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Abstract: The enantiomers of 6-fluoro-, 6-bromo-, and 6-iodopericosine A were synthesized. An
efficient synthesis of both enantiomers of pericoxide via 6-bromopericosine A was also developed.
These 6-halo-substituted pericosine A derivatives were evaluated in terms of their antitumor activity
against three types of tumor cells (p388, L1210, and HL-60) and glycosidase inhibitory activity. The
bromo- and iodo-congeners exhibited moderate antitumor activity similar to pericosine A against the
three types of tumor cell lines studied. The fluorinated compound was less active than the others,
including pericosine A. In the antitumor assay, no significant difference in potency between the
enantiomers was observed for any of the halogenated compounds. Meanwhile, the (−)-6-fluoro- and
(−)-6-bromo-congeners inhibited α-glucosidase to a greater extent than those of their corresponding
(+)-enantiomers, whereas (+)-iodopericosine A showed increased activity when compared to its
(−)-enantiomer.

Keywords: synthesis; 6-halogenated pericosine A analogues; antitumor; glycosidase inhibition;
enantiomer; pericoxide

1. Introduction

Chemical modification of bioactive natural products is one of the most common meth-
ods used in drug development [1–8]. In addition to increasing the pharmacological activity,
which is the major aim of chemical modification, decreasing side effects, improving the
solubility or stability, and reducing costs remain problems to be resolved during drug de-
velopment. Chemical modification based on marine natural products has been extensively
studied due to the discovery of new lead compounds suitable for drug discovery [9–12].

The isolation of pericosine A (1Cl) and B (2) as metabolites of the marine-derived
fungus Periconis byssoides N133 was first reported in 1997, and pericosines C–E (3–6) were
discovered in 2008 [13–15]. The unique carbasugar structures constituting the highly func-
tionalized cyclohexene ring are shown in Figure 1. Recently, the chemistry of carbasugars
has received an increasing amount of research attention due to their wide range of bio-
logical activity [16–18]. In addition, many total syntheses of pericosines A–C (1–3) have
been reported due to the antitumor activity of pericosine A (1Cl) [19–30]. However, the
chemical modification of the pericosines has not been reported to date with the exception
of our synthetic study on pericosine E analogs bearing chloro- or methoxy-substituents
at C-6, which were used as α-glucosidase inhibitors [31,32]. Figure 1 also includes (+)-
pericoxide (7) and (−)-maximiscin, which were discovered by Cichewitcz and coworkers
from Tolypocladium sp. [33,34]. The fact that pericosine 1Cl was obtained together with
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pericoxide 7 in their work suggests that 7 may be a biosynthetic precursor of 1Cl. Therefore,
7 should be classified as a member of the pericosine family.

Figure 1. Structures of the pericosines and their related natural products.

In our recent report on pericosine A, natural 1Cl was isolated from Periconia sp. as
an enantiomeric mixture. In addition, we confirmed that both synthesized enantiomers
of 1Cl exhibit antitumor activity with similar potency against three tumor cell lines (P388,
LH-6, and L1210). Furthermore, (−)-1Cl showed moderate α-glucosidase inhibitory activity
(IC50 = 2.25 mM), whereas (+)-1Cl was inactive [35]. As we are interested in the biological
activities of pericosine congeners bearing other halogen atoms, the fermentation of Periconia
sp in artificial seawater containing fluoride, bromide, or iodide sources has been examined
as an alternative to chloride. It should be mentioned here that 6-halogenated pericosines
bearing F, Br, or I atoms were not obtained in our preceding paper. Consequently, we
have attempted the synthesis of non-natural 6-halo-substituted pericosine A. Our recent
synthetic work on pericosine E analogs has suggested that the presence of a chlorine atom
at C6 is an important factor for α-glucosidase inhibitory activity. The preparation of other
6-halo-congeners is also required for our continuous synthetic studies on new pericosine
E analogs.

Herein, we describe the synthesis and evaluation of the antitumor and antiglycosidase
inhibitory activities of both enantiomers of newly designed 6-halo-congeners of pericosine
A. In addition, an efficient synthesis of closely related pericoxide 7 via 6-bromo pericosine
A (1Br) has also been reported.

2. Results & Discussion
2.1. Synthesis of Both Enantiomers of 6-Halo-Substituted Pericosine A

A similar reaction to the hydrochlorination of epoxide intermediate 8 used in the
synthesis of pericosine A 1Cl [21,29] using commercially available HBr and HI aqueous
solutions was envisioned in this study, in which the deprotection of the hydroxyl groups
and hydrolysis of the ester moiety will occur (Scheme 1). Subsequently, we began this
work by searching for suitable reagents used to introduce the required fluorine, bromine,
or iodine atoms.
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Scheme 1. Synthesis of 6-halogenated pericosine A. (a) Synthesis of (-)-1 from (-)-shikimic acid;
(b) Synthesis of (+)-1 from (-)-quinic acid.

For bromination, BBr3 was initially examined as the bromide source to react with
epoxide (−)-8, which can be prepared from bromohydrin (+)-9 via an intramolecular SN2
reaction [29,31]. However, careful addition of BBr3 [0.33 equivalents (eq)] to (−)-8 in dry
diethyl ether (Et2O) at −78 ◦C afforded the desired product (10Br) in only 14% yield. Using
1.0 eq of BBr3 slightly improved the yield (38%), but increasing the reaction temperature
led to the formation of a complicated mixture including the undesired regioisomer. After
investigating a variety of brominating reagents, we found mono-bromoborane dimethyl
sulfide complex (BH2Br·SMe2) to be the most suitable for the desired reaction [36,37]. The
reaction of 8 with 1.0 eq of BH2Br·SMe2 at −78 ◦C in Et2O dramatically improved the
yield of (−)-10Br to 94% yield. The reactions performed at higher temperatures led to a
decreased yield of (−)-10Br (78% at −20 ◦C and 58% at 0 ◦C). Subsequent deprotection of
the cyclohexylidene moiety was also a delicate process. The optimum reaction conditions
were found after investigating a variety of conditions. Treatment of (−)-10Br with Dowex®

50WX8 hydrogen form (Dowex® 50WX8-H: Acidic ion-exchange resin) in MeOH at room
temperature (rt) for 56 h gave (−)-1Br in an excellent 87% yield when compared to the
conventional reaction using trifluoroacetic acid (TFA) in MeOH (66%) (Scheme 1A). This
deprotection process with Dowex-XW50-H was examined in detail because could also be
applied in the subsequent synthesis of pericoxide 7 (see Supplementary Material, Table S1).
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The corresponding (+)-enantiomer of 1Br was prepared in the same way using (+)-8
derived from (−)-quinic acid (Scheme 1B). Iodohydrination of (−)-8 was then achieved
upon careful addition of 0.33 eq of aluminum iodide (AlI3) at 0 ◦C to give the desired
product [(−)-10I] in 63% yield [38]. When 1.0 eq of AlI3 was used under the same reaction
conditions, the yield of (−)-10I was reduced to 15%. The reaction of (−)-8 with 1.0 eq of
tetrabutylammonium iodide and a catalytic amount of BF3·Et2O in dry dichloromethane
at −78 ◦C afforded (−)-10I in 17% yield. Finally, deprotection of (−)-10I was achieved
under conventional TFA/MeOH conditions to give (−)-1I in 76% yield, whereas treatment
of (−)-10I with Dowex® 50WX8-H resulted in no reaction. The (+)-enantiomer of 1I was
prepared using a similar approach from (+)-8 via (+)-10I.

The introduction of a fluorine atom into (−)-8 was accomplished using the (HF)n/py
complex. The reaction of (−)-8 with this complex at 0 ◦C for 15 min in a polypropylene
tube afforded the desired fluorohydrine product [(−)-10F] in 46% yield. A longer reaction
time (1 h) led to a more complex product mixture, giving a low yield of (−)-10F (32%).
Subsequent treatment of (−)-10F with TFA in MeOH afforded (−)-1F in 43% yield. Similarly,
(+)-1F was successfully obtained using (+)-8. It should be noted that 10I and 1I are relatively
unstable when compared to the other halogenated congeners, so they were stored in a
freezer prior to further use.

2.2. Synthesis of Pericoxide

The synthesis of 7, which was not reported prior to 2019, was also conducted, as shown
in Scheme 2. The direct deprotection of epoxide 8 was examined in our preliminary efforts
to prepare 7. Treatment of (−)-8 with trifluoroacetic acid in t-BuOH at room temperature
(rt) did not afford pericoxide 7 despite the complete consumption of 8. Changing the
acid catalyst to Dowex® 50WX8-H resulted in no reaction and microwave (MW) heating
afforded a small amount of methyl 3,4-dihydroxybenzoate along with the recovery of the
starting material [(−)-8].

Scheme 2. Synthesis of (−)- and (+)-pericoxide (7): (a) (−)-Pericoxide from (−)-shikimic acid; (b) (+)-
pericoxide from (−)-quinic acid.

In our next experiment, bromotriol 11 derived from bromohydrin 9 was treated with
3.0 eq of lithium hexamethyldisilazide (LHMDS) in THF at −78 ◦C because if the C6
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hydroxide anion attacked the C5 center faster than the C4 hydroxide anion, the formation
of 7 via an intramolecular SN2 process was expected to occur. However, the spectral data of
epoxide 12 did not agree with those of 7. The structure of 12 was determined using NMR
spectroscopy; epoxy carbon atoms C6 (δ 55.5 ppm) and C1 (δ 56.0 ppm) were detected in
the high field region in the 13C-NMR spectrum and the HMBC cross peaks corresponding
to H1/C3 and H6/C4 indicated the structure of 12 (see Supplementary Materials).

Finally, (−)-bromopericosine A (1Br) was treated with 3.0 eq of LHMDS at −78 ◦C to
give (−)-7, which is an enantiomer of the natural product. The isolated yield of (−)-7 upon
purification via conventional acidic silica gel column chromatography was only 23%, but
this was improved to 77% using neutral silica gel. The spectral data agree with those of
natural pericoxide with the exception of the sign of its specific rotation. Unfortunately, (−)-7
was so unstable that it decomposed upon storage at rt in methanol, exhibiting a smaller
optical rotation within a couple of days. Furthermore, the decomposed residue exhibits
a positive specific rotation, although freshly synthesized 7 was negative. Regrettably,
biological assays of 7 could not be performed because of this inherent instability.

Treatment of 1Br with 2.0 eq of LHMDS led to a decreased yield of 7 (57%) along with
the recovered starting material (1Br; 34%). Alternatively, intramolecular epoxidation of
(−)-1Cl with LHMDS (3.0 eq) gave (−)-7 in 12% yield along with the recovery of (−)-1Cl
(20%).

This experiment indicates the significance of bromo-derivative 1Br as the starting
material. Using the same synthetic process, natural (+)-7 was synthesized via (+)-1Br
starting from (−)-quinic acid. A similar synthesis of (+)-7 from (+)-1Cl has been previously
reported by Cichewitz in 2019 [39].

2.3. Evaluation of the Biological Activities of Enantiomerically Pure Pericosine A and Its
6-Halogenated Congeners
2.3.1. Antitumor Assay

The antitumor activity of halo-compounds 1 was evaluated against three types of
tumor cell lines: Basic P388 (mouse lymphocytic leukemia), L1210 (mouse lymphocytic
leukemia), and LH60 (human promyelocytic leukemia) cell lines, along with a previously
reported procedure using 5-fluorouracil (5-FU) as a positive control [35]. The results are
presented in Table 1, including those obtained for perocosine A (1Cl), which has been
previously reported in the literature, for comparison. All compounds showed antitumor
activity against the three types of tumor cell lines studied. Bromo- and iodo-pericosine
(1Br and 1I) show similar activities to 1Cl, but fluorinated compound 1F was less active
than all of the other compounds, including 1Cl. Because pericosine C (3), which exists
as an enantiomeric mixture in nature and has the same relative configuration to 1s, was
reported to be inactive against P-388 cell line [14], present results implied the importance
of the presence of halogen atom at C-6 in pericosine core structure for antitumor activity.
In addition, it is noteworthy that no significant difference in the potency was observed
between the enantiomers, similar to pericosine A.

Table 1. Antitumor activity of the synthetic 6-halo-analogs of pericosine A.

IC50 (µM)

Compound P388 L1210 HL-60

(+)-Pericosine A (1Cl)35 5.00 6.12 2.03
(−)-Pericosine A (1Cl)35 4.85 3.96 2.33

(+)-6-Fluoropericosine A (1F) 9.91 44.0 10.8
(−)-6-Fluoropericosine A (1F) 9.03 38.0 9.46
(+)-6-Bromopericosine A (1Br) 5.39 5.66 5.57
(−)-6-Bromopericosine A (1Br) 5.65 6.30 6.08

(+)-6-Iodopericosine A (1I) 6.17 8.18 6.78
(−)-6-Iodopericosine A (1I) 5.91 8.27 6.45

5-FU (positive control) 3.86 0.63 0.22
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2.3.2. Glycosidase Inhibitory Activity Assay

There have been several excellent studies on the development of pseudosugar-type
glycosidase inhibitors [40–50]. The compounds synthesized in this study were also applied
to an glycosidase inhibitory assay against five kinds of enzymes: α-Glucosidase from yeast,
β-glucosidase from Jack bean, α-galactosidase from green coffee bean, β-galactosidase from
bovine liver, and α-mannosidase from bovine liver. The results are presented in Table 2
along with the previous results obtained for pericosine A (1Cl) for comparison [35]. (−)-1F,
(−)-1Br, and (−)-1I exhibit comparable inhibitory activities to (−)-1Cl (IC50 = 2.25 mM)
against α-glucosidase with IC50 values of 1.95, 1.79, and 3.60 mM, respectively, whereas
they were less active than the positive control [deoxynojirimycin (DNJ); IC50 = 0.0965 mM].
(+)-1Br showed less potent activity (IC50 = 5.05 mM) when compared to (−)-1Br, and (+)-1F
was inactive similar to (+)-1Cl. Surprisingly, (+)-1I exhibited the most potent α-glucosidase
inhibitory activity (IC50 = 1.15 mM) among the eight compounds studied and was active
against α-galactosidase (IC50 = 3.56 mM). This is the only example of an α−galactosidase
inhibitor among the pericosines and their congeners reported to date.

Table 2. Glycosidase inhibitory activity of the synthetic 6-halo-congeners of pericosine A.

IC50 (mM)

Compound α-Glucosidase a β-Glucosidase b α-Mannosidase c α-Galactosidase d β-Galactosidase e

(+)-1Cl35 NI f NI NI NI NI
(−)-1Cl35 2.25 NI NI NI 5.38

(+)-1F NI NI NI NI NI
(−)-1F 1.95 NI NI NI NI
(+)-1Br 5.05 NI NI NI NI
(−)-1Br 1.79 NI NI NI 5.60
(+)-1I 1.15 NI NI 3.56 NI
(−)-1I 3.60 NI NI NI NI

DNJ (positive control) 0.0965 0.195 – – –

a Yeast, b Sweet almond, c Jack bean, d Green coffee bean, e Bovine liver, f NI: No inhibition (IC50 >9.25 mM).

All of the synthesized compounds were inactive against β-glucosidase and α-galactosidase.
Interestingly, (−)-1Br showed dual activity against β-galactosidase and α-glucosidase
similar to (−)-1Cl, but they were less active than those reported for some pericosine E
derivatives [33].

3. Materials and Methods

General methods: HRMS was performed on a JMS-700 (2) mass spectrometer (JEOL,
Tokyo, Japan). NMR spectra were recorded at 27 ◦C on 300- and 400-MR-DD2, INOVA-500
and 600-DD2 spectrometers (Agilent Technologies, CA, USA) in CDCl3 or acetone-d6 using
tetramethylsilane (TMS) as an internal standard. Specific rotations were measured using a
DIP1000 digital polarimeter (JASCO Co., Tokyo, Japan). Liquid column chromatography
was conducted on silica gel (BW-127ZH) (Fuji Silysia, Tokyo, Japan) or neutral silica gel
(CHROMATOREX DIOL MB100–75/200) (Fuji Silysia, Tokyo, Japan). Analytical TLC was
performed on precoated silica gel 60 plates (Merck & Co., Inc., Darmstadt, Germany) and the
compounds were viewed by dipping the plates in an ethanol solution of phosphomolybdic
acid, followed by heating. Microwave-aided reactions were performed using Initiator®

(Biotage, Uppsala, Sweden). Flash chromatography was performed using Isolera One®

(Biotage, Uppsala, Sweden). (−)-Shikimic acid was purchased from Carbosynth Ltd.
(UK). (−)-Quinic acid was purchased from Merck & Co., Inc. (Darmstadt, Germany).
AlI3, HCl, BH2Br, SMe2, and Dowex® 50WX8-H were purchased from Sigma-Aldrich
(St. Louis, MO). n-BuLi in hexane was purchased from Nacalai Tesque (Kyoto, Japan).
Hexamethyldisilazane and (HF)n/py complex were purchased from TCI (Tokyo, Japan).
Trifluoroacetic acid, dry MeOH, CH2Cl2, Et2O, and tetrahydrofuran (THF) were purchased
from Wako Pure Chemical Industries (Osaka, Japan).
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3.1. Synthesis of Both Enantiomers of The 6-Halopericosine A Analogs
3.1.1. Synthesis of Methyl
(−)-3,4-O-Cyclohexylidene-6-Fluoro-3,4,5-Trihydroxy-1-CycloHexene Carboxylate (10F)

To a solution of (−)-8 (13.4 mg, 0.050 mmol) in CH2Cl2 (1.0 mL) in a polyethylene tube
and cooled at 0 ◦C was added 12.5 mL of (HF)n/pyridine complex (67% w/v HF, 4.0 mmol).
The resulting mixture was stirred at 0 ◦C for 15 min and quenched upon adding saturated
(sat.) NaHCO3 (aq) (10 mL). The mixture was then extracted with CH2Cl2 (3 × 10 mL). The
combined organic layers were dried over MgSO4, filtered, and evaporated to afford the
crude product, which was purified by column chromatography on neutral silica gel (eluent
= Hexane:EtOAc = 9:1) to afford (−)-10F as a colorless oil (6.6 mg, 46%). [α]D

20 −41.1 (c
0.12, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ 1.22–1.71 (10H, m), 2.51 (1H, dd, J = 4.1 1.6 Hz,
5-OH), 3.83 (3H, s, -COOCH3), 4.20 (1H, dddd, J = 10.3, 5.5, 4.5, 3.2 Hz, H-5), 4.56 (1H, ddd,
J = 6.2, 3.2, 3.0 Hz, H-4), 4.76 (1H, dddd, J = 6.2, 5.5, 3.2, 0.9 Hz, H-3), 5.56 (1H, dd, J =
48.0, 5.5 Hz, H-6), 7.01 (1H, br dd, J = 3.2, 2.8 Hz, H-2); 13C-NMR (CDCl3, 125 MHz) δ 23.6
(CH2), 23.9 (CH2), 24.9 (CH2), 34.5 (CH2), 36.6 (CH2), 52.4 (CH3, CO2CH3), 67.6 (d, 2JC-F =
24.9 Hz, CH, C-5), 70.9 (d, 4JC-F = 2.4 Hz, CH, C-3), 73.4 (d, 3JC-F = 5.8 Hz, CH, C-4), 86.2
(d, 1JC-F = 168.8 Hz, CH, C-6), 111.2, 128.6 (d, 2JC-F = 17.7 Hz, CH, C-1), 139.4 (d, 3JC-F = 5.8
Hz, CH, C-2), 165.2 (Cq, COOMe); HREIMS m/z calcd for C14H19O5F [M]+ 286.1217, found
286.1218.

(+)-10F (7.1 mg, 43%) was synthesized from (+)-8 (15.5 mg, 0.058 mmol) in the same
manner as (−)-10F. [α]D

20 +37.6 (c 0.13, CHCl3); 1H-NMR (CDCl3, 400 MHz) δ 1.22–1.70
(10H, m), 2.51 (1H, d, J = 3.0 Hz, 5-OH), 3.83 (3H, s, -COOCH3), 4.17–4.24 (1H, m, H-5), 4.56
(1H, dt, J = 6.3, 3.1 Hz, H-4), 4.76 (1H, ddd, J = 6.0, 5.5, 3.1 Hz, H-3), 5.56 (1H, dd, J = 48.1,
5.5 Hz, H-6), 7.01 (1H, br dd, J = 2.8, 2.5 Hz, H-2); 13C-NMR (CDCl3, 100 MHz) δ 23.6, 23.9,
24.9, 34.5, 36.6, 52.4, 67.6 (d, 2JC-F = 25.2 Hz, C-5), 70.9 (d, 4JC-F = 2.3 Hz, C-3), 73.4 (d, 3JC-F
= 5.4 Hz, C-4), 86.2 (d, 1JC-F = 168.6 Hz, C-6), 111.2 (Cq), 128.5 (d, 2JC-F = 17.6 Hz, CH, C-1),
139.4 (d, 3JC-F = 5.3 Hz, C-2), 165.2 (Cq, COOMe); HREIMS m/z calcd for C14H19O5F [M]+

286.1217, found 286.1215.

3.1.2. Synthesis of (−)-6-Fluoropericosine A (1F)

To a solution of (−)-10F (7.5 mg, 0.026 mmol) in MeOH (1.0 mL) was added TFA
(2.0 mL) at 0 ◦C with stirring. The reaction mixture was stirred for another 3.5 h at rt, then
condensed under reduced pressure give the crude product, which was purified by column
chromatography on neutral silica gel (eluent = 5% MeOH in CH2Cl2) to afford (−)-1F as a
colorless oil. [α]D

20 −78.7 (c 1.4, MeOH); 1H-NMR (MeOH-d4, 600 MHz, ppm) δ 3.76 (3H,
s, -OMe), 3.97 (1H, ddd, J = 16.7, 6.1, 2.0 Hz, H-5), 4.03–4.06 (1H, m, H-4), 4.41–4.44 (1H,
m, H-3), 5.42 (1H, dddd, J = 49.6, 6.7, 1.7, 0.6 Hz, H-6), 6.81–6.82 (1H, m, H-2); 13C-NMR
(MeOH-d4, 150 MHz, ppm) δ 52.3 (CH3, COOMe), 68.2 (CH, C3, 4JC-F = 2.3 Hz), 72.7 (CH,
C4, 3JC-F = 6.9 Hz), 73.3 (CH, C5, 2JC-F = 20.9 Hz), 90.7 (CH, C-6, d, 1JC-F = 167.6 Hz), 129.1
(Cq, C1, d, 2JC-F = 18.5 Hz), 144.4 (CH, C-2, d, 3JC-F = 5.8 Hz), 166.3 (Cq, COOMe); HREIMS
m/z calcd for C8H12O5F [M]+ 207.0669, found 207.0668.

(+)-1F (3.5 mg, 59%) was synthesized from (+)-10F (8.2 mg, 0.029 mmol) in the same
manner as (−)-1F. Colorless oil; [α]D

20 +67.7 (c 0.95, MeOH); H-NMR (MeOH-d4, 600 MHz,
ppm) δ 3.73 (3H, s, -OMe), 3.92 (1H, ddd, J = 17.0, 6.1, 2.0 Hz, H-5), 4.03–4.05 (1H, m, H-4),
4.40–4.43 (1H, m, H-3), 5.34 (1H, dddd, J = 49.9, 6.5, 2.1, 0.6 Hz, H-6), 6.75–6.77 (1H, m, H-2);
13C-NMR (MeOH-d4, 150 MHz, ppm) δ 52.4 (CH3, COOMe), 68.3 (CH, C3), 73.0 (CH, C4,
3JC-F = 6.9 Hz), 73.1 (CH, C5, 2JC-F = 20.8 Hz), 90.8 (CH, C-6, d, 1JC-F = 167.6 Hz), 129.0 (Cq,
C1, d, 2JC-F = 18.5 Hz), 144.4 (CH, C-2, d, 3JC-F = 6.9 Hz), 166.5 (Cq, COOMe); HREIMS m/z
calcd for C8H12O5F [M]+ 207.0669, found 207.0675.

3.1.3. Synthesis of Methyl
(−)-6-Bromo-3,4-O-Cyclohexylidene-3,4,5-Trihydroxy-1-CycloHexene Carboxylate (10Br)

To a solution of syn-epoxide (−)-8 (112.8 mg, 0.42 mmol) in Et2O (5 mL) was added
a solution 1.0 M BH2Br·SMe2 in CH2Cl2 (0.48 mL, 0.42 mmol) at −78 ◦C. After stirring at
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−78 ◦C for 5 h, the reaction mixture was quenched with saturated NH4Cl aq., and extracted
with CH2Cl2 (10 mL × 3). The combined organic layers were dried over MgSO4, filtered,
and evaporated to give the crude product, which was almost pure, but purified via silica gel
column chromatography (eluent; EtOAc:Hexane = 1:3) to afford (−)-10Br (139.7 mg, 94%).
[α]D

20 −207.4 (c 0.30, CHCl3); IR (KBr) νmax 3471 (OH), 1724 (C=O), 1652 (C=C) cm−1;
1H-NMR (acetone-d6, 600 MHz, ppm) δ 1.37–1.71 (10H, m, 5 × CH2), 3.80 (3H, s, -OMe),
4.17 (1H, d, J = 4.1 Hz, OH), 4.29 (1H, ddd, J = 4.4, 4.1, 3.5 Hz, H-5), 4.71 (1H, br dd, J = 7.0,
3.5 Hz, H-4), 4.88 (1H, br dd, J = 7.0, 3.2 Hz, H-3), 4.99 (1H, br d, J = 4.4 Hz, H-6), 6.99 (1H,
dd, J = 3.2, 1.5 Hz, H-2); 13C-NMR (acetone-d6, 150 MHz, ppm) δ 24.4 (CH2), 24.7 (CH2),
25.8 (CH2), 34.91 (CH2), 34.93(CH2), 36.8 (CH2), 44.0 (CH, C-6), 52.6 (Cq, -OCH3), 68.9 (CH.
C-5), 70.8 (CH, C-3), 73.6 (CH, C-4), 111.1 (Cq), 131.6 (Cq, C-1), 138.6 (CH, C-2), 165.8 (Cq,
COOMe); 1H-NMR (CDCl3, 600 MHz, ppm) δ 1.40–1.73 (10H, m, 5 × CH2), 2.70 (1H, d, J
= 2.3 Hz, OH), 3.83 (3H, s, -OMe), 4.35–4.37 (1H, m, H-5), 4.75–4.79 (2H, m, overlapped,
H-3,4), 4.88 (1H, br dd, J = 7.0, 3.2 Hz, H-3), 5.09 (1H, d, J = 3.8 Hz, H-6), 7.17 (1H, dd, J =
1.8, 1.1 Hz, H-2); 13C-NMR (CDCl3, 150 MHz, ppm) δ 23.5 (CH2), 23.9 (CH2), 25.1 (CH2),
33.3 (CH2), 36.0 (CH2), 40.4 (CH-C6), 52.5 (Cq, -OCH3), 67.0 (CH, C-5), 69.4 (CH, C-3), 71.6
(CH, C-4), 110.7 (Cq), 130.7 (Cq, C-1), 137.4 (CH, C-2), 164.7 (Cq, COOMe): C14H19O5

81Br
[M]+ 348.0395 found 348.0395. HREIMS m/z calcd for C14H19O5

79Br [M]+ 346.0416 found
346.0415, C14H19O5

81Br1 (M)+ 348.0395 found 348.0395.
(+)-10Br (57.6 mg, 83%) was synthesized from (+)-8 (53.2 mg, 0.20 mmol) in the same

manner as (−)-10Br. Colorless crystals (CH2Cl2); mp 117–120 ◦C; [α]D
20 +204.0 (c 0.29,

CHCl3); 1H-NMR (acetone-d6, 600 MHz, ppm) δ 1.38–1.72 (10H, m, 5 × CH2), 3.81 (3H, s,
OMe), 4.19 (1H, d, J = 4.1 Hz, 5-OH), 4.27–4.30(1H, m, H-5), 4.71 (1H, br dd, J = 7.0, 3.5 Hz,
H-4), 4.88 (1H, dd, J = 7.0, 2.9 Hz, H-3), 4.99 (1H, d, J = 4.4 Hz, H-6), 6.99 (1H, dd, J = 3.3,
1.5 Hz, H-2); 13C-NMR (acetone-d6, 150 MHz, ppm) δ 24.4 (CH2), 24.7 (CH2), 25.8 (CH2),
34.9 (CH2), 36.8 (CH2), 44.0 (CH, C-6), 52.6 (CH3, COOMe), 68.9 (CH, C5), 70.8 (CH, C3),
73.6 (CH, C4), 111.1 (Cq), 131.6 (Cq, C1), 138.7 (CH, C-2), 165.8 (Cq, COOMe); HREIMS m/z
calcd for C14H19O5

79Br [M]+ 346.0416, found 346.0415, C14H19O5
81Br [M]+ 348.0395, found

348.0395.

3.1.4. Synthesis of (−)-6-Bromopericosine A (1Br)

Table S1, entry 4: To a solution of (−)-10Br (41.3 mg, 0.12 mmol) in MeOH (2.0 mL) was
added Dowex® 50WX8-H (102.5 mg) and the resulting mixture was stirred for 56 h at room
temperature. The reaction mixture was filtered and the filtrate concentrated under reduced
pressure to give a crude residue, which was purified with silica gel column chromatography
(eluent; CH2Cl2:MeOH = 95: 5) to afford (−)-1Br (27.6 mg, 87%) and recovered (−)-10Br
(5.5 mg, 13%). (−)-1Br: Amorphous solid; mp 96–99 ◦C; [α]D

20 −130.8 (c 1.38, MeOH); IR
(film) νmax 3219 (OH), 1712 (C=O) cm−1; 1H-NMR (CD3OD, 600 MHz, ppm) δ 3.80 (3H,
s, COOMe), 4.10 (1H, dd, J = 4.4, 2.1 Hz, H-4), 4.18 (1H, ddd, J = 4.4, 2.0 Hz, H-5), 4.36
(1H, br dd, J = 4.4, 4.1Hz, H-3), 4.94 (1H, dd, J = 4.4, 0.9 Hz, H-6), 6.86 (1H, d, J = 4.1 Hz,
H-2); 13C-NMR (CD3OD, 150 MHz, ppm) δ 48.7 (CH, C-6), 52.8 (CH3, COOMe), 67.6 (CH,
C-3), 69.3 (CH, C-4), 76.2 (CH, C-5), 131.8 (Cq, C-1), 141.6 (CH, C-2), 167.3 (Cq, COOMe);
HREIMS m/z calcd for C8H12O5

79Br [M + H]+ 266.9868 found 266.9869.
(+)-1Br (37.7 mg, 78%) was synthesized from (+)-10Br (57.6 mg, 0.166 mmol) in the

same manner as (−)-1Br. Amorphous solid; mp 96–99 ◦C; [α]D
20 +130.2 (c 1.74, MeOH);

1H-NMR (MeOH-d4, 600 MHz, ppm) δ 3.80 (3H, s, -OMe), 4.10 (1H, J = 4.4, 2.1 Hz, H-5),
4.10 (1H, dd, J = 4.4, 2.1 Hz, H-4), 4.36 (1H, br dd, J = 4.7, 4.4 Hz, H-3), 4.94 (1H, dd, J = 4.4,
0.9 Hz, H-6), 6.86 (1H, d, J = 4.1 Hz, H-2); 13C-NMR (MeOH-d4, 150 MHz, ppm) δ 48.6 (CH,
C-6), 52.8 (CH3, COOMe), 67.6 (CH, C5), 69.3 (CH, C3), 76.2 (CH, C4), 131.8 (Cq, C1), 141.6
(CH, C-2), 167.3 (Cq, COOMe); HREIMS m/z calcd for C8H10O5

79Br [M − H]+ 264.9712,
found 264.9713.
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3.1.5. Synthesis of Methyl
(−)-3,4-O-Cyclohexylidene-3,4,5-Trihydroxy-6-iodo-1-CycloHexene Carboxylate (10I)

To a solution of (−)-8 (14.4 mg, 0.056 mmol) in CH2Cl2 (1.0 mL) was added AlI3
(7.9 mg, 0.019 mmol) at 0 ◦C with stirring. After stirring for 2 h at 0 ◦C, the reaction was
quenched by adding sat. NaHCO3 (aq) (5 mL). The resulting mixture was then extracted
with CH2Cl2 (3 × 10 mL). The combined organic layers were dried over MgSO4, filtered,
and evaporated to afford the crude product, which was purified by silica gel column
chromatography (eluent = Hexane:EtOAc = 5:1) to afford (−)-10I (15.5 mg, 60%) as a white
powder. mp 97–99 ◦C; [α]D

20 –261.4 (c 0.09, CHCl3); 1H-NMR (CDCl3, 600 MHz, ppm) δ
1.43–1.74 (10H, m), 2.70 (1H, d, J = 2.3 Hz, 5-OH), 3.82 (3H, s, -OMe), 4.36 (1H, ddd, J = 4.1,
3.2, 2.3 Hz, H-5), 4.74 (1H, dd, J = 7.9, 3.2 Hz, H-3), 4.86 (1H, dd, J = 7.9, 4.1 Hz, H-4), 5.21
(1H, d, J = 3.2 Hz, H-6), 7.10 (1H, d, J = 3.2 Hz, H-2); 13C-NMR (CDCl3, 150 MHz, ppm)
δ 16.8 (CH2), 23.5 (CH2), 24.0 (CH2). 25.1 (CH2), 33.3 (CH2), 36.0 (CH, C-6), 52.5 (CH3,
COOMe), 68.0 (CH, C-5), 69.1 (CH, C-3), 72.6 (CH, C-4), 110.4 (Cq), 132.5 (Cq, C-1), 135.8
(CH, C-2), 164.7 (Cq, COOMe); HREIMS m/z calcd for C14H10O5I [M]+ 394.0277, found
394.0279.

(+)-10I (17.6 mg, 72%) was synthesized from (+)-8 (16.5 mg, 0.062 mmol) in a similar
manner as (−)-10I. White powder; mp 97–100 ◦C; [α]D

20 +262.0 (c 0.13, CHCl3); 1H-NMR
(CDCl3, 400 MHz, ppm) δ 1.43–1.74 (10H, m), 2.71 (1H, d, J = 1.6 Hz, 5-OH), 3.82 (3H, s,
-OMe), 4.34–4.38 (1H, m, H-5), 4.74 (1H, dd, J = 7.8, 3.1 Hz, H-3), 4.86 (1H, dd, J = 7.8,
3.5 Hz, H-4), 5.21 (1H, d, J = 3.3 Hz, H-6), 7.10 (1H, d, J = 3.2 Hz, H-2); 13C-NMR (CDCl3,
100 MHz, ppm) δ 16.8, 23.5, 23.9. 25.0, 33.2, 35.9, 52.5, 68.0, 69.1, 72.5, 110.4, 132.4, 135.8,
164.6; HREIMS m/z calcd for C14H10O5I [M]+ 394.0277, found 394.0279.

3.1.6. Synthesis of (−)-6-Iodoopericosine A (1I)

To a solution of (−)-10I (4.3 mg, 0.011 mmol) in MeOH (1.0 mL) was added TFA
(4.5 mL) at 0 ◦C with stirring. The reaction mixture was stirred for another 3 h at rt, then
concentrated under reduced pressure give a crude residue, which was purified by column
chromatography with neutral silica gel (eluent = 5% MeOH in CH2Cl2) to afford (−)-1F as
a colorless oil (2.6 mg, 76%). [α]D

20 −8.4 (c 0.13, MeOH); 1H-NMR (acetone-d6, 600 MHz,
ppm) δ 3.79 (3H, s, -OMe), 4.21 (1H, dd, J = 4.7, 2.1 Hz, H-4), 4.33 (1H, br dd, J = 3.5, 2.1 Hz,
H-5), 4.43 (1H, br t, J = 4.7, H-3), 5.16 (1H, dd, J = 3.5, 0.6 Hz, H-6), 6.88 (1H, d, J = 4.4 Hz,
H-2); 13C-NMR (acetone-d6, 150 MHz, ppm) δ 26.8 (CH, C-6), 52.6 (CH3, COOCH3), 66.6
(CH, C5), 67.7 (CH, C-4), 76.9 (CH, C-5), 132.8 (Cq, C1), 139.5 (CH, C-2), 166.4 (Cq, COOMe);
HREIMS m/z calcd for C8H11O5I [M]+ 313.9652, found 313.9649.

(+)-1I (1.9 mg, 77%)was synthesized from (+)-10I (3.1 mg, 0.0079 mmol) in a similar
manner as (−)-1I; Colorless oil; [α]D

20 +11.7 (c 0.10, MeOH); 1H-NMR (acetone-d6, 600 MHz,
ppm) δ 3.79 (3H, s, -OMe), 4.21 (1H, dd, J = 4.7, 2.1 Hz, H-4), 4.33 (1H, br dd, J = 3.5, 2.1 Hz,
H-5), 4.43 (1H, br t, J = 4.7, H-3), 5.16 (1H, dd, J = 3.5, 0.6 Hz, H-6), 6.88 (1H, d, J = 4.4 Hz, H-
2); 13C-NMR (acetone-d6, 150 MHz, ppm) δ 26.8 (CH, C-6), 52.6 (CH3, COOCH3), 66.7 (CH,
C-3), 67.7 (CH, C-4), 76.9 (CH, C-5), 132.8 (Cq, C1), 139.5 (CH, C-2), 166.4 (Cq, COOMe);
HREIMS m/z calcd for C8H11O5I [M]+ 313.9652, found 313.9655.

3.2. Synthesis of Pericoxide
Synthesis of Methyl (3R,4R,5R,6S)-5-Bromo-3,4,6-Trihydroxycyclohex-1-ene-1-carBoxylate
(11) from 9

A solution of 9 (264 mg, 0.76 mmol) in dry MeOH (4.0 mL) in a microwave (MW)
vial was added to Dowex (760 mg). The vial was then sealed and heated under MW
irradiation at 100 ◦C for 30 min. After cooling, the reaction mixture was filtered, the filtrate
concentrated under reduced pressure to give the crude product, which was purified via
column chromatography (eluent: CH2Cl2:MeOH = 95: 5) to afford 11 (164 mg, 80%). [α]D

20

−71.1 (c 1.285, MeOH); IR (liquid film) νmax 3417 (OH), 1714 (C=O), 1650 (C=C) cm−1; 1H-
NMR (CD3OD, 600 MHz, ppm) δ 3.78 (3H, s, OMe), 3.84 (1H, dd, J = 8.2, 4.1 Hz, H-4), 4.29
(1H, dd, J = 8.2, 5.3 Hz, H-5), 4.47 (1H, t, J = 4.1 Hz, H-3), 4.64 (1H, d, J = 5.3 Hz, H-6), 6.77
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(1H, dd, J = 4.1, 0.6 Hz, H-2); 13C-NMR (CD3OD, 150 MHz, ppm) δ 52.5 (COOMe-C8), 55.1
(CH, C5), 67.0 (CH, C3), 71.4 (CH, C4), 71.5 (CH, C6), 138.6 (CH, C2), 167.8 (COOMe-C7);
HREIMS m/z calcd for C8H12O5

79Br1 [M + H]+ 266.9868 found 266.9865, C8H12O5
81Br1 [M

+ H]+ 268.9848 found 268.9850.

3.3. Intramolecular Epoxidation of Bromotriol 11

To a solution of 1,1,1,3,3,3-hexamethyldisilazane (HMDS) (0.22 mL, 1.07 mmol) in
THF (5 mL) was added n-BuLi (0.66 mL, 1.06 mmol) at −78 ◦C to prepare a solution of
lithium hexamethyldisilazide (LHMDS). After stirring for 30 min, the LHMDS solution
was added dropwise to a solution of 11 (92.7 mg, 0.35 mmol) in THF (5 mL) at −78 ◦C.
After stirring the reaction mixture at −78 ◦C for 1 h, the resulting mixture was warmed
to rt and stirred for another 1 h. The reaction mixture was then treated with sat. NH4Cl
aq. (20 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layers were
dried over MgSO4, filtered, and evaporated to give the crude product, which was purified
by column chromatography (CH2Cl2: MeOH = 95: 5) to afford methyl (1S,2S,5R,6R)-2,5-
dihydroxy-7-oxabicyclo[4.1.0]hept-3-ene-3-carboxylate (12) (27.4 mg, 42%). [α]D

20 −27.2
(c 0.29, MeOH); IR (liquid film) νmax 3391 (OH), 1713 (C=O), 1655 (C=C) cm−1; 1H-NMR
(CD3OD, 600 MHz, ppm) δ 3.05 (1H, ddd, J = 4.0, 2.6, 0.9, H-6), 3.54 (1H, dd, J = 4.1 2.9 Hz,
H-1), 3.76 (3H, s, COOMe), 4.49 (1H, dd, J = 4.4, 2.3 Hz, H-5), 4.58 (1H, s, OH), 4.68 (1H, dd,
J = 2.6, 1.2 Hz, H-2), 6.43 (1H, dd, J = 4.1, 2.3 Hz, H-4); 13C-NMR (CD3OD, 150 MHz, ppm)
δ 52.4 (CH3, COOMe), 55.4 (CH, C-6), 56.0 (CH, C-1), 64.1 (CH, C-2), 65.9 (CH, C-5), 131.5
(Cq, C-3), 137.8 (CH, C-4),168.0 (Cq, COOMe); HREIMS m/z calcd for C8H11O5 [M + H]+

187.0606 found 187.0604.

3.4. Synthesis of (−)-Pericoxide (7)

A solution of 1.6 M n-BuLi in hexane (0.17 mL, 0.27 mmol) was added to a solution
of HMDS (0.089 mL, 0.43 mmol) in THF (2 mL) at −78 ◦C with stirring to prepare an
LHMDS solution. After 40 min, the prepared LHMDS solution was added to a solution
of 10Br (22.1 mg, 0.085 mmol) in THF (2 mL) at −78 ◦C. After stirring for 1.5 h at −78 ◦C,
the reaction mixture was quenched with sat. NH4Cl aq. (20 mL) and extracted with
EtOAc (7 × 20 mL). The combined organic layers were dried over MgSO4, filtered, and
concentrated under reduced pressure to give the crude product, which was purified via
column chromatography (eluent; CH2Cl2:MeOH = 97:3) using neutral silica gel (DIOL
MB100–75/200, Fiji Silysia Co.) to afford (+)-1 (11.9 mg, 77%); Colorless oil; [α]D

20 −68.3 (c
0.60, MeOH); IR (film) νmax 3414 (OH), 1720 (C=O), 1651 (C=C) cm−1; 1H-NMR (CD3OD,
600 MHz, ppm) δ 3.63 (1H, ddd, J = 4.4, 2.1, 1.5 Hz, H-5), 3.81 (3H, s, COOMe), 3.97 (1H,
d, J = 4.1 Hz, H-6), 3.98 (1H, d, J = 4.4 Hz, H-4), 4.21 (1H, ddd, J = 6.2, 5.0, 2.1 Hz, H-3),
4.58 (1H, s, OH), 7.12 (1H, dd, J = 6.5, 2.4 Hz, H-2); 13C-NMR (CD3OD, 150 MHz, ppm) δ
50.1 (CH-C6), 52.8 (COOMe-C8), 58.7 (CH-C5), 66.6 (CH-C3), 68.6 (CH-C4), 132.0 (CH, C-1),
143.3 (CH, C-2), 167.3 (Cq, COOMe); HREIMS m/z calcd for C8H10O5 [M]+ 186.0528, found
186.0523.

(+)-7 (3.7 mg, 87%) was synthesized from (+)-10Br (6.2 mg, 0.023 mmol) in the same
manner. Colorless oil; [α]D

20 +65.8 (c 0.60, MeOH); 1H-NMR (CD3OD, 600 MHz, ppm) δ
3.63 (1H, ddd, J = 4.4, 2.1, 1.5 Hz, H-5), 3.81 (3H, s, COOMe), 3.96–3.98 (2H, m, H-4, H-6),
4.21 (1H, ddd, J = 6.2, 5.0, 2.1 Hz, H-3), 4.57 (1H, s, OH), 7.12 (1H, dd, J = 6.5, 2.4 Hz,
H-2); 13C-NMR (CD3OD, 150 MHz, ppm) δ 50.1 (CH-C6), 52.8 (COOMe-C8), 58.7 (CH-C5),
66.6 (CH-C3), 68.6 (CH-C4), 132.0 (CH, C-1), 143.3 (CH, C-2), 167.2 (Cq, COOMe), *some
degradation was detected during measuring the 13C-NMR spectrum; HREIMS m/z calcd
for C8H10O5 (M)+ 186.0528, found 186.0525; Literature data of (+)-7 [34]: [α]D +74 (c = 0.13,
MeOH); 1H-NMR (CD3OD, 400 MHz, ppm) δ 3.64 (1H, m, H-5), 3.81 (3H, s, COOMe), 3.96
(1H, m, H-6), 3.98 (1H, m, H-4), 4.21 (1H, m, H-3), 4.58 (1H, s, OH), 7.10 (1H, dd, J = 6.4,
2. 3 Hz, H-2); 13C-NMR (CD3OD, 100 MHz, ppm) δ 50.1 (CH, C-6), 52.8 (CH3, COOMe),
58.6 (CH, C-5), 66.4 (CH, C-3), 68.5 (CH, C-4), 131.2 (CH, C-1), 143.2 (CH-2), 167.2 (Cq, C-7);
HRESIMS m/z calcd for C8H10O5Na [M + Na]+ 209.0420, found 209.0416.
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3.5. Biological Assay

Antitumor and glucosidase inhibitory assays were performed using the same proce-
dures as those described in our previous paper [35].

4. Conclusions

The synthesis of both enantiomers of pericosine A analogs bearing F, Br, and I atoms
was achieved for the first time and their antitumor activity against P388, L1210, and HL-60
cell lines was evaluated. Although all of the synthesized compounds were moderately
active against the three types of tumor cell lines studied, significant differences between
their enantiomers and differences between the halogens, except for fluorine, were not
observed. The fluorinated derivatives showed weaker activities than the other analogs and
pericosine A.

Form glycosidase inhibitory assay, five synthesized molecules of 1 except for (+)-1F
were elucidated to exhibit α-glucosidase inhibitory activity at mM level of IC50. As well,
(−)-1Br and (+)-1I showed inhibitory activities against β-galactosidase and α-galactosidase,
respectively, at mM level of IC50.

In addition, both enantiomers of pericoxide were synthesized using 6-bromopericosine
A as a suitable synthetic precursor.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20070438/s1, Figure S1. 1H-NMR spectrum of (−)-10F in
CDCl3 (600 MHz), Figure S2. 13C-NMR spectrum of (−)-10F in CDCl3 (150 MHz); Figure S3. 1H-
NMR spectrum of (+)-10F in CDCl3 (400 MHz); Figure S4. 13C-NMR spectrum of (+)-10F in CDCl3
(100 MHz); Figure S5. 1H-NMR spectrum of (−)-1F in acetone-d6 (600 MHz); Figure S6. 13C-NMR
spectrum of (−)-1F in acetone-d6 (150 MHz); Figure S7. 1H-NMR spectrum of (+)-1F in acetone-d6
(600 MHz); Figure S10. 1H-NMR spectrum of (−)-10Br in CDCl3 (600 MHz); Figure S11. 13C-NMR
spectrum of (−)-10Br in acetone-d6 (150 MHz); Figure S12. 1H-NMR spectrum of (+)-10Br in acetone-
d6 (600 MHz); Figure S13. 13C-NMR spectrum of (+)-10Br in acetone-d6 (150 MHz); Figure S14.
1H-NMR spectrum of (−)-1Br in methanol-d4 (600 MHz); Figure S15. 13C-NMR spectrum of (−)-1Br
in methanol-d4 (150 MHz); Figure S16. 1H-NMR spectrum of (+)-1Br in methanol-d4 (600 MHz);
Figure S17. 13C-NMR spectrum of (+)-1Br in methanol-d4 (150 MHz); Figure S18. 1H-NMR spectrum
of (−)-10I in CDCl3 (600 MHz); Figure S19. 13C-NMR spectrum of (−)-10I in CDCl3 (150 MHz);
Figure S20. 1H-NMR spectrum of (+)-10I in CDCl3 (400 MHz); Figure S21. 13C-NMR spectrum
of (+)-10I in CDCl3 (100 MHz); Figure S22. 1H-NMR spectrum of (−)-1I in acetone-d6 (600 MHz);
Figure S23. 13C-NMR spectrum of (−)-1I in acetone-d6 (150 MHz); Figure S24. 1H-NMR spectrum of
(+)-1I in acetone-d6 (600 MHz); Figure S25. 13C-NMR spectrum of (+)-1I in acetone-d6 (150 MHz);
Figure S26. 1H-NMR spectrum of (−)-11 in methanol-d4 (600 MHz); Figure S27. 13C-NMR spectrum
of (−)-11 in methanol-d4 (150 MHz); Figure S28. 1H-NMR spectrum of (−)-12 in methanol-d4 (600
MHz); Figure S29. 13C-NMR spectrum of (−)-12 in methanol-d4 (150 MHz); Figure S30. HMBC
spectrum of (−)-12 in methanol-d4 (600 MHz); Figure S31. 1H-NMR spectrum of (−)-7 in methanol-d4
(600 MHz); Figure S32. 13C-NMR spectrum of (−)-7 in methanol-d4 (150 MHz); Figure S33. 1H-NMR
spectrum of (+)-7 in methanol-d4 (600 MHz); Figure S34. 13C-NMR spectrum of (+)-7 in methanol-d4
(150 MHz Table S1. Deprotection of (−)-10Br with Dowex® 50WX8-H.
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