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Interferon-γ (IFNγ) plays various roles in the pathogenesis of HIV/AIDS. In an HIV-1 infected
individual, the production of IFNγ is detected as early as the acute phase and continually
detected throughout the course of infection. Initially produced to clear the primary infec-
tion, IFNγ together with other inflammatory cytokines are involved in establishing a chronic
immune activation that exacerbates clinical diseases associated with AIDS. Unlike Type 1
IFNs, IFNγ has no direct antiviral activity against HIV-1 in primary cultures, as supported
by the in vivo findings of IFNγ therapy in infected subjects. Results from both in vitro and
ex vivo studies show that IFNγ can instead enhance HIV-1 replication and its associated
diseases, and therapies aimed at decreasing its production are under consideration. On
the other hand, IFNγ has been shown to enhance cytotoxic T lymphocytes and NK cell
activities against HIV-1 infected cells. These activities are important in controlling HIV-1
replication in an individual and will most likely play a role in the prophylaxis of an effective
vaccine against HIV-1. Additionally, IFNγ has been used in combination with HIV-1 vac-
cine to augment antiviral immunity. Technological advancements have focused on using
IFNγ as a biological marker to analyze the type(s) of immunity generated by candidate
HIV vaccines and the levels of immunity restored by anti-retroviral drug therapies or novel
immunotherapies. Hence, in addition to its valuable ancillary role as a biological marker for
the development of effective HIV-1 prophylactic and therapeutic strategies, IFNγ has a vital
role in promoting the pathogenesis of HIV.
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INTERFERON-γ IN THE PATHOGENESIS OF HIV-1
Interferon-γ (IFNγ) is a Type II interferon that is pivotal in the
regulation of the host immune response against viral and intra-
cellular bacterial pathogens. The effects of IFNγ are broad and
far-reaching, exhibiting polyfunctional effects on immune activa-
tion, proinflammatory responses, and immune modulation. High
levels of IFNγ are secreted by Type 1 T helper cells (Th1 cells),
CD8+ cytotoxic T lymphocytes (CD8+ CTLs), and NK cells dur-
ing active infection (1). IFNγ has a major effect on the regulation
of antigen presentation by macrophages and dendritic cells, and
in induction of class switching of B cells (2, 3). As a proin-
flammatory cytokine IFNγ directly activates phagocytic cells and
stimulates oxidative burst and the release of degradative enzymes,
thereby supporting the host defense responses against intracellular
pathogens (4). IFNγ also induces the production of proinflamma-
tory cytokines and chemokines on endothelial cells, epithelial cells,
and fibroblasts. Focal release of IFNγ results in vasodilation and
upregulation of adhesion molecules, promoting diapedesis of neu-
trophils, and macrophages to the site of inflammation. In addition
to upregulation of innate defense mechanisms, IFNγ is also pivotal
in immune modulation. Moreover, IFNγ upregulates the expres-
sion of MHC-I and -II molecules, activates antigen presenting
cells and induces macrophage maturation toward a proinflam-
matory phenotype (4, 5). IFNγ also works synergistically with
other cytokines such as IL-2 and -4 to balance the T helper subsets

Th1/Th2, regulating the cytotoxic versus humoral T cell immune
response (6). It is this integral part in the immune regulation and
proinflammatory antiviral response that has made IFNγ an attrac-
tive biomarker to evaluate the immune competence and antiviral
response in HIV-1 patients.

IFNγ EXPRESSION IN SERONEGATIVE INFANTS BREASTFED BY HIV-1
POSITIVE MOTHERS
It is estimated that 20–45% of infants born to HIV positive moth-
ers become HIV positive in the perinatal period (7, 8). Of these
infants, 25–35% infected within the first year of life acquire the
disease through breast feeding (7). Although this patient subset
represents individuals with naïve and underdeveloped immune
systems, multiple studies have demonstrated competent HIV-1
specific IFNγ responses in infants <1 year of age (7–11). Legrand
et al. detected HIV-1 specific IFNγ responses generated specifically
from CD8+ T cell subsets, demonstrating the ability of this naïve
immune system to develop an antigen-specific T cell response
(11). In a Nairobi trial of more than 200 breast fed infants born
to HIV-1 positive (HIV+) mothers, more than half of exposed
infants remained seronegative for the first year of life (8). The
IFNγ response in these exposed but uninfected infants was sig-
nificantly increased compared with infected cohorts, revealing a
positive correlation of increased IFNγ response with those infants
that remained HIV-1 seronegative up to 1 year of age (Table 1) (8).
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Table 1 | Predictive value of IFNγ expression.

Disease status Age HIV-specific IFNγ expression Predictive value of IFNγ expression Reference

Highly exposed, seronegative Breastfed

infant

Elevated, transient Positive correlation with seronegative status (8)

Highly exposed, seronegative Adult Highly elevated No correlation to rate of seroconversion (12)

Infected Infant Elevated, attenuated

compared to adults

No correlation with HIV load set points or mortality (7, 8)

Acute Adult Elevated No correlation with HIV load set point or disease progression (13)

Chronic, non-progressive Adult Persistently elevated No correlation with stage or chronicity of clinical disease (14–16)

Chronic, progressive Adult Persistently elevated No correlation with stage or chronicity of clinical disease (14–16)

Although there was a significant increase in IFNγ expression in the
exposed/uninfected infants, IFNγ levels were moderate and often
cyclical to transient with only 12–22% of them having detectable
IFNγ at any given time point (8). This suggests that prolonged,
repeated exposure to HIV-1 through breast feeding was a signif-
icant factor in inducing and maintaining an IFNγ response (8,
9). Highly exposed, persistently seronegative sex workers demon-
strate high levels of HIV-1 specific IFNγ responses in CD8+ CTLs
(Table 1) (12). Individuals within this cohort who had a 2-month
or greater break in sex work were 6.5 times more likely to serocon-
vert, suggesting a significant decrease in HIV-1 antigen-specific
response resulting from a gap in prolonged and repeated antigen
exposure (12).

IFNγ EXPRESSION IN HIV-1 INFECTED NEONATES AND INFANTS
Although the naïve state of the neonatal and infant immune system
is a concern in HIV-1 exposure, HIV-1 specific CTL responses have
been reported in both exposed and infected infants (7, 8, 10, 11).
HIV-1 infected infants <1 year of age with a detectable circulat-
ing viral load mount a substantial and sustained antigen-specific
immune response. However, the magnitude of their response is
attenuated as compared with adults (8). It is theorized that this
attenuated response in infected infants may be attributed to an
overall decrease in IFNγ producing cells, a suppression of the Th1
response, underdevelopment of the CD4+ T cell repertoire, or
immaturity of antigen processing related to age (10). Although a
reduction of the number of IFNγ producing cells correlates with a
decrease in the overall CD4+ counts in infected infants a twofold
increase in HIV-1 specific IFNγ response was detected in infected
infants in the first year of life (10). This increase not only demon-
strates a continued expression of IFNγ in infected infants, but
also showed a significant trend toward an increased immunologic
response when limited to those breastfed infants surviving 1 year
or more (10). Even though an increased IFNγ response and HIV-1
specific CTL can be detected in HIV-1 infected infants, there is
no correlation between the presence of antigen-specific CTL or
IFNγ response to reduction in peak viral load, viral steady state,
or incidence of mortality in infected infants (Table 1) (10). There-
fore, this positive trend likely reflects the immunologic stimulation
attributed to continued and prolonged exposure to HIV-1 rather
than a sustained response to initial infection.

IFNγ EXPRESSION IN ACUTE AND CHRONIC HIV-1 INFECTION
Throughout the acute stage of HIV-1 infection, IFNγ levels in
infected adults steadily increase, with a peak approximately 20–
24 days post-infection (Table 1) (13). In chronic, stable disease,
IFNγ levels decline to a steady state that is often equivalent to
healthy controls (17). Although there is a predictable elevated
trend in overall IFNγ expression during HIV-1 clinical disease, no
significant difference has been reported in HIV-1 specific IFNγ

response of the CTLs in both progressor and long-term non-
progressor patients with chronic disease (17). Although overall
expression of IFNγ by CD8+ CTLs does not correlate to stage
or chronicity of clinical disease, significantly larger numbers of
HIV-1 specific CTLs are maintained in long-term non-progressors
(18, 19). There is a significant trend of steady increase of IFNγ

levels in chronic, progressive disease however, there is marked
patient to patient variability in overall expression of IFNγ with no
demonstrable correlation between IFNγ expression and viral load,
viral set point, viral clearance, or chronicity (14–16) (Table 1).
In a cross-sectional study performed by Wantanabe et al. (20),
proinflammatory cytokines TNF-alpha, IL-6, IL-10, IL-18, and IL-
7 levels had a significant correlation with CD4 count in HIV+

patients, but IFNγ levels were often continuously elevated and
variable between patients with no significant correlation to pro-
gressors and long-term non-progressors in chronically infected
patients (20). Several theories exist as to why IFNγ response does
not correlate with disease progression and largely center on the
polyfunctional and proinflammatory effects of IFNγ (16). It has
been suggested that cytokine expression and immunologic profiles
in HIV+ patients are more proinflammatory than immunoregula-
tory when compared to uninfected but exposed controls (21). It is
also likely that HIV-1 infection results in modification of antigen
presentation in macrophages and dendritic cell lines, resulting in
anergy of HIV-1 specific CD4+ and CD8+ T cells (22). Another
theory suggests diminished response to IFNγ in target populations
may alter immunomodulation of Th1/Th2 response through the
production of synergistic (IL-2, TNFα) or inhibitory (TGFβ, IL-
10, IL-13) cytokines (16). A recent study evaluated a combined
proinflammatory and immunomodulatory cytokine panel includ-
ing IFNγ to predict viral load set point 12 months after infection
(23). In the combined panel, IFNγ, IL-12p40/70, IL-7, and IL-15
levels predicted 66% of viral set point variation in acute phase
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patients (23). Further studies are required to evaluate the predic-
tive value of this panel on morbidity and progression of patients
with chronic disease. In addition to the polyfunctional effects of
IFNγ, and due to the marked complexity of the antiviral response,
it is likely that monitoring of HIV-1 patients by a proinflammatory
cytokine panel rather than relying on a single cytokine will better
predict viral load set point and progression of clinical disease.

IFNγ IN THERAPY AGAINST HIV/AIDS
Many studies have been performed to determine the roles that
IFNγ plays in anti-HIV therapy. Initially, clinical studies deter-
mined that IFNγ can either hinder or augment the pathogenesis
of HIV-1. The latter observations raised a major concern about the
use of IFNγ in HIV-1 therapy. Concomitantly, a number of in vitro
studies tested the anti-HIV activity of IFNγ on HIV-1 infection but
with conflicting results. Subsequently, a small number of clinical
trials investigated whether IFNγ has therapeutic effects against
HIV-1 in HIV+ subjects. With the growing understanding of
the roles that cytokines play in infection and disease progression,
cytokines including IFNγ have been measured to assess the effi-
cacy of anti-retroviral therapy (ART). ART has greatly improved
the quality of life and the lifespan of the HIV-infected subjects
but does not substantially restore the immune system destroyed
by HIV-1. Consequently, IFNγ and cytokines which induce or
enhance IFNγ activity have been considered for therapy to restore
the immune system in particular T cell number and function. The
opposing or conflicting effects of IFNγ on HIV-1 pathogenesis
and immune function have complicated the role that IFNγ plays
on anti-HIV therapy.

IFN ANTIVIRAL ACTIVITY
Interferons were originally discovered, named, and characterized
based on their ability to inhibit viral replication (24). These solu-
ble factors are classified as Type I and II IFNs with IFNγ being the
sole representative of the Type II IFN family (25, 26). Although
both Type I and II IFNs can induce an antiviral host response,
they differ by both antigenic induction, receptor specificity, and
cell expression. While Type I IFNs are largely induced by viral
infection of host cells, IFNγ is induced by more generalized anti-
genic and mitogenic stimulation (25). Type I IFNs are secreted at
low levels by almost all cell types, however are primarily secreted
by hematopoietic cells (IFNα, IFNω) and fibroblasts (IFNβ) (26).
IFNγ is primarily produced by CD4+ and CD8+ T cells as well as
NK cells with more recent reports of low level expression in NKT
cell and professional antigen presenting cells (26). Both Type I
and II IFNs induce a wide range of proteins with activity targeting
different stages of viral replication. However, IFNγ upregulates
MHC-I on the cell surface, which increases antigenic recogni-
tion of intracellular pathogens by CTLs. In addition, only IFNγ

can upregulate the MHC-II pathway, supporting antigen-specific
activation of CD4+ T cells (25, 26).

There are a number of IFN-induced proteins and gene products
that confer antiviral activity. The first of these is dsRNA-regulated
protein kinase (PKR) which is a serine/threonine kinase found
predominantly in the cytoplasm and associated with ribosomes.
PKR is activated by dsRNA and inhibits the synthesis of viral pro-
teins through phosphorylation of eukaryotic translation initiation

factor-2 (eIF-2). In addition to antiviral activity, PKR also plays a
role in modulation of cell proliferation and induction of apoptosis
(25, 26). The dsRNA-specific adenosine deaminase (ADAR), cat-
alyzes the deamination of adenosine to inosine, resulting “editing”
or mistranslation of the viral sequence. Mistranslation of gene
products can lead to the production of non-functional viral pro-
teins. The 2′,5′-oligoadenylate synthetase (OAS) in combination
with RNase L is activated by dsRNA during viral infection and
induces degradation of RNA. The protein Mx GTPases, a super-
family of dyamin-like GTPases, associate with viral protein com-
plexes to impair transport of viral nucleocapsids into the nucleus
of the host cell, preventing transcription. Type 1 IFN-regulated
gene expression of Mx1 and CD317 may be involved in control
of HIV neurovirulence (27). Although Mx GTPases are induced
by Type I IFNs but not by Type II IFNγ (25), other classes of
GTPases are induced by IFNγ allowing antiviral targeting of GTP
by other mechanisms (26). More recent findings on IFN-induced
tetherin/BST-2, an antagonist of HIV Vpr, may be important in
prevention/control of HIV infection via innate immunity (28).

Several IFN-inducible mechanisms are involved in host
response and immune evasion of HIV. The expression of HIV
Trans-activator of transcription (Tat) can either negatively or pos-
itively affect IFN-induced PKR in regulating HIV-1 infection. Tat
can prevent autophosphorylation of PKR and competes with eIF-
2 while upregulating NF-κB to promote transcription (25). IFN
response/regulatory factors (IRFs) compete with the binding site
of HIV’s LTR promoter and suppress viral transcription (29). Both
Type I and II IFNs induce PKR, OAS, and ADAR, however there
is a significant difference in the sensitivity to Type I and II IFNs
to HIV in PBMC, T cells, and macrophages. Although the specific
cause has not been elucidated, it is likely that the constant pres-
ence of IFNγ will most likely promote negative regulation of IFNγ

signaling through the SOCS pathway (particularly SOCS1) and
PIAS, a Stat inhibitor. Induction of these proteins target at various
stages of viral replication and can induce an“antiviral state”within
the host. However, adaptation and host evasion mechanisms allow
replication of species adapted lentiviruses [HIV in humans, simian
immunodeficiency virus (SIV) in macaques] despite the induction
of IFN-induced anti-retroviral states (30).

THE USE OF IFNγ IN HIV/AIDS THERAPY
The direct effect of IFNγ on HIV-1 infection was first evaluated
in in vitro studies followed by small scale clinical trials. In vitro
studies have shown IFNγ treatment to either enhance or have no
effect on HIV-1 infection of PBMC (31). These observations with
PBMC were strikingly different from what was expected in 1986
since all interferons (α, β, γ) were thought to have direct antiviral
activities to all types of viruses (32). Subsequent, in vitro studies
demonstrated that IFNγ treatment can enhance HIV-1 infection
in both primary macrophages and CD4+ T cells (33–35), suggest-
ing that these immune cell subsets were responsible for the original
observation of HIV-1 infection of PBMC.

Given that IFNγ is also produced early during cytokine storms
in the acute stage of HIV-1 infection, IFNγ was thought to affect
the subsequent development of CTL activities to control HIV-1
load (36–38). There is a conflicting view regarding the role of
cytokines such as IFNγ in modulating cellular immunity which
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can in turn determine the viral set point (38, 39), as a high viral
set point is positively associated with progression to AIDS (40,
41). The well documented role of IFNγ in enhancing CTL activ-
ities against viral infection has supported the concept that IFNγ

therapy can augment anti-HIV CTL activities in HIV+ subjects
(42, 43). This is further supported by the finding that early con-
trol of HIV-1 load correlates with production of anti-HIV CD4+

and CD8+ CTLs (36, 37, 44), while similar control of virus load
has been described for HIV+ long-term survivors (LTSs) (45),
elite controllers (ECs) (46, 47), and highly exposed persistently
seronegative women (48). Based on these observations, clinical
trials in adult patients have evaluated the toxicity, pharmacoki-
netics, and therapeutic effect of IFNγ on HIV-1 p24 load, AIDS-
associated complex (ARC), and AIDS-associated Kaposi’s sarcoma
(KS) (49–52). The majority of the clinical trials showed no signif-
icant improvement in ARC or KS as well as no significant decrease
in HIV-1 p24 load (Table 2) (49–52). IFNγ had no effect at doses
that conferred therapeutic efficacy for IFNα or even at higher doses
that resulted in mild toxicity (53–57). Notably, in comparison to
the potent anti-HIV and -KS activities of IFNα and β, the lack of
anti-HIV/AIDS activities of IFNγ greatly reduced the enthusiasm
toward IFNγ and therapeutic focus shifted to IFNα as therapy
against HIV/AIDS (57). Although clinical trials have also been
conducted with pegylated IFNα to modulate its activity, the gen-
eral consensus is that IFNα therapy is too toxic and significantly
less effective than ART in decreasing HIV-1 load but is effective
for treatment of KS (58–60).

IFNγ LEVELS AT PRE- AND POST-ART
Clinical assessment of IFNγ levels in the serum of HIV+ adult
subjects at different clinical stages has been used to determine
the importance of IFNγ in the pathogenesis of HIV-1. Clini-
cal studies have focused on the changes in cytokine levels upon
introduction of highly active anti-retroviral therapy (HAART), or
ART. The elevation of multifunctional cytokines such as IFNγ and
TNFα, can either enhance or control HIV-1 infection depending
on the clinical stage of HIV-1 infection. A cross-sectional study
showed significantly elevated serum levels of certain cytokines
(TNFα, IL-6, IL-7, IL-10, IL-18) and an increasing trend for serum

IFNγ levels in symptomatic subjects when compared to asympto-
matic subjects prior to treatment with ART (20). Cross sectional
and longitudinal clinical studies, comparing pre-ART to post-ART
subjects demonstrated high serum levels of many cytokines (IL-
6, IL-10, IL-18) in pre-ART subjects which significantly decreased
when ART was initiated. Concomitant with ART, the serum HIV-1
load decreased to low or undetectable levels while the CD4+ counts
and serum IL-21 often increased (20, 72–77). In the case of IFNγ,
cross-sectional study of pre- and post-ART showed a decreasing
trend in serum IFNγ levels with the initiation of ART (Table 2)
(20). In comparison, a longitudinal study showed a statistically
significant decrease in IFNγ after 60 days or longer on ART (20).
Although the majority of the subjects had a major decrease in
IFNγ, 33% of the subjects maintained high serum IFNγ levels. In
this study, all HIV+ subjects were treated for secondary clinical
diseases before enrollment to ensure cytokine changes during the
study were predominantly attributed to HIV-1 infection. Thus, the
authors of this work speculated that sustained high IFNγ levels in
this group were due to individual differences in immune responses
against HIV-1, the genetic characteristics of HIV-1, or both, and
not due to other potentially confounding clinical events (20).

Another approach for evaluating the immune status at pre-
and post-ART is to measure the level of IFNγ responses to HIV-1
proteins or peptides by the PBMC or T cells from HIV+ sub-
jects (78, 79). The hallmark of HIV-1 infection is the loss of
CD3+CD4+ T cell counts correlating with increases in both virus
load and disease progression (80). As a result, measuring T cell
immunity, specifically CD3+CD4+ T cell activities, was thought
to be useful at assessing the immune status of the HIV+ sub-
ject when analyzed in combination with CD3+CD4+ T cell count
and virus load (81, 82). HIV-specific CD3+CD8+ T cell activi-
ties develop shortly after the cytokine storm and work to control
HIV-1 load during acute infection (37–39). Remarkably, IFNγ

responses were consistently detected in both CD3+CD4+ and
CD3+CD8+ T cells of the HIV+ subjects at various clinical stages,
but IFNγ responses alone had no direct correlation to delay in
progression to AIDS (78, 82–84). The presence of polyfunctional
T cells, which expressed IFNγ in combination with other cytokines
(IL-2 and TNFα) and/or cytotoxins (perforin or granzyme), was

Table 2 | Interferon-γ in therapy against HIV/AIDS.

Descriptiona IFNγ activity or response Reference

IFNγ therapy against HIV/AIDS No effect on HIV load, CD4+ T cell count, and disease progression (53–57)

Adjunctive IFNγ therapy for opportunistic infection Decreasing trend to significant decrease in opportunistic infection (61–67)

IFNγ levels during ART

Serum IFNγ levels

Cross-sectional study Decreasing trend in serum IFNγ (20)

Longitudinal study Significant decrease in serum IFNγ (20)

T cell responses

CD4+ T cells Varying IFNγ responses (68–70)

CD8+ T cells Generally decreasing IFNγ response (70, 71)

Polyfunctional CD8+ T cells Gradual increase in IFNγ response with prolonged ART (71)

aChronically HIV-1 infected subjects.
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associated with HIV-1 non-progression (81–84). CD3+CD4+ and
CD3+CD8+ T cells induced with viral epitopes are important
effector cells against HIV-1 infection. The IFNγ analysis of T cells
from chronically HIV-1 infected patients during ART demon-
strated that HIV-specific IFNγ responses varied within the T
cell subsets evaluated (68–71, 85). Moreover, during ART, IFNγ

responses of HIV-specific CD4+ T cells expanded and contracted
(68), decreased (69), or increased (70); while those of CD8+ T cells
generally decreased (70, 71) (Table 2). Interestingly, HIV-specific
IFNγ responses of polyfunctional CD8+ T cells increased (85).

IFNγ AS AN ADJUNCTIVE CYTOKINE THERAPY
The highly effective ART was released in developed countries in late
1990s (86) and in developing/underdeveloped countries in mid
2000 (87). ART is a combination of two or more anti-retroviral
drugs that inhibits viral reverse transcriptase (RT) (nucleoside
and non-nucleoside RT inhibitors), protease, integrase, viral co-
receptor attachment (CCR5 inhibitor), and/or virus penetration
(fusion inhibitor) (88). ART will decrease the circulating HIV-
1 load to low or undetectable levels in plasma within weeks
to months (89). It has dramatically reduced the HIV-associated
morbidity and mortality but the opportunistic infections and
AIDS-associated cancers still persist despite ART (88). Moreover,
even after 7–10 years of ART and viral control, a complete recon-
stitution of immune responses to HIV-1 has not been achieved
while only a modest improvement in HIV-specific T cell responses
was observed (90–92). Consequently, a rapid means to restore
anti-HIV T cell immunity is still required.

Many therapy using cytokines (IL-2, IL-12, G-CSF, GM-CSF)
including IFNγ have been evaluated in combination with ART
as immune reconstitution therapy (93–95). These therapies are
needed due to the new-onset opportunistic infections resulting
from failed ART combinations or simply due to the inability of
ART to completely eliminate the opportunistic infection (96–98).
In one study in South Africa, tuberculosis (TB) incidence rates
during 8 years of follow-up showed substantially higher rates in
HIV+ subjects on long-term ART than in HIV uninfected indi-
viduals living in the same community (92). IFNγ has been used as
adjunctive immunotherapy with or without ART for the treatment
of HIV-associated opportunistic infections such as cryptococ-
cal meningitis (61–63), Pneumocystis carinii (64, 65), Toxoplasma
gondii (65), Candida albicans (64, 65), Mycobacterium avium (65,
66), and visceral leishmaniasis (65, 67). In a majority of the cases,
adjunctive IFNγ therapy with or without other cytokines did not
adversely affect the ART therapy for those on ART (i.e., main-
tained low to undetectable virus load) and did not increase CD4+

T cell counts in most HIV+ patients except for those ART (61–
66). These therapies had either a decreasing trend or a significant
decrease in various HIV-associated opportunistic infections which
were often resistant to conventional therapy against the organism
(Table 2) (61–67).

Ten to 32% of AIDS patients starting ART develop an unusual
disease condition called immune restoration disease (IRD) or
immune reconstitution inflammatory syndrome (IRIS) (99–103).
IRIS is a disease condition where the opportunistic infections or
other diseases (e.g., Graves’ disease, neoplasm, or virus-associated
diseases) of the AIDS patients worsen shortly after the initiation

of ART (99–101). The neoplasm and/or virus-associated diseases
observed in IRIS included KS with human herpesvirus-8, non-
Hodgkin’s lymphoma with Epstein–Barr virus, and progressive
multifocal leukoencephalopathy with JC virus (99, 101). IFNγ

together with TNFα, C-reactive protein, and IL-7 are the inflam-
matory cytokines all contribute to the development of IRIS (101–
103). As a result, anti-inflammatory therapy in addition to the
anti-microbial therapy, is commonly used to treat IRIS associated
with opportunistic infections (99).

IFNγ IN THE DEVELOPMENT OF AN EFFECTIVE HIV-1
VACCINE
The development of an effective HIV-1 vaccine for humans
requires the identification of protective HIV-1 vaccine epitopes
conserved among most HIV-1 subtypes, the construction of pro-
tective epitopes into a vaccine immunogen, and determining the
best vaccine delivery system for induction of both mucosal and
systemic immunity against HIV-1. As the cytokines expressed by
many T cell subsets, IFNγ and IL-2 have been used as the biomark-
ers for CD4+ and CD8+ T cell activities induced by candidate
HIV-1 vaccine antigens. Both of these cytokines are important
in enhancing HIV-specific CTL activities and antibody synthesis
essential for generating vaccine immunity. Ideally, cytokines pro-
duced by CD3+CD4+ Th cells should augment effector functions
of both T and B cells upon vaccination. Initial HIV-1 vaccine
studies searched for B-cell epitopes on HIV-1 envelopes (trans-
membrane and surface envelopes) that induced broadly reactive
virus neutralizing antibodies, while subsequent vaccine studies
focused on developing an HIV-1 vaccine that induced potent anti-
HIV CTL activities. IFNγ has had a major impact on determining
the presence of CD8+ CTL epitopes on HIV-1 proteins, with the
highest levels detected from HIV-1 Gag, Pol, and Nef proteins.
In the most successful HIV-1 vaccine trial, both polyfunctional
CD4+ T cells and CD4+ CTLs that expressed IFNγ and other
cytokines or cytotoxins were detected in the vaccinees. Thus far,
IFNγ has played a major role as a biomarker of T cell activation in
the development of an HIV-1 vaccine.

IFNγ IN EVALUATING HIV VACCINE EPITOPES
The IFNγ responses to HIV-1 peptides by the PBMC or T cells
from HIV+ subjects have been used to identify the regions on
the virus that induced CD3+CD8+ CTL and CD3+CD4+ T cell
activity (78). Three of the most commonly used assays for such
analysis are tetramer staining, IFNγ ELISpot analysis, and FACS-
based intracellular staining (ICS) for IFNγ in combination with
T cell phenotypic markers (16, 78, 104, 105). Since the reagents
for IFNγ became available before other cytokines and cytotoxins,
the latter two analyses frequently utilize IFNγ. Furthermore, IFNγ

responses of T cells are detected throughout the duration of HIV-1
infection (78, 106). IFNγ ELISpot is a more rapid and cost efficient
assay than ICS or tetramer analyses. The IFNγ ELISpot analysis
using purified CD3+CD8+ and CD3+CD4+ T cells was initially
used to map the CD8+ CTL and CD4+ Th epitopes on HIV-1
proteins. Some of the HIV-1 epitopes defined by IFNγ ELISpot
analysis has been confirmed by IFNγ-specific ICS (104, 105). The
CTL and TH epitopes on all HIV-1 proteins have been listed in Los
Alamos National Laboratory (LANL) database (http://www.hiv.
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lanl.gov/content/immunology/maps/maps.html). Such database
is useful in identifying the HIV-1 epitopes needed for devel-
oping prophylactic vaccines as well as immune-based therapy
against HIV-1.

Perhaps the most problematic issue with the use of IFNγ-based
analysis is that the IFNγ levels from CD4+ and CD8+ T cells alone
do not correlate with HIV-1 load or disease progression (Table 3)
(78, 79, 83, 105, 107). For this reason, the HIV-specific IFNγ levels
only indicate the ability of these T cell subsets to produce IFNγ

responses to HIV-1 peptides. Polyfunctional T cells, which are
involved in controlling HIV-1 load, express IFNγ in addition to
other cytokines and cytotoxins (48, 49, 81–84) particularly in a
combination of IFNγ with perforin, IL-2, TNFα, or granzyme B.
These T cells are thought to be important in the control of HIV-1
infection in HIV+ LTSs and ECs (46, 81, 82). In addition, prolif-
erative T cells expressing IFNγ have also been observed at higher
levels in LTS and EC, but at lower levels in HIV+ progressors (46,
82). These studies suggest that vaccines that only induce IFNγ in
HIV-specific CD4+ T cells and/or CD8+ T cells are unlikely to
protect humans against HIV-1. Instead, those that induce poly-
functional T cell activities against HIV-1 are more likely to be
useful as vaccine immunogens.

IFNγ IN PRECLINICAL VACCINE TRIALS
Preclinical trials in the SIV/macaques model demonstrate the
induction of SIV-specific polyfunctional CD4+ and CD8+ T cell
activity resulting in marked decreases in viral load using DNA or
viral vector vaccine strategy as either post-infection therapy or
prophylaxis against SIV (117–120). Epidermal co-delivery of SIV
Gag, RT, Nef, and envelope (Env) DNA vaccine formulated with a
mucosal genetic adjuvant induced a substantial decrease in periph-
eral and mucosal viral burden in chronically infected macaques
(117). Durable and sustained suppression of viral load and non-
progression was positively associated with significant increases
in SIV-specific IFNγ responses in T cells from peripheral blood
(117, 118) and gut mucosa (117). In addition, vaccination induced
SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector

functions in peripheral blood (117). In vectored vaccine studies,
rhesus cytomegalovirus vector expressing HIV-1 Gag, Pol, Nef,
Env, RT, and integrase sequences demonstrated a high frequency
of CD69+IFNγ+ and/or CD69+TNFα+ CD4+ and CD8+ effec-
tor memory T cell response that correlated to control of highly
pathogenic SIVmac239 infection after mucosal challenge (119). The
suppression of peak viral load and protection from challenge cor-
related with the magnitude of the peak SIV-specific CD8+ T
cell responses in the acute phase post-vaccination (described as
the vaccine phase). Thirteen of the 24 vaccinated macaques had
undetectable plasma viral loads that persisted up to 1 year (119).
These responses have been demonstrated in distinct MHC-I and
-II restricted CD8+ T cells, suggesting distinct patterns of epitope
recognition in these T cell subsets (120). These studies outline the
importance of the polyfunctional T cell responses in suppression
of viral load in chronic infection and prevention of virus rebound
after cessation of ART, and in the prophylaxis against AIDS viruses.

IFNγ AS A CYTOKINE ADJUVANT FOR HIV-1 VACCINE
The use of IFNγ as cytokine adjuvant for HIV-1 vaccines has
been studied more extensively in animal models of AIDS than
in humans. The rationale for using IFNγ is based on its abil-
ity to promote CTL and NK cell activities as well as antibody
production including induction of isotype switching (6, 42, 43,
121–124). Many cytokines, including those of IFNγ and IFNγ-
inducing cytokine (IL-12), have been used as a genetic-based
cytokine adjuvant to enhance lentiviral DNA vaccines (108, 125).
SIV/macaque and feline immunodeficiency virus (FIV)/cat AIDS
models have been used extensively to determine the effect of
cytokine as an adjuvant (Table 3) (108–111, 125). In one study,
a vaccine consisting of SIV and IFNγ DNA constructs was more
effective against challenge with heterologous SIV than SIV DNA
vaccine alone (109). However, a later SIV/macaque study was
unable to confirm the results from the initial study (108). Fur-
thermore, in FIV/cat model, laboratory cats vaccinated with FIV
proviral deletion mutant (∆vif or ∆RT) and IFNγ DNA con-
struct conferred either no protection (FIV∆vif/IFNγ) or marginal

Table 3 | Interferon-γ in development of an HIV-1 vaccine.

Description IFNγ activity or immune response Reference

Identifying vaccine epitopesa Epitopes inducing only IFNγ do not correlate with HIV load or disease progression (78, 79, 105, 107)

Cytokine adjuvantb

Genetic IFNγ adjuvant for DNA vaccine No effect or some enhanced DNA vaccine efficacy in animal models (108–111)

IFNγ adjuvant for protein-based vaccine No effect in an animal model Pu and Yamamoto,

unpublished observation

Phase IIb–III vaccine trials

Phase III VaxGen 003 and 004 trials IFNγ responses by CD8+ T cells (112)

Phase IIb STEP trial IFNγ responses by T cells (113)

Phase III RV144 trial IgG antibodies to Env-V1V2 inversely correlate with HIV infection rate (114)

IFNγ and/or IL-2 responses to Env by CD4+ T cells (115)

IFNγ, IL-2, and/or TNFα responses to Env by polyfunctional CD4+ T cells (116)

aEvaluation in long-term survivors, elite controllers, and progressors.
bSIV/macaque model in genetic adjuvant and FIV/cat model in genetic and protein adjuvants.

Frontiers in Immunology | Immunotherapies and Vaccines January 2014 | Volume 4 | Article 498 | 6

http://www.hiv.lanl.gov/content/immunology/maps/maps.html
http://www.frontiersin.org/Immunotherapies_and_Vaccines
http://www.frontiersin.org/Immunotherapies_and_Vaccines/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Roff et al. Interferon-γ in HIV-1 pathogenesis, therapy, and prevention

protection (FIV∆RT/IFNγ) against heterologous FIV challenge
when compared to cats vaccinated with FIV DNA construct
alone (110, 111).

Cytokine adjuvant is more commonly used in DNA vaccines to
enhance the low immune responses generated by the low viral anti-
gen expression of the viral DNA (126, 127). Nevertheless, cytokine-
adjuvant studies have been performed with protein-based FIV
vaccines containing conventional adjuvant. These studies show no
(IFNγ and IL-18) to moderate (IL-12 and -15) enhancement of
protective activity of the viral immunogen or inactive whole-virus
FIV when compared to those without cytokine (Table 3) (128,
129). In one study, laboratory cats immunized with inactivated
FIV vaccine supplemented with IFNγ in conventional adjuvant
did not augment the protection observed with the vaccine without
IFNγ (Pu and Yamamoto, unpublished observation). The inabil-
ity of IFNγ to enhance the vaccine efficacy may be attributed to
the fact that AIDS lentiviral proteins themselves can induce IFNγ

production in T cells as observed in animals vaccinated with viral
protein or inactivated virus in conventional adjuvant (128, 130–
133). Similarly, many of the HIV-1 proteins and peptides (core
p24, enzyme RT, accessory Nef, and envelope gp120) can directly
stimulate T cells from HIV+ subjects or vaccinated HIV-negative
subjects to produce IFNγ (78, 79, 133–135). For these reasons,
the use of IFNγ as a cytokine adjuvant is unlikely to enhance the
activities of an HIV-1 protein vaccine.

IFNγ IN PHASE IIb–III HIV-1 VACCINE TRIALS
The last four major HIV-1 vaccine trials in humans consisted
of two phase III vaccine trials using recombinant HIV-1 enve-
lope gp120 protein of subtype B (VaxGen 004 trial) and subtypes
B and E combined (VacGen 003) (135, 136); phase IIb STEP
trial using adenovirus-5 vector (Ad5) expressing subtype-B HIV-1
gag/pol/nef (137); and phase III RV144 prime-boost trial consist-
ing of canarypox vectored HIV-1 gag/pr/gp41–120 priming and
boosting with subtypes B and E recombinant gp120 proteins (114,
115). More importantly, among the four trials only the prime-
boost RV144 trial had some efficacy. The RV144 trial had an
efficacy of 31.2% in a general population but the efficacy of only
3.7% in the high risk group. In contrast, VaxGen gp120 trials had
neither efficacy nor adverse effects (135, 136), while the STEP
Ad5-vectored gag/pol/nef trial showed more HIV-1 infection in
vaccinated subjects than placebo immunized subjects (137). All
of the above vaccines induced HIV-specific IFNγ responses from
either CD4+ or CD8+ T cells and the duration of IFNγ expression
varied between the trials (Table 3) (112, 113, 116, 138).

In the initial report on RV144 trial, the CD4+ and CD8+ T cells
of the vaccinees were evaluated for IFNγ ELISpot and IFNγ/IL-2-
specific ICS responses to HIV-1 Gag and Env (115). Only IFNγ/IL-
2-specific ICS to Env in the CD4+ T cells were significantly higher
(p< 0.001) in the vaccinated group than in the placebo group
(Table 3) (115). A more extensive immune-correlated analysis of
RV144 trial demonstrated that the binding of IgG antibodies to
variable regions 1 and 2 (V1, V2) of HIV-1 Env inversely corre-
lated with the rate of HIV-1 infection (p = 0.02) (114). In contrast,
the binding of plasma IgA antibodies to Env correlated positively
with the rate of HIV-1 infection. Moreover, HIV-1 neutralizing
antibodies, T cell responses, and specifically T cell produced IFNγ

responses that were detected in the vaccinees did not significantly
affect the HIV-1 infection rate (114). A more extensive analysis of
T cell activity indicated that the prime-boost vaccination induced
polyfunctional (IFNγ+, IL-2+, and/or TNFα+) and potentially
cytolytic (cytolytic marker CD107a+) CD4+ T cell responses to
HIV-1 Env peptides, including the V2 peptides, 6 months after the
last immunization (116). Thus, the most promising RV144 trial
demonstrated the importance of IFNγ in detecting polyfunctional
T cells.

CONCLUSION
The difficulty in correlating serum IFNγ levels with HIV/AIDS
clinical status has been attributed to the role that IFNγ plays as an
inflammatory cytokine as well as a cytokine that enhances antivi-
ral immunity. During the acute stage of HIV-1 infection, the host
immune system mounts an inflammatory response resulting in a
cytokine storm. In the cytokine storm, a number of inflamma-
tory cytokines including IFNγ are produced which decrease as the
adaptive immune responses against HIV-1 develop. If not appro-
priately controlled, such inflammatory activities can enhance HIV-
1 infection and may cause a higher viral set point before T cell
immunity can control the HIV-1 load. Remarkably, low levels of
IFNγ are detected throughout the course of HIV-1 infection corre-
lating with persistently increasing HIV-1 load. Furthermore, many
of the HIV-1 proteins can directly stimulate T cells from HIV+

subjects to produce IFNγ, leading to chronic immune activation
and ultimately the exhaustion of the immune system and resulting
in the loss of IFNγ production.

Interferon-γ therapy had no effect on HIV-1 load or AIDS pro-
gression whereas ART had a dramatic effect on both. However,
long-term ART did not completely restore the immune responses
in HIV-1 or completely eradicate the opportunistic infections. As
a result, IFNγ alone or in combination with other cytokines has
successfully been used together with ART against HIV-associated
opportunistic infections. Lastly, polyfunctional CD4+ T cells that
expressed IFNγ were observed in the vaccines of the most effective
HIV-1 vaccine (RV144) trial to date. Hence, IFNγ may still play
an important role as a product of HIV-specific polyfunctional
CD4+ T cells which may serve to enhance the anti-HIV antibody
production as well as CTLs against HIV-1.
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