion methods as the pathogenicity of a variant can be predicted

based on data that does not directly relate to conservation. Our

benchmark is pragmatic in the sense that we focus on how these

tools perform when used “out of the box” for the task of

prioritizing variants. Though we do not recommend conservation

measures based on the auPRC, some did perform well based on

the PP25. In particular, LRT and phastCons100way were both

strong performers for missense variants and nsSNVs.

In summary, we recommend use of BayesDel_addAF for

prioritization of missense variants and nsSNVs. Given that in silico

prediction tools have not reached the level of robustness required

for clinical diagnostics (Richards et al., 2015; Strande et al., 2018),

we further recommend use of ClinPred and CADD alongside

BayesDel_addAF when prioritizing missense variants and nsSNVs

respectively. BayesDel_addAF is also recommended for those who

wish to examine a small number of top ranked missense variants or

nsSNVs and for this task we further recommend simultaneous

ranking with either LRT or phastCons100way. Of the five top

performers we previously recommended (FATHMM, M‐CAP,

MetaLR, MetaSVM, and VEST3) (Anderson & Lassmann, 2018),

MetaLR, MetaSVM and VEST4 (updated from VEST3) were

amongst the top performing tools but their performance has been

surpassed by new tools included in the current benchmark. The

task of prioritizing variants remains a challenge, however the tools

recommended here should prove useful for reducing the number

of variants for follow up and ultimately contribute to disease

diagnosis.
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2 | METHODS

We previously described in detail our automated pipeline to integrate

phenotypes with annotated variants (Anderson & Lassmann, 2018).

Therefore, we only briefly describe each component and focus on

describing updates to the benchmark.

2.1 | Human phenotype ontology

We used package ontologyIndex (Greene et al., 2017) within R 3.6.3

(R Core Team, 2020) to read in and process the HPO (Köhler

et al., 2014) (HPO) obo file which was downloaded from http://purl.

obolibrary.org/obo/hp.obo on the 28th of January 2021. We

retrieved all 15,290 descendant terms of the Phenotypic abnormality

(HP:0000118) term using the get_descendants() function.

2.2 | Linking disease phenotypes to genes using
phenolyzer

Phenolyzer (Yang et al., 2015) was used to generate gene lists for

the 15,290 HPO terms obtained above (File S1). We used the

command line version available at https://github.com/WGLab/

phenolyzer with default settings (i.e., options ‐p ‐ph ‐logistic ‐

addon DB_DISGENET_GENE_DISEASE_SCORE,DB_GAD_GEN-

E_DISEASE_SCORE ‐addon_weight 0.25).

2.3 | Linking candidate genes to causative variants
using dbNSFP annotations

The database for nonsynonymous SNPs’ functional predictions

(dbNSFP) contains annotation for 84,013,490 potential nsSNVs and

splicing‐site SNVs in the human genome (Liu et al., 2011; Liu et al., 2020).

We used dbNSFP version 4.1a (release 16 June, 2020) which is based

on Gencode release 29/Ensembl version 94 (Cunningham et al., 2019;

Frankish et al., 2019). We selected all variants occurring in the gene lists

returned by Phenolyzer. We restricted our analysis to ClinVar (Landrum

et al., 2016) “pathogenic” variants that were associated with a single

gene. In total we obtained 35,167 pathogenic variants linked to genes

associated with disease phenotypes (File S2). Of these, 16,411 were

nonsense variants and 18,756 were missense variants.

2.4 | Benign variants

We used a set of 63,197 common (allele frequency ≥1% and <25%)

missense variants obtained from the Exome Aggregation Consortium

(ExAC) database (Niroula & Vihinen, 2019). These variants were

downloaded from VariBench (Sasidharan Nair & Vihinen, 2013)

(http://structure.bmc.lu.se/VariBench/ExAC_AAS_20171214.xlsx)

and annotated with dbNSFP. We removed variants with ClinVar

annotation other than “benign” and variants associated with more

than one gene. We further filtered the variants to those 29,173 that

had scores across all variant prioritization tools and used these in the

benchmark analysis (File S3).

2.5 | Performance evaluation

For each HPO term, we evaluated the performance of variant

prioritization tools by assessing their ability to separate ClinVar

pathogenic variants from benign variants. These assessments were

performed separately for nsSNVs and missense variants (i.e.,

excluding nonsense variants) as not all tools score nonsense

variants. We required each HPO term to be associated with at

least 25 pathogenic variants and to have complete scores across all

tools. In total, for missense variants we tested 37 tools across

4890 HPO terms and for nsSNVs we tested 22 tools across 5723

HPO terms.

We assessed the following 22 variant prioritization tools that

score nsSNVs: BayesDel (with and without allele frequency)

(Feng, 2017), bStatistic (McVicker et al., 2009), CADD (Kircher

et al., 2014; Rentzsch et al., 2019), DANN (Quang et al., 2015), Eigen

(Ionita‐Laza et al., 2016), Eigen‐PC (Ionita‐Laza et al., 2016), fathmm‐

MKL (Shihab et al., 2015), fathmm‐XF (Rogers et al., 2018), fitCons‐i6

(Gulko et al., 2015), GenoCanyon (Lu et al., 2015), GERP++

(Davydov et al., 2010), LRT (Chun & Fay, 2009), MutationTaster

(Schwarz et al., 2014), phastCons (17way_primate, 30way_mam-

malian, 100way_vertebrate) (Siepel et al., 2005), phyloP (17way_-

primate, 30way_mammalian, 100way_vertebrate) (Siepel

et al., 2006), SiPhy (Garber et al., 2009) and VEST4 (Carter

et al., 2013). Additionally, we assessed a further 15 tools that only

score missense variants: ClinPred (Alirezaie et al., 2018), DEO-

GEN2 (Raimondi et al., 2017), FATHMM (Shihab et al., 2013), LIST‐

S2 (Malhis et al., 2020), MetaLR (Dong et al., 2015), MetaSVM

(Dong et al., 2015), MPC (Samocha et al., 2017), MutationAssessor

(Reva et al., 2011), Polyphen2 (HDIV and HVAR) (Adzhubei

et al., 2010), PrimateAI (Sundaram et al., 2018), PROVEAN (Choi

et al., 2012), REVEL (Ioannidis et al., 2016), SIFT (Sim et al., 2012)

and SIFT4G (Vaser et al., 2016). Further detail on the aforemen-

tioned tools is available in Table S1 of the dbNSFP v4 publication

(Liu et al., 2020). We used the dbNSFP converted rank scores for

each tool. We did not assess LINSIGHT (Huang et al., 2017) as this

tool is focussed on prioritization of noncoding variants. We also

omitted M‐CAP (Jagadeesh et al., 2016), MutPred (Pejaver

et al., 2020) and MVP (Qi et al., 2021) as these tools were missing

scores for a substantial proportion of the benign variants.

We used R package PRROC (Keilwagen et al., 2014) to

calculate the area under the precision recall curve (auPRC) based

on the interpolation of Davis and Goadrich (Davis &

Goadrich, 2006). We also constructed another performance

measure called PP25 that calculates the proportion of ClinVar

pathogenic variants in the top 25 ranked variants. Whilst the

auPRC quantifies how well each tool can separate pathogenic
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variants from the whole set of benign variants, PP25 focuses on

how well each tool does in ranking pathogenic variants amongst

the top 25 most pathogenic. Heatmaps of performance (auPRC)

were produced using the R NMF package (Gaujoux &

Seoighe, 2010).

ACKNOWLEDGMENTS

This work was supported by the McCusker Charitable Foundation

and the Stan Perron Foundation. Timo Lassmann is supported by a

fellowship from the Feilman Foundation. Open access publishing

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Denise Anderson: performed analysis, interpreted results and drafted

the manuscript. Timo Lassmann: conceived the study, interpreted

results and drafted the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in

Files S1, S2, and S3. Code used to generate results for this study is

available as File S4.

ORCID

Denise Anderson http://orcid.org/0000-0003-0643-4136

REFERENCES

Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A.,
Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and
server for predicting damaging missense mutations. Nature Methods,

7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
Alirezaie, N., Kernohan, K. D., Hartley, T., Majewski, J., & Hocking, T. D.

(2018). ClinPred: Prediction tool to identify disease‐relevant
nonsynonymous single‐nucleotide variants. American Journal of

Human Genetics, 103(4), 474–483. https://doi.org/10.1016/j.ajhg.

2018.08.005
Anderson, D., & Lassmann, T. (2018). A phenotype centric benchmark of

variant prioritisation tools. NPJ Genomic Medicine, 3, 5. https://doi.
org/10.1038/s41525-018-0044-9

Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., & Karchin, R. (2013).

Identifying Mendelian disease genes with the variant effect scoring
tool. BMC Genomics, 14(Suppl 3), S3. https://doi.org/10.1186/1471-
2164-14-S3-S3

Caspar, S. M., Dubacher, N., Kopps, A. M., Meienberg, J., Henggeler, C., &
Matyas, G. (2018). Clinical sequencing: From raw data to diagnosis

with lifetime value. Clinical Genetics, 93(3), 508–519. https://doi.
org/10.1111/cge.13190

Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012).
Predicting the functional effect of amino acid substitutions and
indels. PLoS One, 7(10), e46688. https://doi.org/10.1371/journal.

pone.0046688
Chun, S., & Fay, J. C. (2009). Identification of deleterious mutations within

three human genomes. Genome Research, 19(9), 1553–1561.
https://doi.org/10.1101/gr.092619.109

Cunningham, F., Achuthan, P., Akanni, W., Allen, J., Amode, M. R.,
Armean, I. M., Bennett, R., Bhai, J., Billis, K., Boddu, S., Cummins, C.,
Davidson, C., Dodiya, K. J., Gall, A., Girón, C. G., Gil, L., Grego, T.,

Haggerty, L., Haskell, E., … Flicek, P. (2019). Ensembl 2019. Nucleic
Acids Research, 47(D1), D745–D751. https://doi.org/10.1093/nar/
gky1113

Davis, J., & Goadrich, M. (2006). The relationship between precision‐recall
and ROC curves. Proceedings of the 23rd International Conference on

Machine Learning, 233–240.
Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M., Sidow, A., &

Batzoglou, S. (2010). Identifying a high fraction of the human
genome to be under selective constraint using GERP++. PLoS

Computational Biology, 6(12), e1001025. https://doi.org/10.1371/

journal.pcbi.1001025

Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., & Liu, X.
(2015). Comparison and integration of deleteriousness prediction
methods for nonsynonymous SNVs in whole exome sequencing
studies. Human Molecular Genetics, 24(8), 2125–2137. https://doi.
org/10.1093/hmg/ddu733

Feng, B. J. (2017). PERCH: A unified framework for disease gene

prioritization. Human Mutation, 38(3), 243–251. https://doi.org/10.
1002/humu.23158

Frankish, A., Diekhans, M., Ferreira, A. M., Johnson, R., Jungreis, I.,
Loveland, J., Mudge, J. M., Sisu, C., Wright, J., Armstrong, J.,
Barnes, I., Berry, A., Bignell, A., Carbonell Sala, S., Chrast, J.,

Cunningham, F., Di Domenico, T., Donaldson, S., Fiddes, I. T., …
Flicek, P. (2019). GENCODE reference annotation for the human
and mouse genomes. Nucleic Acids Research, 47(D1), D766–D773.
https://doi.org/10.1093/nar/gky955

Garber, M., Guttman, M., Clamp, M., Zody, M. C., Friedman, N., & Xie, X.
(2009). Identifying novel constrained elements by exploiting biased

substitution patterns. Bioinformatics, 25(12), i54–i62. https://doi.
org/10.1093/bioinformatics/btp190

Gaujoux, R., & Seoighe, C. (2010). A flexible R package for nonnegative
matrix factorization. BMC Bioinformatics, 11, 367. https://doi.org/10.
1186/1471-2105-11-367

Greene, D., Richardson, S., & Turro, E. (2017). ontologyX: A suite of R
packages for working with ontological data. Bioinformatics, 33(7),

1104–1106. https://doi.org/10.1093/bioinformatics/btw763

Gulko, B., Hubisz, M. J., Gronau, I., & Siepel, A. (2015). A method for

calculating probabilities of fitness consequences for point mutations
across the human genome. Nature Genetics, 47(3), 276–283. https://
doi.org/10.1038/ng.3196

Huang, Y. F., Gulko, B., & Siepel, A. (2017). Fast, scalable prediction of

deleterious noncoding variants from functional and population
genomic data. Nature Genetics, 49(4), 618–624. https://doi.org/10.
1038/ng.3810

Ioannidis, N. M., Rothstein, J. H., Pejaver, V., Middha, S., McDonnell, S. K.,
Baheti, S., Musolf, A., Li, Q., Holzinger, E., Karyadi, D., Cannon‐
Albright, L. A., Teerlink, C. C., Stanford, J. L., Isaacs, W. B., Xu, J.,
Cooney, K. A., Lange, E. M., Schleutker, J., Carpten, J. D., … Sieh, W.
(2016). REVEL: An ensemble method for predicting the
pathogenicity of rare missense variants. American Journal of Human

Genetics, 99(4), 877–885. https://doi.org/10.1016/j.ajhg.2016.

08.016

Ionita‐Laza, I., McCallum, K., Xu, B., & Buxbaum, J. D. (2016). A spectral
approach integrating functional genomic annotations for coding and
noncoding variants. Nature Genetics, 48(2), 214–220. https://doi.
org/10.1038/ng.3477

Jagadeesh, K. A., Wenger, A. M., Berger, M. J., Guturu, H., Stenson, P. D.,
Cooper, D. N., Bernstein, J. A., & Bejerano, G. (2016). M‐CAP
eliminates a majority of variants of uncertain significance in clinical
exomes at high sensitivity. Nature Genetics, 48(12), 1581–1586.
https://doi.org/10.1038/ng.3703

Keilwagen, J., Grosse, I., & Grau, J. (2014). Area under precision‐recall
curves for weighted and unweighted data. PLoS One, 9(3), e92209.
https://doi.org/10.1371/journal.pone.0092209

544 | ANDERSON AND LASSMANN

facilitated by The University of Western Australia, as part of the Wiley -

The University of Western Australia agreement via the Council of

Australian University Librarians.

http://orcid.org/0000-0003-0643-4136
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1016/j.ajhg.2018.08.005
https://doi.org/10.1016/j.ajhg.2018.08.005
https://doi.org/10.1038/s41525-018-0044-9
https://doi.org/10.1038/s41525-018-0044-9
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1186/1471-2164-14-S3-S3
https://doi.org/10.1111/cge.13190
https://doi.org/10.1111/cge.13190
https://doi.org/10.1371/journal.pone.0046688
https://doi.org/10.1371/journal.pone.0046688
https://doi.org/10.1101/gr.092619.109
https://doi.org/10.1093/nar/gky1113
https://doi.org/10.1093/nar/gky1113
https://doi.org/10.1371/journal.pcbi.1001025
https://doi.org/10.1371/journal.pcbi.1001025
https://doi.org/10.1093/hmg/ddu733
https://doi.org/10.1093/hmg/ddu733
https://doi.org/10.1002/humu.23158
https://doi.org/10.1002/humu.23158
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1093/bioinformatics/btp190
https://doi.org/10.1093/bioinformatics/btp190
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1093/bioinformatics/btw763
https://doi.org/10.1038/ng.3196
https://doi.org/10.1038/ng.3196
https://doi.org/10.1038/ng.3810
https://doi.org/10.1038/ng.3810
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1016/j.ajhg.2016.08.016
https://doi.org/10.1038/ng.3477
https://doi.org/10.1038/ng.3477
https://doi.org/10.1038/ng.3703
https://doi.org/10.1371/journal.pone.0092209


Kircher, M., Witten, D. M., Jain, P., O'Roak, B. J., Cooper, G. M., &
Shendure, J. (2014). A general framework for estimating the relative
pathogenicity of human genetic variants. Nature Genetics, 46(3),
310–315. https://doi.org/10.1038/ng.2892

Köhler, S., Doelken, S. C., Mungall, C. J., Bauer, S., Firth, H. V., Bailleul‐
Forestier, I., Black, G. C., Brown, D. L., Brudno, M., Campbell, J.,
FitzPatrick, D. R., Eppig, J. T., Jackson, A. P., Freson, K., Girdea, M.,
Helbig, I., Hurst, J. A., Jähn, J., Jackson, L. G., … Robinson, P. N.
(2014). The Human Phenotype Ontology project: linking molecular

biology and disease through phenotype data. Nucleic Acids Research,
42(Database issue), D966–D974. https://doi.org/10.1093/nar/
gkt1026

Kryukov, G. V., Pennacchio, L. A., & Sunyaev, S. R. (2007). Most rare
missense alleles are deleterious in humans: Implications for complex

disease and association studies. American Journal of Human Genetics,
80(4), 727–739. https://doi.org/10.1086/513473

Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S.,
Gu, B., Hart, J., Hoffman, D., Hoover, J., Jang, W., Katz, K.,
Ovetsky, M., Riley, G., Sethi, A., Tully, R., Villamarin‐Salomon, R.,

Rubinstein, W., & Maglott, D. R. (2016). ClinVar: Public archive of
interpretations of clinically relevant variants. Nucleic Acids Research,
44(D1), D862–D868. https://doi.org/10.1093/nar/gkv1222

Liu, X., Jian, X., & Boerwinkle, E. (2011). dbNSFP: A lightweight database

of human nonsynonymous SNPs and their functional predictions.
Human Mutation, 32(8), 894–899. https://doi.org/10.1002/humu.
21517

Liu, X., Li, C., Mou, C., Dong, Y., & Tu, Y. (2020). dbNSFP v4: A
comprehensive database of transcript‐specific functional predictions
and annotations for human nonsynonymous and splice‐site SNVs.
Genome Medicine, 12(1), 103. https://doi.org/10.1186/s13073-020-
00803-9

Lu, Q., Hu, Y., Sun, J., Cheng, Y., Cheung, K. H., & Zhao, H. (2015). A
statistical framework to predict functional non‐coding regions in the

human genome through integrated analysis of annotation data.
Scientific Reports, 5, 10576. https://doi.org/10.1038/srep10576

Malhis, N., Jacobson, M., Jones, S. J. M., & Gsponer, J. (2020). LIST‐S2:
Taxonomy based sorting of deleterious missense mutations across
species. Nucleic Acids Research, 48(W1), W154–W161. https://doi.

org/10.1093/nar/gkaa288
Masica, D. L., & Karchin, R. (2016). Towards increasing the clinical

relevance of in silico methods to predict pathogenic missense
variants. PLoS Computational Biology, 12(5), e1004725. https://doi.

org/10.1371/journal.pcbi.1004725

McVicker, G., Gordon, D., Davis, C., & Green, P. (2009). Widespread
genomic signatures of natural selection in hominid evolution. PLoS
Genetics, 5(5), e1000471. https://doi.org/10.1371/journal.pgen.
1000471

Niroula, A., & Vihinen, M. (2019). How good are pathogenicity predictors
in detecting benign variants? PLoS Computational Biology, 15(2),
e1006481. https://doi.org/10.1371/journal.pcbi.1006481

Pejaver, V., Urresti, J., Lugo‐Martinez, J., Pagel, K. A., Lin, G. N., Nam, H. J.,
Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D.,

& Radivojac, P. (2020). Inferring the molecular and phenotypic
impact of amino acid variants with MutPred2. Nature

Communications, 11(1), 5918. https://doi.org/10.1038/s41467-
020-19669-x

Qi, H., Zhang, H., Zhao, Y., Chen, C., Long, J. J., Chung, W. K., Guan, Y., &

Shen, Y. (2021). MVP predicts the pathogenicity of missense variants
by deep learning. Nature Communications, 12(1), 510. https://doi.
org/10.1038/s41467-020-20847-0

Quang, D., Chen, Y., & Xie, X. (2015). DANN: A deep learning approach

for annotating the pathogenicity of genetic variants.
Bioinformatics, 31(5), 761–763. https://doi.org/10.1093/
bioinformatics/btu703

R Core Team. (2020). R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing.

Raimondi, D., Tanyalcin, I., Ferté, J., Gazzo, A., Orlando, G., Lenaerts, T.,
Rooman, M., & Vranken, W. (2017). DEOGEN2: Prediction and

interactive visualization of single amino acid variant deleteriousness
in human proteins. Nucleic Acids Research, 45(W1), W201–W206.
https://doi.org/10.1093/nar/gkx390

Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., & Kircher, M. (2019).
CADD: Predicting the deleteriousness of variants throughout the

human genome. Nucleic Acids Research, 47(D1), D886–D894.
https://doi.org/10.1093/nar/gky1016

Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact
of protein mutations: Application to cancer genomics. Nucleic Acids

Research, 39(17), e118. https://doi.org/10.1093/nar/gkr407

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier‐Foster, J.,
Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K.,
Rehm, H. L., & ACMG Laboratory Quality Assurance, C. (2015).
Standards and guidelines for the interpretation of sequence variants:
A joint consensus recommendation of the American College of

Medical Genetics and Genomics and the Association for Molecular
Pathology. Genetics in Medicine, 17(5), 405–424. https://doi.org/10.
1038/gim.2015.30

Rogers, M. F., Shihab, H. A., Mort, M., Cooper, D. N., Gaunt, T. R., &

Campbell, C. (2018). FATHMM‐XF: Accurate prediction of
pathogenic point mutations via extended features. Bioinformatics,
34(3), 511–513. https://doi.org/10.1093/bioinformatics/btx536

Samocha, K. E., Kosmicki, J. A., Karczewski, K. J., O'Donnell‐Luria, A. H.,
Pierce‐Hoffman, E., MacArthur, D. G., Neale, B. M., & Daly, M. J.

(2017). Regional missense constraint improves variant
deleteriousness prediction. bioRxiv

Sasidharan Nair, P., & Vihinen, M. (2013). VariBench: A benchmark
database for variations. Human Mutation, 34(1), 42–49. https://doi.
org/10.1002/humu.22204

Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014).
MutationTaster2: Mutation prediction for the deep‐sequencing
age. Nature Methods, 11, 11–12. https://doi.org/10.1038/
nmeth.2890

Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G. L.,

Edwards, K. J., Day, I. N., & Gaunt, T. R. (2013). Predicting the
functional, molecular, and phenotypic consequences of amino acid
substitutions using hidden Markov models. Human Mutation, 34(1),
57–65. https://doi.org/10.1002/humu.22225

Shihab, H. A., Rogers, M. F., Gough, J., Mort, M., Cooper, D. N., Day, I. N.,
Gaunt, T. R., & Campbell, C. (2015). An integrative approach to
predicting the functional effects of non‐coding and coding sequence
variation. Bioinformatics, 31(10), 1536–1543. https://doi.org/10.
1093/bioinformatics/btv009

Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou, M.,
Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. W., Richards, S.,
Weinstock, G. M., Wilson, R. K., Gibbs, R. A., Kent, W. J., Miller, W.,
& Haussler, D. (2005). Evolutionarily conserved elements in
vertebrate, insect, worm, and yeast genomes. Genome Research,

15(8), 1034–1050. https://doi.org/10.1101/gr.3715005
Siepel, A., Pollard, K., & Haussler, D. (2006). New Methods for Detecting

Lineage‐Specific Selection In Research in Computational Molecular

Biology (3909, pp. 190–205). Springer.
Sim, N. L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012).

SIFT web server: Predicting effects of amino acid substitutions on
proteins. Nucleic Acids Research, 40(Web Server issue),
W452–W457. https://doi.org/10.1093/nar/gks539

Strande, N. T., Brnich, S. E., Roman, T. S., & Berg, J. S. (2018). Navigating

the nuances of clinical sequence variant interpretation in Mendelian
disease. Genetics in Medicine, 20(9), 918–926. https://doi.org/10.
1038/s41436-018-0100-y

ANDERSON AND LASSMANN | 545

https://doi.org/10.1038/ng.2892
https://doi.org/10.1093/nar/gkt1026
https://doi.org/10.1093/nar/gkt1026
https://doi.org/10.1086/513473
https://doi.org/10.1093/nar/gkv1222
https://doi.org/10.1002/humu.21517
https://doi.org/10.1002/humu.21517
https://doi.org/10.1186/s13073-020-00803-9
https://doi.org/10.1186/s13073-020-00803-9
https://doi.org/10.1038/srep10576
https://doi.org/10.1093/nar/gkaa288
https://doi.org/10.1093/nar/gkaa288
https://doi.org/10.1371/journal.pcbi.1004725
https://doi.org/10.1371/journal.pcbi.1004725
https://doi.org/10.1371/journal.pgen.1000471
https://doi.org/10.1371/journal.pgen.1000471
https://doi.org/10.1371/journal.pcbi.1006481
https://doi.org/10.1038/s41467-020-19669-x
https://doi.org/10.1038/s41467-020-19669-x
https://doi.org/10.1038/s41467-020-20847-0
https://doi.org/10.1038/s41467-020-20847-0
https://doi.org/10.1093/bioinformatics/btu703
https://doi.org/10.1093/bioinformatics/btu703
https://doi.org/10.1093/nar/gkx390
https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1093/bioinformatics/btx536
https://doi.org/10.1002/humu.22204
https://doi.org/10.1002/humu.22204
https://doi.org/10.1038/nmeth.2890
https://doi.org/10.1038/nmeth.2890
https://doi.org/10.1002/humu.22225
https://doi.org/10.1093/bioinformatics/btv009
https://doi.org/10.1093/bioinformatics/btv009
https://doi.org/10.1101/gr.3715005
https://doi.org/10.1093/nar/gks539
https://doi.org/10.1038/s41436-018-0100-y
https://doi.org/10.1038/s41436-018-0100-y


Sundaram, L., Gao, H., Padigepati, S. R., McRae, J. F., Li, Y., Kosmicki, J. A.,
Fritzilas, N., Hakenberg, J., Dutta, A., Shon, J., Xu, J., Batzoglou, S.,
Li, X., & Farh, K. K. (2018). Predicting the clinical impact of human
mutation with deep neural networks. Nature Genetics, 50(8),

1161–1170. https://doi.org/10.1038/s41588-018-0167-z
Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M., & Ng, P. C. (2016). SIFT

missense predictions for genomes. Nature Protocols, 11(1), 1–9.
https://doi.org/10.1038/nprot.2015.123

Yang, H., Robinson, P. N., & Wang, K. (2015). Phenolyzer: Phenotype‐
based prioritization of candidate genes for human diseases.
Nature Methods, 12(9), 841–843. https://doi.org/10.1038/
nmeth.3484

SUPPORTING INFORMATION

Additional supporting information may be found in the online version

of the article at the publisher’s website.

How to cite this article: Anderson, D., Lassmann, T. (2022).

An expanded phenotype centric benchmark of variant

prioritisation tools. Human Mutation, 43, 539–546.

https://doi.org/10.1002/humu.24362

546 | ANDERSON AND LASSMANN

https://doi.org/10.1038/s41588-018-0167-z
https://doi.org/10.1038/nprot.2015.123
https://doi.org/10.1038/nmeth.3484
https://doi.org/10.1038/nmeth.3484
https://doi.org/10.1002/humu.24362



