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Abstract: There are tens of thousands of scientific papers about flavonoids and their impacts on
human health. However, despite the vast amount of energy that has been put toward studying
these compounds, a unified molecular mechanism that explains their bioactivity remains elusive.
One contributing factor to the absence of a general mechanistic explanation of their bioactivity is
the complexity of flavonoid chemistry in aqueous solutions at neutral pH. Flavonoids have acidic
protons, are redox active, and frequently auto-oxidize to produce an array of degradation products
including electrophilic quinones. Flavonoids are also known to interact with specificity and high
affinity with a variety of proteins, and there is evidence that some of these interactions may be
covalent. This review summarizes the mechanisms of flavonoid oxidation in aqueous solutions at
neutral pH and proposes the formation of protein-flavonoid adducts or flavonoid-induced protein
oxidation as putative mechanisms of flavonoid bioactivity in cells. Nucleophilic residues in proteins
may be able to form covalent bonds with flavonoid quinones; alternatively, specific amino acid
residues such as cysteine, methionine, or tyrosine in proteins could be oxidized by flavonoids. In
either case, these protein-flavonoid interactions would likely occur at specific binding sites and the
formation of these types of products could effectively explain how flavonoids modify proteins in
cells to induce downstream biochemical and cellular changes.

Keywords: flavonoids; protein adducts; quinones; quercetin; EGCG; flavonoid bioactivity; flavonoid
biological mechanisms; protein-flavonoid interactions

1. Introduction

Flavonoids are a ubiquitous and numerous group of plant secondary metabolites with
hydroxylated phenyl rings that include the flavones, catechins, and anthocyanins. A wide
variety of hydroxylation, methyoxylation, glycosylation, and oligomerization patterns
have been described for this class of compounds, and thousands of unique polyphenol
structures have been reported in the literature [1,2]. Polyphenols continue to intrigue the
scientific community due to the extensive variety of biological activities associated with
these compounds, including benefits to cardiovascular health [3], neuroprotection [4], and
cancer prevention [5,6]. Many polyphenols have been reported to possess antibacterial
activity [7], and the specific biological targets of some of these compounds have been found
to include inhibition of nucleic acid synthesis, energy metabolism, cell wall synthesis, and
fatty acid biosynthesis [7,8].

A SciFinder Scholar search on 25 June 2021 on the term “flavonoid” with the search limited
to journal records yielded ~79,000 results. The term “catechin” yielded ~36,000 results and the
term “polyphenol” yielded ~50,200 results. The vast number of peer-reviewed publications
related to these terms demonstrates the broad interest of the scientific community in this class
of compounds as well as the challenges of attempting to summarize information related to this
topic. Due to the very large number of papers related to this topic, I will not attempt to create
an exhaustive review. As far back as the year 2000, there was already sufficient material for an
excellent review to be published by Middleton et al., with more than 1000 references [9]. In

Molecules 2021, 26, 5102. https://doi.org/10.3390/molecules26165102 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5135-9898
https://doi.org/10.3390/molecules26165102
https://doi.org/10.3390/molecules26165102
https://doi.org/10.3390/molecules26165102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26165102
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26165102?type=check_update&version=1


Molecules 2021, 26, 5102 2 of 20

consideration of the large number of papers related to flavonoids published since then, I will
instead attempt to summarize the results from highly cited papers that provide new insights
into the molecular mechanisms of flavonoids in humans.

Despite the extensive body of primary scientific literature covering flavonoids, progress
has been slow towards understanding the molecular mechanisms of how these compounds
may exert biological effects in humans. The radical-scavenging activity of flavonoids,
commonly called their “antioxidant” activity, has been widely hypothesized as a mode
of action to explain the many observed biological effects of these compounds. A highly
cited review article from the year 2000 states that “[p]olyphenols exhibit a wide range of
biological effects as a consequence of their antioxidant properties” [10]. More than 20 years
later, a recent meta-analysis states that “[f]lavonoids have been hypothesized to exert bene-
ficial effects towards the cardiovascular system through their antioxidant and antiradical
action” [11]. This “antioxidant theory” in the scientific literature has persisted, despite
extensive evidence that the low bioavailability of dietary polyphenols as well as a general
absence of direct evidence of radical scavenging activity in cells makes it very unlikely that
the beneficial effects of these ubiquitous compounds is due to their so-called antioxidant
properties [12–14]. Unfortunately, papers are still being published that report the isolation
of phenolic metabolites from various plant sources and use a rationale of antioxidant activ-
ity based on radical-scavenging assays as a justification for some proposed health benefit.
However, the concentration of flavonoids and their colonic metabolites in human plasma is
around five-fold less than the concentration of endogenous radical-scavenging metabolites
such as α-tocopherol or ascorbic acid [15–17]. The majority of consumed dietary flavonoids
are absorbed from the small intestine as degradative metabolites after being metabolized
by gut microbes [16,18], which strongly supports the conclusion that dietary flavonoids
simply will not accumulate in most human tissue at sufficient concentrations for their
radical scavenging activity to be relevant.

In short, the antioxidant theory of flavonoid bioactivity needs to be retired. Responsi-
ble editors and referees should recommend rejecting new papers that attempt to invoke the
antioxidant theory as justification of performing radical-scavenging assays unless specific,
compelling evidence of this activity in vivo is presented to support such a justification.
Additional care must be taken by editors and referees to identify experiments that fail to
account for known artefacts that can arise from flavonoid studies, such as their propensity
to generate reactive oxygen species in cell culture media [19,20]. The scientific community
must not continue to be complicit in the publication of peer-reviewed studies that persist
in advancing a theory that is clearly contradicted by the majority of well-designed studies
on the subject or that propagate unsound experimental methods.

Thus, if the antioxidant theory is baseless, how can the observed bioactivity of
flavonoids be explained? Fortunately, there is an extensive body of literature to draw
from to generate alternative hypotheses. A rapidly growing body of evidence suggests
that dietary polyphenols may exert their beneficial effects in humans by modulating the
gut microbiome [21–23]. Although there are many reports of various flavonoid treatments
causing significant changes in the gut microbiome of both humans and rodents [22,24–26],
there is still no molecular-level causal explanation for these observations. Possible mecha-
nisms of flavonoid bioactivity could include growth inhibition of gut microbes [7,21,27] or
inhibition of bacterial lipid metabolism [28,29]. Establishing a molecular-level mechanism
for flavonoid biological activity in bacteria will be a dramatic step forward in determining
the effects of these compounds on human health.

There are reports that consumption of dietary flavonoids can increase blood flow in the
peripheral vascular system and that this phenomenon can cause a corresponding increase
in cerebral blood flow (reviewed in [30,31]). Flavonoids may be able to induce production
of nitric oxide in endothelial tissue, causing vasodilation and thus indirectly improving
cerebral blood flow [30,32,33]. These results demonstrate that some health benefits of
dietary flavonoid consumption may arise from secondary physiological effects rather than
direct interaction by flavonoids with cellular targets, which adds to the complexity of
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investigating flavonoid bioactivity. Although bioavailability of dietary flavonoids is very
poor, there still exists some conflicting evidence that flavonoids may be able to accumulate
in human tissues [30], thus holding open the possibility of direct effects on various human
physiological systems. However, the bulk of the evidence supports the hypothesis that
dietary flavonoids exert effects in humans primarily through their activity in the intestinal
system by either modifying commensal gut microbes or in intestinal epithelial tissue lining
the gut (Figure 1). Therefore, a new hypothesis is needed to explain the bioactivity of
flavonoids at the biochemical/molecular level within this context.
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Figure 1. A summary of the most reasonable primary routes of flavonoid bioactivity in humans. Flavonoids will exhibit
most of their bioactivity in intestinal epithelial cells and in gut microbial cells. After metabolic degradation by intestinal
microflora, microbial metabolites of flavonoids are absorbed by the intestines and excreted.

In general, flavonoids must induce cellular changes by interacting with one of the four
general categories of biomolecules—nucleic acids, proteins, lipids or carbohydrates. While
there is clear evidence that flavonoids can form covalent adducts with DNA [34,35] and induce
oxidative damage in DNA [36], I will not consider this as a plausible explanation for most of the
observed flavonoid bioactivities since it would require flavonoids to migrate through cells to a
nucleus in sufficient quantity to damage DNA. Flavonoid binding to transcription factors could
potentially increase relative flavonoid concentration in the nucleus, thus making interacting
with DNA more probable. While not impossible, this is still not the most plausible explanation
due to the lower probability of flavonoid-DNA interactions occurring and the general absence
in the literature for evidence of flavonoid-DNA interactions in vivo. The non-polar properties
of flavonoid aglycones make the interaction between lipids and flavonoids highly probable in
cells, and there are intriguing results that support flavonoid–lipid interactions as a mechanism
for inducing changes in cellular signaling and metabolism [37–39]. However, it becomes
extremely difficult to propose a mechanism that would connect flavonoid–lipid interactions
with many of the observed biological effects on proteins and cytosolic cellular components, and
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it will not be considered further in this review. I am not aware of any reports of direct flavonoid-
carbohydrate interactions connected with bioactivity, and it is difficult at this point to imagine
how this type of interaction could explain flavonoid bioactivity. The remaining and most
probable specific target for flavonoid bioactivity is through specific interactions with proteins,
and there are many studies that support the hypothesis that flavonoid–protein interactions are
a crucial component of many of the known cellular effects of flavonoids [9,40–42].

There have been multiple reports that describe the affinity and binding interactions
of some flavonoids with lipophilic carrier proteins such as β-lactoglobulin, albumin and
casein [43–51], salivary proteins [52–54], or beverage proteins [55–57], and, in most cases,
these interactions appear to be non-specific. Flavonoids are known to bind to and inhibit
many kinases (reviewed in [9,41]), paraoxonase 1 [58,59] α-amylase [60–62], α-glucosidase [63],
and furin [64], enoyl-ACP reductase [28], TrkB [65], fructose-1,6-bisphosphatase [66], and
p68 [67]. The large number of reports of protein-flavonoid interactions makes it impractical
to cite all relevant examples. Despite this extensive body of research, there is not a unified
molecular mechanism that has yet been proposed that could explain all (or at least most) of
these observed bioactivities.

Although the redox activity of flavonoids is widely believed to be relevant to their
bioactivities, it remains uncertain how this redox activity could act with specificity on so
many biological targets since radical scavenging would not be expected to target specific
proteins in most cases. I propose that the formation of protein adducts with flavonoids
and the oxidation of specific amino acid residues in proteins could provide a mechanistic
explanation for many of the cellular changes induced by flavonoids. The oxidation of
specific amino acid residues such as cysteine, methionine, tyrosine and proline has been
demonstrated to play important roles in regulation and signaling in a variety of cellular
processes [68–70], and various electrophilic quinones are known to form adducts with
proteins [71,72]. In this review, I will summarize the evidence that supports the hypothesis
that flavonoid bioactivity arises from protein-flavonoid adducts and oxidative changes
to proteins induced by flavonoids. I will describe the structures of reactive quinones of
quercetin and (−)-epigallocatechin gallate (EGCG) and use these representative flavonoids
to describe the chemical mechanisms of protein-flavonoid adduct formation or flavonoid-
induced oxidative changes in proteins as well as the analytical methods needed to detect
these protein products. This review is not intended to provide an exhaustive summary
of all papers relevant to protein-flavonoid interactions. Instead, I will use examples from
selected papers that provide useful examples of the recurring themes that occur throughout
the protein-flavonoid literature.

2. Flavonoid Chemical Structures

Flavonoids are a broad category of plant metabolites with representative compounds
found across the entire plant kingdom [73]. The number of unique chemical structures
that can be classified as flavonoids is vast, and it is estimated that more than 10,000 unique
flavonoid structures have been reported in the literature [2,74,75]. Many excellent reviews
of the chemistry of plant polyphenols are available [2,7,8,76], so only a general summary
of the most important features and representative structures will be provided in the
following paragraphs.

The general chemical structure of flavonoids is composed of two phenyl rings con-
nected by a heterocyclic ring (Figure 2). Flavonoids can be divided into a variety of
categories, with flavones and flavans being two of the most commonly studied categories.
Many flavonoids are glycosylated with one or more carbohydrates, which adds further
complexity and diversity to their chemical structures. However, flavonoid glycosides are
rapidly hydrolyzed in the human gut so the aglycone structures are expected to have the
greatest relevance to human health [77]. Quercetin is one of the most frequently studied
flavonoids because it is a major component of many different plant metabolomes, and it is
active in most in vitro and in vivo bioassays. Quercetin is a flavonol with an unsaturated
C2–C3 bond, giving it a planar structure and a conjugated pi-system that enables the
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delocalization of electrons across the B- and C-rings. The catechins are flavan-3-ols that
are especially common components of plants used for teas or as herbal remedies by many
human populations, with EGCG being one of the most frequently studied compounds.
The catechins have a saturated bond at C2–C3 which creates greater structural complexity
compared to the flavones such as quercetin since it introduces two chiral centers and a
non-planar structure. Because they have been studied so frequently and in such a broad
variety of biological contexts and because they capture most of the chemical features found
in a huge number of flavonoids, quercetin and EGCG will be used as model flavonoids
throughout this review.
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Figure 2. The core flavonoid scaffold for flavones and flavan along with the structures of the
representative flavone quercetin and the flavan-3-ol EGCG.

Quercetin is a good representative for many flavonoids since it possesses the 3′,4′-
dihydroxy B-ring (catechol), the 5,7-dihydroxy A-ring (resorcinol), unsaturated C2–C3 bond
(flavone), and the oxychromen-4-one rings (A- and C-rings). EGCG is a good representa-
tive for many flavonoids because it possesses the 3′,4′,5′-trihydroxy B-ring (pyrogallol), the
5,7-dihydroxy A-ring (resorcinol), saturated C2–C3 bond (flavan), the chromene moeity (A-
and C-rings), and the 3′,4′,5′-trihydroxy (gallate) substituent at C3. An incredible variety of
flavonoids possess some combination of these chemical features, often with small differences
in hydroxylation patterns, methoxy groups or glycosylation patterns [1,2,7,74].

It is apparent from this brief summary that there are a staggering number of unique
chemical compounds that can be placed under the general term of flavonoids. This chemical
diversity makes it difficult to imagine that a single mechanism of action could explain
the equally diverse range of biological and pharmacological activities attributed to these
compounds—and yet one property that has been consistently identified with the vast
majority of these compounds is their redox activity.

3. Chemistry of Flavonoids in Aqueous Solutions

One of the challenges of flavonoid research is actually the low barrier of entry to
performing experiments with flavonoids. Many flavonoid compounds are readily available
from a variety of commercial sources and anyone can buy a series of flavonoids and add
them to cells or enzymes and observe interesting effects. Despite this relative ease of
experimentation, however, the chemistry of flavonoids in aqueous systems is very complex
and difficult to control and can easily lead to the generation of results from cell culture or
enzyme assays that may not have real biological significance. These challenging chemical
properties include poor solubility, formation of complex protic equilibria, auto-oxidation,
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and redox cycling with other experimental components. As a result of this complexity, many
studies of flavonoid bioactivity may provide almost no insights into what may actually
happen in humans when we consume dietary flavonoids. If the scientific community is
going to make meaningful progress in understanding the physiological effects of these
ubiquitous compounds, we must all do a better job of accounting for flavonoid chemistry
in our experiments. This section will provide an overview of the known chemistry of
flavonoids in aqueous solutions at physiological pH.

Although many studies report the relative importance of the formation of anions by
deprotonation of flavonoid hydroxyl groups, there is a surprisingly wide range of pKa
values reported for these ionizable hydroxyl groups [78–80]. Just for quercetin, the first
pKa value has been reported to be as low as 3.3 and as high as 8.4 in aqueous solutions [80],
which is a 100,000-fold range! The most reliable studies agree on values for the first three
pKa’s as 8.4, 9.3, and 11.0 in aqueous solutions [78,80]. The 7-OH of the A-ring is the first
position to be deprotonated for flavones in aqueous solutions, followed by the 4′-OH and
then the 3-OH [78]. This order of relative acidity is dependent on the overall hydroxylation
pattern on the flavonoid, but, for many flavonoids, this pattern should hold true. The
formation of the anionic flavonoid is important because it is more easily oxidized than
the neutral species [78,81–83]. If the measured pKa of 8.4 for the 7-OH group is accurate,
then a mole ratio of approximately 99:1 for neutral:anion species of flavonoids with 7-
OH substituents would be expected in aqueous solutions at physiological pH (pH 7.4).
Although this ratio greatly favors the neutral species, enough anions may be present to
create interactions with other biomolecules that are distinct from the neutral species and
have meaningful biological consequences, similar to how cysteine residues (pKa 8.3) can
be deprotonated to reactive thiolates in various proteins.

It is widely understood that flavonoids are redox active and can spontaneously oxidize
in aqueous solutions. However, the specifics of flavonoid redox chemistry can be quite
complex and may be an often overlooked confounding variable in in vitro and in vivo
bioactivity experiments. There are likely some differences in redox reactivity that depends
on the unsaturation of the C2–C3 bond since the resulting pi-conjugation creates a mostly
planar molecule with the ability to delocalize electrons across the B- and C-rings. However,
despite the unique properties that depend on the C2–C3 bond structure, there appears to
be a general mechanism of oxidation that can be applied to a wide variety of flavonoids.
Supporting evidence for this mechanism is available from studies of both flavan-3-ols
(catechins) and flavones (quercetin).

In a study of a series of catechins, the authors report that the B-ring hydroxyl groups
first react with dioxygen, oxidizing the catechin to the semiquinone and reducing the
oxygen to superoxide anion radical [83]. The superoxide anion radical then reacts with
the semiquinone or another fully reduced catechin to yield hydrogen peroxide and either
another seminquinone or the fully oxidized quinone product. This observation held for
epicatechin, epigallocatechin, epicatechin gallate, and EGCG, suggesting it is a general
mechanism for flavonoids with either dihydroxy or trihydroxy rings. The reactivity of
catechins with hydrogen peroxide was observed to be essentially zero, indicating that they
do not scavenge all reactive oxygen species (ROS) from aqueous solutions but react selec-
tively with a superoxide anion radical. Hydronium was observed to quench the reaction
between catechin and superoxide, indicating an important role for the flavonoid anion in
this mechanism. Another study of the superoxide scavenging activity of catechins found
that, while almost all flavonoids examined were able to scavenge superoxide radical anions,
the flavan-3-ols with a dihydroxy substituted system had much lower scavenging activity
than either flavan-3-ols with trihydroxy substituted rings (either gallate or pyrogallol)
or flavones with dihydroxy substituted B-rings [84]. The conjugated system of flavones
such as quercetin would be expected to follow the same mechanism as the catechins and
be able to both generate and scavenge superoxide ions in aqueous solutions, just like
the catechins [85].
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Investigation of the radical scavenging mechanism of a series of flavones showed that
their anionic forms are oxidized predominantly via the sequential proton-loss electron
transfer (SPLET) mechanism while the neutral species is oxidized via a hydrogen atom
transfer (HAT)/proton coupled electron transfer (PCET) mechanism [78]. The SPLET
mechanism was found to be orders of magnitude faster than the HAT/PCET mechanism
for many of the flavones studied, with the rate enhancement being dependent on the ability
of the flavonoid to donate a proton to the solvent.

Putting the findings of [78] and [83] together suggests the following general mecha-
nism of flavonoid auto-oxidation in aqueous solutions (Figure 3). First, the flavonoid (1) is
deprotonated by the solvent, followed by transfer of an electron from the anionic phenolate
(1a) to molecular oxygen, yielding superoxide and a flavonoid semiquinone radical(1b).
The semiquinone radical will initially be located at the site of the phenolate (i.e. C7 or
C4′), but, for flavonoids with a catechol group on the B-ring, rapid charge transfer and
rearrangement will move the radical to the catechol position. The semiquinone radical
(1b) will then be oxidized by either the superoxide anion radical or another fully reduced
flavonoid to yield hydrogen peroxide and either the fully oxidized quinone (1c) product
or a semiquinone radical, respectively. There is evidence that the flavonoid radical will
undergo disproportionation [83,86], providing multiple possible routes for propagation of
the radical. The evaluation of HAT/PCET vs. SPLET mechanisms for electron transfer from
the flavonoid were performed in organic solvents with DPPH· as the radical partner [78],
so it is unclear which mechanism the second electron transfer would utilize in aqueous
solutions. Regardless of the mechanistic details that remain to be determined, this reaction
scheme is consistent with experiments using electrochemical methods that consistently
find that most common flavonoids are oxidized to quinones via a two electron, two proton
mechanism [81,82,87–89]. All of these studies provide further evidence illustrating the ne-
cessity of taking pH and flavonoid deprotonation into account when evaluating flavonoids
in in vitro or in vivo bioassays.
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In the low oxygen environment of the human intestinal tract, the oxygen-dependent
auto-oxidative pathway of flavonoids may be less relevant. An alternative pathway to
generating oxidized products of flavonoids is via enzymatic oxidation by various perox-
idases, tyrosinases or related enzymes in intestinal epithelial cells, commensal microbes
or even enzymes from dietary fruits and vegetables. In a wonderfully cogent series of
papers, Ivonne Rietjens and colleagues demonstrated that a variety of flavonoids are ox-
idized by tyrosinase and peroxidase enzymes, that the oxidized flavonoid products of
these reactions possess in vivo bioactivity and that the bioactive oxidized products are
produced in cells via enzymatic processes and can be inactivated through the formation
of flavonoid-glutathione adducts [90–95]. Glutathione reacts with the highly electrophilic
quinone methide isomers of quercetin and other flavonoids via a Michael addition; glu-
tathione adds via its sulfhydryl group to the A-ring at C6 or C8 on quercetin and to the
B-ring at C2′ or C6′ for EGCG and other pyrogallol-containing catechins [90,95] (Figure 4).
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The flavonoid-peroxidase system has been reported to produce more than 20 distinct
products [90]. This is consistent with electrochemical studies that demonstrate a kinetically
controlled production of distinct oxidative products from quercetin [88]. After initial forma-
tion of the o-quinone on the B-ring of quercetin, a zero order mechanism leads to formation
of a closed furan ring between the C- and B-rings. A first order mechanism involves nucle-
ophilic attack by water at C6′ of the oxidized o-quinone, resulting in a o-hydroxy, p-quinone
system on the B-ring; this B-ring system is predicted by the authors to be unstable and
susceptible to formation of dimers, trimers and other degradation products [88].

When glutathione is added to the flavonoid-peroxidase system, only two major products
were observed and both were glutathione adducts [90]. This indicates that essentially all of
the observed oxidation products of quercetin arise from a central intermediate that is most
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likely the quinone methide based on density functional theory (DFT) calculations [91]. The
6-glutathionyl-quercetin and 8-glutathionyl-quercetin products are also in equilibrium with
each other and equilibrate to a 55:45 ratio in aqueous solution [91], which indicates that
glutathione-flavonoid conjugates are dynamic and therefore should not be assumed to be
irreversible reaction products. There are multiple reports that demonstrate the attenuation of
flavonoid inhibitory activities of various enzymes by the addition of glutathione [64,93–96].
The reproducibility of this phenomenon indicates that the bioactivity of flavonoids in many
cases may arise from reactive quinone products of the flavonoids rather than the reduced
phenolic structures typically considered for flavonoids.

Flavonoids are also known to chelate various transition metal cations commonly
encountered in cells such as iron, copper, and others and can generate ROS such as H2O2
and flavonoid quinone products [97,98]. Halliwell and colleagues demonstrated that
EGCG and other flavonoids can rapidly generate cytotoxic concentrations of H2O2 in
cell culture media, and it is likely that this phenomenon depends on flavonoid-metal ion
complexes [20,99]. This propensity of flavonoids to be oxidized by metal ions can be
another confounding variable when investigating flavonoid biological mechanisms and
should be accounted for through the use of careful controls or various ROS scavenging
reagents or other methods.

It is troubling that so few papers related to flavonoid bioactivity appear to take these
chemical properties of flavonoids under physiological conditions into account. This may
be a major contributing factor to the relatively poor predictive utility of many existing
flavonoid SAR models. If meaningful progress is to be made in identifying the chemical
mechanisms of flavonoid bioactivities, then the scientific community must do a better job
of accounting for their known chemistry and reactivity at physiological pH.

4. Flavonoids May Exert Bioactivity by Forming Reversible Protein Adducts

Any plausible hypothesis for flavonoid bioactivity needs to account for the observed
specificity of flavonoid binding to various proteins. It has been known for more than
20 years that flavonoids are potent inhibitors of many kinases and other enzymes [9,41]. In-
vestigations using 14C radiolabeled quercetin demonstrated extensive, irreversible protein-
quercetin binding in cultured cells, and quercetin exhibited preferential binding to specific
proteins [100]. Although the authors interpreted their results as evidence of covalent bind-
ing of the quercetin to specific proteins, no chemical or analytical evidence was presented
to support that conclusion and none of the protein targets of quercetin were identified.
Regardless, the report provides compelling evidence that quercetin (and probably other
flavonoids as well) does bind with high affinity to specific proteins in cells. Human serum
albumin has been proposed as a plausible protein target for flavonoids since it functions
to bind and transport non-polar molecules through the circulatory system. Several stud-
ies have demonstrated that quercetin binds with specificity to both human and bovine
serum albumin [51,101]. Another study showed that one or more products of oxidative
degradation of quercetin are probably the molecules that bind to albumin since maximum
binding to albumin was observed after oxidizing quercetin with peroxidase-H2O2, but
this binding was completely eliminated when GSH was added to the mixture [50]. This
result suggests that oxidation products of quercetin bind to albumin but not GSH-quercetin
conjugates. Cys34 of human serum albumin is known to participate in ligand-binding
interactions and to be a site of post-translational modification [102], so the probability of
this residue forming a flavonoid adduct seems high. Considering the low bioavailability of
flavonoids in plasma, flavonoid binding to albumin may not be biologically relevant, but it
does provide further evidence that flavonoid–protein interactions often have specificity
that is directly dependent on the redox activity of the flavonoids.

That activation by flavonoids of the electrophile response element (EpRE)-mediated
gene expression pathway in cell culture was shown to be attenuated by glutathioine-
trapping of flavonoid quinones [93–95]. The EpRE pathway is activated by translocation of
the Nrf2 transcription factor to the nucleus; under normal conditions, Nrf2 is continually
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ubiquinated and degraded due to interactions with the cytoplasmic protein Keap1 which
recruit a ubiquitin E3 ligase and promote Nrf2 polyubiquitination [103,104]. Modification
of key cysteine residues in Keap1 by ROS or electrophiles inhibit its ability to recruit the E3
ubiqutin ligase, which then allows Nrf2 to increase in concentration and promote expression
of EpRE-related genes [103,104]. The EpRE inducement activity of flavonoids increased
when glutathione (GSH) levels decreased and decreased when GSH levels increased,
strongly supporting the hypothesis that flavonoid quinones activate EpRE-mediated gene
expression by modifying protein targets [93,95]. Since Keap1 is known to be regulated by
modification of cysteine residues, formation of Keap1 Cys-flavonoid adducts is a plausible
mechanism for the activation of EpRE-mediated gene expression despite the current lack
of direct experimental evidence.

Other important examples of protein-flavonoid interactions are the activity of
7,8-dihydroxyflavone acting as a specific and high affinity agonist of the BDNF recep-
tor TrkB [65], inhibition of amylase and glucosidase by flavonoids [60–63,105], inhibition of
paraoxonase 1 [58,59], and fructose-1,6-bisphosphatase [66] by flavonoids. This list is not
intended to be exhaustive and certainly leaves out other relevant studies. The non-specific
binding of flavonoids to salivary proteins has been well documented [52–54] and illustrates
by contradiction the unique properties of flavonoid–protein interactions that are specific.

A common theme in all these studies is the difficulty of establishing meaningful
structure–activity relationships based on non-covalent interactions. Although many of
these reports do claim to identify SAR patterns, review of the identified structural features
inevitably leaves the reader perplexed as it appears that, in most cases, the presence or
absence of a single hydroxyl group dramatically alters the described activity to an extent
that is simply not plausible based on typical non-covalent interactions observed between
proteins and ligands. In at least one case, the development of a novel inhibitor intended to
mimic the flavonoid scaffold yielded an inhibitory ligand that actually possessed a different
binding mode than the flavonoids, despite the attempt to mimic its structural features [106].
The pattern of strange or inconsistent SARs throughout these reports strongly suggests
that an alternative explanation to non-covalent protein-flavonoid interactions is needed.

As summarized previously in this review, many flavonoids are readily converted to
reactive quinone methides in cells [40,90–92]. Therefore, it is important to consider the
potential of these quinone methides and other reactive flavonoid redox products for their
potential to act on cellular targets. Many examples exist of the formation of covalent protein
adducts with quinones (reviewed by Chen and Li [71]), including the proteins cytochrome
c [72], ribonuclease A [107], and neuroglobin [108]. There are even specific examples of the
identification of covalent protein adducts with pyrogallol-containing catechins [109,110],
although the detailed chemical features of those adducts were not elucidated. Altogether,
this evidence strongly supports the hypothesis that flavonoids can modify protein structure
and activity through the formation of covalent adducts. Modification of activity could
occur by disrupting protein–protein interactions, as was predicted for cytochrome c [72], or
by modifying active site residues as in the case of glyceraldehyde-3-phosphate dehydro-
genase [109]. Nucleophilic amino acids such as cysteine and lysine are the most obvious
candidates as sites for the formation of flavonoid adducts since the quinone auto-oxidation
products of flavonoids will be strongly electrophilic. However, Fisher et al., described
evidence for the formation of glutamate adducts as well through the formation of an
ene-diol intermediate on the glutamate residue [72], which indicates that even weaker
nucleophiles such as glutamate or aspartate may be able to form flavonoid adducts. Other
amino acids with nucleophilic groups like tyrosine or histidine could also potentially be
sites for flavonoid adduct formation. The idea that natural product derived electrophilic
quinones could induce cellular bioactivity is not completely novel [71,111–113], but it
has not yet been explicitly applied to flavonoids or gained widespread acceptance in the
scientific literature.

Reviewing X-ray crystal structures of protein–flavonoid complexes also supports the
adduct hypothesis (Figure 5). A variety of flavonoids bind in the ATP-binding site of
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kinases and compete with ATP [106,114,115]. It is noteworthy that these crystal structures
failed to reveal any clear structure–activity relationships that are consistent across a wide
variety of flavonoid structures and some studies reported multiple, closely-related binding
poses for the flavonoid ligands. In the structures of inositol polyphosphate kinases, there
are lysine, glutamate, and tyrosine residues that either appear to directly interact with
flavonoid ligands or are in very close proximity to the binding site [106,115]. The crystal
structure of the tyrosine kinase Hck with quercetin also has lysine in close proximity to
the ligand [114]. In the X-ray crystal structure of the enzyme prostaglandin F synthase
with rutin (a glycosylated derivative of quercetin), there are tyrosine, histidine, and lysine
residues directly interacting with or in very close proximity to the catechol ring of the
flavonoid [116]. Considering the reactivity of the 6- and 8- positions of the quinone methide
isomers of quercetin, all of these interactions would make the formation of covalent adducts
plausible. It is also important to note that while these structures demonstrate apparent
binding sites for quercetin it could be possible in some cases that formation of adducts at
other residue outside of these observed binding locations could also induce the inhibitory
activity observed in in vitro assays.
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form adducts or be oxidized by flavonoids are labeled. (A) the tyrosine kinase Hck (green) with quercetin (gray) (PDB
2HCK). The distance from K295 to the catechol group of quercetin is within a reasonable distance for electron transfer; (B)
human inositol polyphosphate multikinase (IMPK; cyan) with quercetin (gray) (PDB 6M89); (C) prostaglandin F synthase
(magenta) with NADPH (cyan) and the quercetin-3-O-glycoside rutin (gray). In all three images, water molecules are shown
as red asterisks.

Further evidence supporting the hypothesis that the inhibitory activity of flavonoids in
these enzymes arises from reactivity with flavonoid quinones is that the proposed structure–
activity relationship for flavonoids in the inositol kinase provides weak explanatory power
for the observed changes in inhibitory activity. For example, there is a more than 10-fold
difference in the reported inhibitory activity of quercetin and eriodictyol, despite the only
structural differences being the absence of the 3-OH group in eriodictyol and the saturation
of the C2–C3 bond [115] (Figure 5). These structural differences between quercetin and
eriodictyol seem unlikely to cause the observed change in IC50 since the B-ring of quercetin
has no observable direct interactions with side chains in the crystal structure. This pattern
of a large change in inhibitory activity from only a small change in structure is common for
the flavonoids and indicates that, in many cases, the inhibitory activity cannot be explained
solely by non-covalent interactions with the protein (Figure 6). The loss of planarity of
the molecule when the C2–C3 bond is saturated is often invoked as an explanation for
some of these dramatic changes in inhibitor activity [62,63], but the loss of planarity seems
likely to have more of an impact on the ability of the molecule to form reactive quinones
due to differences in pi-conjugation patterns than it will on non-covalent interactions
with proteins.
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An important consideration in regards to this protein-flavonoid adduct hypothesis is
the potential reversibility of these interactions. In studies where the authors concluded that
flavonoids formed covalent bonds with proteins, the authors also described these interac-
tions as irreversible [50,67,100,109,110]. However, in each case, the methods described do
not provide sufficient evidence for true irreversibility; for example, none of these reports
include attempts to wash or dialyze off the flavonoids from the protein targets in their meth-
ods. The glutathionyl–quercetin adducts described by Boersma et al., were shown to be in
equilibrium with each other, indicating that formation of the thioether bond is reversible in
aqueous solution at neutral pH [91]. This suggests that protein–flavonoid adducts may be
reversible under cellular conditions despite being covalent, which would add an additional
layer of complexity to designing experiments to evaluate these potential interactions.

Many studies have demonstrated that flavonoids are extensively metabolized after
absorption in the intestine (reviewed in [77]). It is also firmly established that gut mi-
crobes degrade flavonoids into a variety of metabolic products that are absorbed into
the blood stream and eventually excreted [15,16]. These products include sulfated and
glucuronidated flavonoids from enzymes in human enterocytes as well as a variety of
microbial products with hydroxylated phenyl groups. These metabolic products will have
different physical and chemical properties from their flavonoid parents, but it is possible
that, in some cases, they could still be oxidized to electrophilic quinones. For example, the
major microbial flavonoid degradation product 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone
(3,4-diHPV) [15] still possesses a catechol group and therefore seems likely to be readily
oxidized to a quinone. Because of the metabolic transformations that occur after passage
of absorbed flavonoid from intestinal epithelium into the circulatory system, it seems
probable that most of the flavonoid bioactivity will occur in these intestinal cells rather
than in other tissues since the bulk of absorbed flavonoid metabolites are eventually ex-
creted [16]. However, further studies are needed to test the adduct hypothesis on these
flavonoid metabolites.

Investigations of the protein adductome are still in a relatively early stage, and yet
they provide a foundation of methods (mostly using LC-MS/MS) that could be used
for the identification and characterization of flavonoid–protein adducts [71,72,117–119].
LC-MS/MS methods have already been used to identify protein–quinone adducts by
examination and interpretation of fragmentation patterns in the spectra [71,72,120]. Protein–
flavonoid adducts could be identified by analyzing tryptic digests of flavonoid–protein
mixtures and then using established proteomics’ methodologies to identify peptides with
mass shifts characteristic for a specific flavonoid. Strongly nucleophilic residues such
as cysteine and lysine are probably the most reasonable locations to initially search for
these types of adducts in proteins, but other residues such as tyrosine, histidine, and
even glutamate may also act as adduct-forming sites. These adducts could be detected by
searching a data set from LC-MS/MS analysis of a tryptic digest of quercetin treated protein.
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Quercetin adducts would have two probable characteristic mass shifts, either a reduced
quercetin adduct with a monoisotopic mass of 302.0427 Da or a quercetin quinone adduct
with a monoisotopic mass of 300.0270 Da (Figure 7). EGCG would be expected to yield
adducts with monoisotopic masses of 458.0849 Da for the reduced species and 456.0693 Da
for the oxidized quinone. Detailed analytical characterization of neutral loss species and
diagnostic ions could be used to make identification of these types of adducts definitive.
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Figure 7. Proposed reaction scheme of nucleophilic protein residues with electrophilic flavonoid
quinones. Expected characteristic mass shifts are shown for the quercetin quinone (top) and reduced
quercetin (bottom).

An interesting example of the identification of protein-electrophile adducts is from the
work of Richard van Breemen and colleagues who demonstrated that phenolic constituents
from various plant sources form covalent adducts with cysteine residues in Keap 1 [111,121,122].
Although the electrophiles identified in their studies were chalcones and similar compounds
rather than flavonoids, their work provides validation of the general approach of using tandem
mass spectrometry to identify protein–electrophile adducts. They reported that, although
Keap1 has 27 cysteine residues that may be able to form adducts with electrophiles, these
residues do not react equally and Cys151 is preferentially alkylated over the other cysteine
residues [121]. They also demonstrated the use of β-mercaptoethanol as a trapping reagent
to identify reversible protein–electrophile adducts in cases where the electrophile dissociates
from the protein too quickly for direct detection by mass spectrometry [122]. These results fit
well with reports that some quinone electrophiles exhibit selectivity in forming adducts with
specific sites on proteins rather than reacting equivalently with all nucleophilic residues [72,120]
and that quercetin-glutathione adducts are reversible in aqueous solutions [91]. In all of
these examples, the interactions between the electrophile and protein were covalent, further
supporting the hypothesis that protein-flavonoid adducts may induce reversible biochemical
changes even with the formation of covalent bonds.

5. Reactions and Mechanisms of Protein Oxidation

Like the other primary classes of biomolecules found in living cells (lipids, carbohy-
drates and nucleic acids), proteins can be oxidized, creating chemical changes that often
directly impact their functions [68,69,123,124]. Protein oxidation was extensively studied
in the 1990s in relation to aging and many high quality and highly cited review articles are
available that describe the chemistry of amino acid oxidation in proteins as well as many
of the biological consequences of these oxidations [13,125–127]. Because of this history, the
fundamental concepts surrounding protein oxidation are relatively well understood. It is
known that, while many different amino acids are susceptible to oxidation in proteins, cys-
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teine, methionine, and tyrosine are much more frequently oxidized than other amino acid
residues [68,128]. These residues can be oxidized by a variety of ROS and reactive nitrogen
species (RNS), and, since it is well established that flavonoids can be disproportionate in
aqueous solutions and form various ROS, it is plausible that flavonoids could promote the
oxidation of specific residues in proteins and thus modify their functional properties as
well. The metal-chelating properties of flavonoids could also contribute to the oxidation
of protein residues either indirectly by generating ROS or through direct electron transfer
processes at specific binding sites on a protein.

Cysteines are the most readily oxidized amino acids in proteins, a property that
is often utilized as a regulatory feature of many proteins and cell signaling pathways.
Cysteine disulfides are perhaps the most frequently cited example of cysteine oxidation
products, but cysteine sulfinic acid (Cys-SOOH) is also a frequent oxidation product of
cysteine and is a reversible post-translational modification that is known to regulate a
variety of cell signaling processes [129,130]. As described above, it is known that specific
signaling pathways such as the EpRE-mediated response can be activated through specific
cysteine residues on Keap1 [103,104]. Although the formation of protein-flavonoid adducts
is one possible mechanism of flavonoid activation of this pathway, it is also possible that
flavonoids could directly oxidize or reduce these residues to induce the structural changes
that lead to activation of the of signal pathway.

Methionine residues are also often oxidized to methionine sulfoxide [131]. Oxidation
of methionine is a common enough occurrence that cells possess methionine sulfoxide
reductase (MSR) enzymes to reverse this oxidative transformation [69,131]. MSRs provide
important protection for cells against changes to protein structures that occur when methio-
nine is oxidized and enable cells to use methionine oxidation as a switch to regulate specific
signaling processes [132]. At the biochemical level, it is easy to imagine how conversion of a
non-polar methionine residue to an amino acid with a polar, hydrogen-bond acceptor func-
tional group could have dramatic consequences on the folding and function of a protein.
There is also evidence demonstrating that reagents can oxidize specific methionine residues
based on their steric interactions with a protein [128], which again suggests a possible
mechanism for flavonoids to change protein structure and function by promoting oxidative
changes to specific amino acid residues. If a flavonoid were to oxidize a methionine residue
in a way that significantly changed protein activity, this change could be reversed through
the activity of MSRs, thus creating a reversible mechanism of flavonoid bioactivity in cells.

Similar arguments could be made for the potential impact flavonoids could have on
key tyrosine, lysine, and other residues in proteins. As described above, there are water
molecules interacting with tyrosine and the flavonoid ligand in the inositol polyphosphate
multikinase crystal structure [115] and in the Hck crystal structure [114]; the presence of
water adjacent to tyrosine and lysine suggests that water could participate in the exchange
of electrons and hydrogen between these residues and a flavonoid ligand. Considering the
many examples described above of flavonoids binding to proteins in close proximity to
these types of residues in the catalytic sites of different enzymes, it is again highly plausible
that these compounds could exert inhibitory activity in enzymes by oxidizing specific
residues. As with the identification of protein-flavonoid adducts, mass spectrometry is
likely the most suitable method for searching for flavonoid-induced oxidative changes
in proteins. Fortunately, there are many existing MS-based analytical methods for study-
ing protein oxidation, and these could easily be adapted for studying protein-flavonoid
interactions [133–137]. Tandem mass spectra analysis software such as SEQUEST [138]
or MS Amanda [139] can be used to identify protein oxidation events in peptides. With
appropriate use of isotopic labeling or using a label-free quantitation approach, the relative
quantity of specific amino acids that might be oxidized through protein-flavonoid binding
could be determined.
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6. Summary and Conclusions

The vast number of papers related to flavonoid chemistry and bioactivity is a testa-
ment to the enduring interest these compounds hold in the imagination of the scientific
community. However, it is this same enduring interest that creates a huge amount of noise
in the literature and makes it difficult to find the much smaller number of papers that are
advancing our understanding of flavonoid bioactivity. Despite this challenge, it is clear
that progress is slowly being made. Careful design of studies and experiments to account
for redox activity of flavonoids and their reactive quinone intermediates is revealing that
these compounds can induce changes at specific sites on proteins that can explain the
observed bioactivity. The following suggestions may provide useful guidance to improve
mechanistic studies of flavonoid bioactivity:

1. Rigorously account for the various redox properties and reactive intermediates of
flavonoids in experiments using analytical methods such as NMR or chemical addi-
tives such as glutathione and ascorbic acid;

2. Test precise hypotheses about protein-flavonoid interactions at specific amino
acid residues;

3. Look for alternative interpretations of experimental results that account for protein-
flavonoid interactions and go beyond the traditional paradigm of simple, non-
covalent binding.

4. Avoid hypothesis or experiments that invoke the radical scavenging activity of
flavonoids as a mechanistic explanation for observed bioactivity.

These suggestions are not the only approach to improving flavonoid bioactivity
studies, but the widespread adoption of these or similar practices would go a long way
toward facilitating new discoveries in the field.

I am confident that many exciting discoveries will be made related to mechanisms of
flavonoid bioactivity in the near future. Whether it is the identification of protein-flavonoid
adducts, flavonoid-induced protein oxidation, the bioactivity of previously unstudied
products of flavonoid metabolism by gut microbes, or other mechanisms that have yet
to be discovered, opportunities for progress abound. Flavonoid bioactivity studies will
continue to be a challenging field to work in due to the complexities of flavonoid chemistry
in aqueous systems, but the rewards will be well worth the effort. Beyond the knowledge
gained of how flavonoids directly impact human health, there are additional benefits to
be gained from identifying specific mechanisms of flavonoid–protein interactions. Novel
systems for modifying protein activity may be gained by identifying previously known
regulatory mechanisms that depend on specific amino acid residues. In light of the poor
bioavailability of flavonoids and the fact that as much as 70% of dietary flavonoids may be
metabolically degraded by gut microbes prior to absorption by intestinal endothelial cells,
it seems that flavonoids have very little potential as direct therapeutic agents [16,18,77],
but flavonoids can continue to act as useful probes of new biochemistry. It seems very safe
to predict that many new and exciting discoveries are just around the corner.
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