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Abstract

Recently, most of evidence shows that caloric restriction could induce antidepressant-like effects in animal model of depression. Based on stud-
ies of the brain–gut axis, some signal pathways were common between the control of caloric restriction and depression. However, the specific
mechanism of the antidepressant-like effects induced by caloric restriction remains unclear. Therefore, in this article, we summarized clinical
and experimental studies of caloric restriction on depression. This review may provide a new therapeutic strategy for depression.
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Introduction

Depression is the most commonly diagnosed neuropsychiatric dis-
ease with symptoms including depressed mood, loss of interest or
pleasure in previously pleasurable activities, disturbed sleep and/or
appetite, self-injury and/or suicidal thoughts [1, 2]. Mortality is rela-
tively high among patients with bipolar disorder and depression due
to increased risk for suicide [3]. A Global Burden of Disease study
showed depression is the most disabling disorder worldwide [4].
Despite the number of available of antidepressant drugs, their limited
efficacy in addition to their serious adverse effects remains a major
concern and necessitates the continued search and validation of new
therapeutic interventions [5, 6].

The common pathological pathways of depression and obesity
suggest a possible link between genes involved in the regulation of
food intake and depression [7, 8]. Both depression and obesity share
irregularities in a myriad of neurotransmitters, neuropeptides, cytoki-
nes, receptor molecules, enzyme systems and transcription factors,
all resulting in the dysregulation of hypothalamic–pituitary–adrenal
(HPA) axis [9–13]. The HPA axis has been found abnormal, believed

to be related in part to an impaired function of the glucocorticoid
receptors (GR) and by promoting oligodendrogenesis, in psychiatric
disorders including major depression [14, 15]. This is demonstrated
by significant increase in cortisol in depressed patients. At their nor-
mal levels, glucocorticoids regulate many physiological aspects
including neuronal survival and neurogenesis [16]. However, a sus-
tained abnormal increase can cause alterations in dendrite and spine
morphology in specific brain regions, and eventually suppress brain
derived neurotrophic factor (BDNF) and adult neurogenesis [17, 18].
Suppressed neurogenesis and neuronal atrophy have been implicated
in depressive disorders [14].

A search for antidepressant activity among edible products using
animal models of depression has been on the upswing. Discovery of
anti-depressive foods is attractive as it could have considerable
impacts on the fight against depression worldwide [19]. Diet is one of
the non-invasive approaches that can be used to enhance neural sig-
nalling by influencing synaptic transmission and brain plasticity [20].
Recent studies point to dietary factors as important effectors in the

*Correspondence to: Ran Ji CUI

E-mail: cuiranji@jlu.edu.cn

Bingjin LI

E-mail: libingjin@jlu.edu.cn

ª 2018 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

doi: 10.1111/jcmm.13418

J. Cell. Mol. Med. Vol 22, No 5, 2018 pp. 2528-2535

http://orcid.org/0000-0002-2612-4285
http://orcid.org/0000-0002-2612-4285
http://creativecommons.org/licenses/by/4.0/


brain, suggesting a direct relationship with psychiatric disorders
including, major depressive disorder and anxiety [21]. Several dietary
compounds included in edible products as well as reduced calorie
intake and fasting, without falling into malnutrition, have a broad and
positive action on a range of molecular systems supporting neuronal
function and plasticity, exerting antidepressant-like effects [6, 22]. On
the other hand, poor dietary practices, typical of our modern society,
are considered risk factors for various neurodegenerative diseases
[23].

By comparison with the large amount of data suggesting the ben-
eficial effects of reduced energy intake on longevity, cognitive func-
tion, memory, cardiovascular disease, cancers, chronic pain and
other neurologic disorders, relatively little is experimentally known of
the direct influence of reduced energy intake on depression. Most of
what is known is a result of findings of studies focusing on other dis-
orders and extrapolation based on mechanisms of action and the
known pathophysiology of depression. Beneficial effects of energy
restriction include orexin signalling activation, CREB/BDNF signalling
activation, endorphin release and production of ketone [1]. Other
mechanisms that may underlie the efficacy of energy restriction
include stimulation of autophagy, a lysosomal degradative process
which recycles cellular waste and eliminates potentially toxic dam-
aged organelles and protein aggregates. Autophagy dysregulation
results in a number of neurodegenerative disorders while up-regula-
tion of this pathway may be neuroprotective [24, 25].

In this article, we discuss current knowledge of energy restriction
in alleviating depression by reviewing both animal studies and clinical
findings. We also explore dietary supplements from natural sources
for the prevention and attenuation of symptoms of depression.

Antidepressant effects of caloric/
dietary restriction

Caloric restriction has attracted increasing attention due to its evident
effects on neuroendocrine system and mood condition [1]. Defined
as the reduction in caloric intake without malnutrition, caloric restric-
tion has beneficial effects described at both organismal and cellular
levels [26]. Both animal and human studies have shown that caloric
restriction increases longevity, memory, quality of life and reduces
risk factors for neurodegenerative and psychiatric diseases including
depression [27–30]. Physicians allow patients to drink water ad libi-
tum while consuming very low-calorie food for a week or more [20]
and has showed no negative, but some positive effects on health-
related quality of life including mood, sleep and sexual function in
both men and women [31]. Animal studies, especially in rodents have
also proved the beneficial effects of caloric and dietary restriction in
longevity and in models of psychiatric and neurodegenerative disor-
ders [32–35].

Decreased neurogenesis has been implicated in the pathogenesis
of anxiety and depression. Hippocampal neurogenesis presents a
potential new strategy for treating depression. Interestingly, reducing
the number of calories consumed promotes the survival of newly
generated cells in the hippocampus [36, 37]. Furthermore, chronic

mild food restriction activates AMPK following decreased hypothala-
mic malonyl-CoA, an inhibitor of fatty acid oxidation [38].

Reduced cerebral blood flow is also linked to anxiety and
depression. Caloric restriction has been shown to enhance cere-
bral blood flow and blood–brain barrier function in young mice at
5–6 months of age and is protective for cerebral blood flow in
old adult rodents. The neurovascular enhancements were associ-
ated with reduced mammalian target of rapamycin (mTOR)
expression, similar to the effects of the antidepressant ketamine
[39].

Acute, short-term and long-term caloric restrictions have all
been shown to activate the HPA axis, increasing the levels of glu-
cocorticoids and ameliorate depressive symptoms in a hormetic
manner [40]. The mechanism by which this increase in glucocorti-
coids induces neuronal survival and enhances BDNF is not entirely
known. In mice, acute caloric restriction rapidly approaches the
effects of long-term caloric restriction, suggesting that the benefi-
cial effects of caloric restriction may require only a short-term
reduction in caloric intake [41, 42]. Moreover, the beneficial
effects induced by a short period of dietary restriction in adult
mice were retained even when ad libitum feeding was reintro-
duced, though under continuous dietary restriction, lifespan exten-
sion was more prominent in females than in males [43, 44].
However, in another study, 90% of the gene expression effects of
long-term caloric restriction were reversed within 8 weeks of
return to ad libitum feeding [45].

Antidepressant effects of fasting

Periodic fasting voluntarily for religious or cultural purposes or invol-
untarily due to lack is a common practice around the world. Medical
or therapeutic fasting is also practiced and has been shown to be safe
[13]. Fasting acutely increases levels of the orexigenic gastrointesti-
nal hormone, acyl-ghrelin. Ghrelin is a growth hormone secretagogue
receptor (Ghsr) ligand within the hippocampus, increasing dentate
gyrus levels of the neurogenic transcription factor Egr-1, enhancing
adult hippocampal neurogenesis [26].

We have previously shown that acute fasting produces antide-
pressant-like effects in mice, accompanied by an increase in cate-
cholamines and glucocorticoids [42]. To protect itself from the
potentially deleterious effects of these hormones, the brain’s cellular
mechanisms of stress resistance that could promote neurogenesis,
synthesis of neurotrophic factors, receptors for neurotransmitters
and chaperone proteins are activated [13]. Short-term fasting leads to
a dramatic up-regulation in neuronal autophagy (sometimes referred
to as cellular cleansing) characterized by diminished neuronal mTOR
activity in vivo [25]. Studies in rodent models showed that fasting
enhanced the availability of brain tryptophan and serotonin [46]. 5–
10 days of fasting in humans or 1–2 days in rats reportedly induces
releases of endogenous endorphins, which could explain mood
improvements with no correlations in weight loss [13]. Other studies
have showed that intermittent fasting causes an increase in BDNF,
which is one of the known neurotrophic factors involved in many
antidepressants (Table 1) [47].
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Mechanism of action

The most probable mode of action of energy restriction on neurologi-
cal disorders is via BDNF signalling. BDNF, a member of the neu-
rotrophin family, is related to brain health, food intake and glucose
metabolism [48], and it can cross the blood–brain barrier in both
directions [49]. The action of BDNF is crucial for supporting cognitive
abilities, and dysfunction or reductions in BDNF levels have been pro-
posed to be part of the pathobiology of various neurological disorders
[23]. Conversely, increased BDNF level has been associated with
reduced symptoms of depression. BDNF is a potent ligand for the tyr-
osine receptor kinase B (TrkB) [50], activating protein kinase B (Akt),
phospholipase C gamma (PLCc), and cAMP response element-bind-
ing protein (CREB) signalling pathways [51] which mediates several
effects such as growth and differentiation of neurons and synaptic
plasticity and synaptic transmission, neurogenesis and neuronal sur-
vival in the adult brain [20].

BDNF/CREB pathway is a pharmacological target of many neuro-
logical disorder therapies. Guzzardi et al. suggest that a safer
approach of targeting this pathway may be to identify and optimize
mediators that indirectly promote BDNF production [48]. Dietary
restriction has been shown to increase levels of BDNF [36, 52], lead-
ing to hippocampal neurogenesis [53] and subsequent behavioural
improvements. Rather than affecting proliferation of neuronal pluripo-
tent cells per se, it enhances neurogenesis by increasing the survival
of newly generated cells [36]. On the other hand, glycemia and high-
fat diet have been shown to be negative predictors of BDNF levels
[48]. In high-fat diet fed mice, serum BDNF levels were beyond the
detectable range, while BDNF mRNA expression was inhibited in the
ventral medial hypothalamus [54]. The behavioural improvements
caused by BDNF were abolished in mice lacking CREB [55], suggest-
ing that CREB is a critical, indispensable link in the pathway. As a
matter of fact, some experiments of energy restriction have reported
an increase in CREB phosphorylation, but not serum BDNF levels
[42]. Therefore, BDNF signalling plays important roles in regulating

adult hippocampal neurogenesis under basal conditions and in
response to dietary restriction [53]. Moreover, TrkB was increased in
the hippocampus during dietary restriction, which would be expected
to result in increased BDNF-TrkB signalling [36].

The mechanism by which dietary restriction increases BDNF is
not entirely known, but it could be a mild metabolic stress
response in neurons [36] as in ketogenic therapy. Ketogenic ther-
apy shifts the body into a state of ketone body production [56].
Fasting is a strong physiological stimulus equivalent to a biologi-
cal stress that activates the hypothalamic–pituitary–adrenal axis
[13]. Fasting and low-carbohydrate/high-fat diet were found to
increase levels of the ketone bodies b-hydroxybutyrate and ace-
toacetate in normal, healthy individuals (reviewed in [56]) while
the deacetylase inhibition properties of ketones increase the
expression of BDNF [56–58].

Two antagonistic peptide hormones, leptin and ghrelin, have been
reported to affect mental status [5]. Ghrelin is a hormone produced
primarily by distinct ghrelin cells located in gastrointestinal tract,
while leptin is a hormone derived from adipocytes. Both hormones
are transported across the blood–brain barrier to exert their central
effects. Fasting acutely increases levels of acyl-ghrelin, increasing
dentate gyrus levels of the neurogenic transcription factor Egr-1,
enhancing adult hippocampal neurogenesis [26, 59–61]. Fasting for
over 8 days decreased leptin levels.

Other mechanisms that may underlie the efficacy of energy
restriction include stimulation of autophagy, a lysosomal degradative
process which recycles cellular waste and eliminates potentially toxic
damaged organelles and protein aggregates [24, 25, 62], reduction of
proinflammatory cytokines [63], diminished production of mitochon-
drial reactive oxygen species (ROS) [64, 65] and increase in heat-
shock proteins, in what is seen as a preconditioning mechanism to
increase resistance of the neurons to subsequent insults [66, 67].
Levels of heat-shock protein-70 were significantly increased in corti-
cal synaptosomes from dietary restricted rats compared with rats fed
ad libitum [66].

Table 1 Effects of energy restriction on the brain’s potential indicators of antidepressant effect

Energy restriction type Effect/mechanism of action References

Calorie/Dietary restriction Activation of orexin neurons [48]

Increase in BDNF [35, 49–51]

Diminished production of mitochondrial reactive oxygen species (ROS) [52, 53]

Increase in heat-shock protein [54, 55]

Production of ketone bodies [56]

Increased CREB phosphorylation [57]

Acute fasting Increased CREB phosphorylation, reduced immobility in FST, increased corticosterone. [42]

Enhanced autophagy [25]

Intermittent fasting Increase in BDNF [32, 58]

Ramadan intermittent fasting Reduction of proinflammatory cytokines IL-1b, IL-6 and TNFa and body fat percentage [59]
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Most antidepressants also affect body weight, with most of them
inducing weight gain and only a few, including fluoxetine and bupro-
pion, inducing weight loss [68, 69] putatively through BDNF sig-
nalling. The mechanism of the effect of antidepressants on weight is
still a matter of controversy. However, negative interaction occurs
between impaired glucose tolerance and circulating BDNF levels such
that serum BDNF levels are significantly decreased in Type 2 diabetes
patients compared to normal controls [70]. Moreover, selective BDNF
infusion into the lateral ventricles of the brain decreased food intake
and associated excessive weight gain in rat [71]. Conversely, though
other studies suggest that BDNF does not play an essential role in the
regulation of energy expenditure [72], BDNF-deficient mice show
hyperphagia and consequent obesity [73]. Caloric restriction there-
fore should reduce body weight and hyperglycaemia not only because
of the reduced food intake per se, but also the biochemical conse-
quences of the increase in BDNF level. BDNF enhances the sensitivity
and hypoglycaemic action of insulin (Table 2) [74].

Many food substances or diet supplements have been found
effective against animal models of depression. For example, dietary
supplementation with fish products, including fish oil [75] and aque-
ous extract of Channa (C.) striatus (Malay-Haruan) fillet, a freshwater
snakehead fish consumed by local Malay population [76] produced
significant reduction of immobility time in both FST and TST in mice.
Fish oil supplementation not only provided antidepressant-like effects
but also reversed the altered lipid profiles and ghrelin level in serum
[75]. Ergothioneine is a hydrophilic antioxidant and contained at high
levels in edible golden oyster mushrooms. It crosses the blood–brain
barrier into the brain, when orally ingested, and promotes neuronal
differentiation and alleviates symptoms of depression [22]. Chronic
consumption of blueberry extract exhibits antidepressant-like and
anti-peroxidative effects in an animal model [77].

Some dietary supplements showed sex-specific or age-specific
effects, providing insights into gender-specific therapeutic target of
antidepressant research. For example, supplemental dietary choline

Table 2 Diet supplementation with antidepressant-like effects

Supplement Effect/mechanism of action References

Fish oil Reversed the depression-altered,
undesired lipid profiles and ghrelin
level in serum

[79]

Aqueous extract of Channa (C.) striatus Not fully elucidated [80]

Ergothioneine Promotes neuronal differentiation [22]

Blueberry extract Hypoglycaemic and anti-peroxidative
effects

[81]

Choline Increased adult hippocampal neurogenesis
and BDNF

[82–84]

Creatine Not understood [85, 86]

Omega-3 fatty acids Increase membrane fluidity and potentiates
other antidepressants at subeffective doses

[87, 88]

n-3 polyunsaturated fatty
acids (PUFA), eicosapentaenoic
acid (EPA) and docosahexaenoic
acid (DHA)

Increased serum serotonin concentration,
increased CREB phosphorylation and BDNF,
and decreased hippocampal expressions of
IL-6 and TNFa.

[23, 89–91]

Taurine and beta-alanine Increased BDNF and hippocampal
phosphorylation levels of ERK1/2, Akt, GSK3b,
CREB and decreased metabolite of serotonin
(5HTIAA)

[92, 93]

Perilla. frutescens seed oil-rich Increased BDNF and serotonin levels [19]

Whole egg Increased the Trp/LNAA ratio [2]

Inulin-type oligosaccharides Not fully elucidated [94]

Pre-germinated brown rice Decreased in frontal cortex 5-HIAA/5-HT ratio [95]

Curcumin Normalized levels of BDNF, synapsin I, and
CREB and is an antioxidant.

[96, 97]

High-fat diets (HFD) Not fully elucidated [21]
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when given during development may inoculate an individual against
depression [78] while 4% creatine supplementation displayed an
antidepressant-like response in female but not male rats
[79, 80]. Uridine or cytidine both of which stimulate synthesis of cyti-
dine 50-diphosphocholine (CDP-choline, a critical substrate for phos-
pholipid synthesis) have antidepressant-like effects in the forced swim
test (FST) in rats. Moreover, dietary supplementation with omega-3
fatty acids (OMG) which increase membrane fluidity and a subeffective
dose of uridine produce synergistic antidepressant-like effects [81, 82].

A long-term dietary intake of n-3 polyunsaturated fatty acids
(PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
induces overexpression of CREB and hence produce antidepressant-
like effects in rats [83, 84]. DHA is a key component of neuronal
membranes at sites of signal transduction at the synapse, but mam-
mals are inefficient in producing it, hence supplementation of DHA in
the diet is important [23]. In addition to reducing oxidative stress and
inflammation, DHA serves to normalize levels of BDNF-related synap-
tic markers in the hippocampus of brain injured animals [85].
Similarly, high taurine-supplemented diet for 4 weeks had an antide-
pressant-like effect in the forced swim test in rodents [86, 87]. Perilla
frutescens seed oil-rich diet exhibited antidepressant-like properties
through modulation of fatty acid profiles and BDNF expression in the
brain [19]. Nagasawa et al. suggest that whole egg may be an excel-
lent food for preventing and alleviating the conditions of major
depression, based on their experiments with rats: chronic whole-egg
administration increased the incorporation of tryptophan into the
brain prefrontal cortex but no changes in serotonin level [2]. Trypto-
phan/large neutral amino acid (Trp/LNAA) ratio is an index of the
incorporation of tryptophan into the brain as LNAA compete with one
another for the same amino acid transport system when they are
incorporated into the brain. Dietary inulin-type oligosaccharides
extracted from Yacon (Smallanthus sonchifolius), a traditional food in
the Andean diet, experimentally suggested to be a prospective natural
source for antidepressants [88], while pre-germinated brown rice
increased in serotonin (5-HT) levels in the mouse frontal cortex, pro-
ducing antidepressant-like effects in mice [89]. Curcumin is a major
chemical component of the turmeric plant (Curcuma longa), which
has been widely used as a spice and food preservative in India for
several generations. It has shown excellent efficacy in counteracting
neuronal dysfunction in several models of neurodegenerative dis-
eases in a process involving the action of the BDNF system [90, 91].

Despite the number of negative consequences of high-fat diets
(HFD) related to the impairment of hippocampal synaptic plasticity,
changes in neurogenesis and decrease of glutamatergic transmission,
De Rio et al. show that HFD triggers an antidepressant-like action in
the FST [21] independent of memory deficits. Going by other findings
that HFD is a negative predictor of BDNF, this seems to be a contro-
versial finding

Concluding remarks

Caloric restriction, fasting or diet supplementation alone per se is
unlikely going to be the ultimate solution to treating depression in

humans. Despite the effectiveness in animal models, translation and
application of these findings in humans with mental health problems
are not straightforward. Keeping a healthy diet is in itself a challenge
for people without mental health problems, let alone people with seri-
ous mental health problems. The most feasible solution, at least in
the present and near future, is a combination of both dietary modifica-
tion and antidepressant drugs. Moreover, most of the findings
reviewed above admit that diet supplementation produced additive or
synergistic effects when administered with conventional drugs or in
combination with other interventions. For example, fasting produced
additive effects with imipramine in mice [42] while lovastatin aug-
mented the antidepressant-like effects of fluoxetine in rats [92, 98]
when given at a sub effective dose. Similarly, supplementation with
omega-3 fatty acids (OMG) and a subeffective dose of uridine pro-
duced synergistic antidepressant-like effects, displaying a behavioural
profile similar to fluoxetine [82] while 4% chronic creatine supple-
mentation with fluoxetine produced a more robust antidepressant-like
behavioural profile compared to a dose of fluoxetine alone [80]. The
ability of energy restriction to up-regulate BDNF expression and
enhance neurogenesis in rodents suggests that it may also be possi-
ble to establish dietary regimens to enhance brain function and resis-
tance to neurodegenerative diseases, including depression in
humans, by controlling food intake and dietary manipulations [36,
53].

Most of the current antidepressant have adverse side effects at
their effective doses, and any intervention that reduces their effec-
tive dosage is likely to reduce the side effects. Findings reviewed
here raise the possibility that diet could be used to facilitate the
effects of antidepressants in humans while reducing the side effects
of current antidepressants. However, it is worth noting a caveat that
some trials in animals have been done on normal, healthy animals.
Whether the treatment would have positive effects in depressive
phenotype remain to be seen. Nevertheless, caloric/dietary restric-
tion, fasting and diet supplementation have a promising potential as
adjuvant to antidepressants and lowering the adverse side effects,
at least while a more lasting solution continues being sought. Ther-
apeutic energy restriction has a lower cost and is easier to carry
out than other treatments for drug-resistant patients, such as elec-
troconvulsive therapy [13].
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