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Abstract: The waste of Sterculia nobilis fruit was massively produced during food processing, which
contains lots of natural antioxidants. In this study, antioxidants in the Sterculia nobilis fruit waste
were extracted using the green microwave-assisted extraction (MAE) technique. The effects of five
independent variables (ethanol concentration, solvent/material ratio, extraction time, temperature,
and microwave power) on extraction efficiency were explored, and three major factors (ethanol
concentration, extraction time, and temperature) showing great influences were chosen to study
their interactions by response surface methodology. The optimal conditions were as follows: 40.96%
ethanol concentration, 30 mL/g solvent/material ratio, 37.37 min extraction time at 66.76 ◦C, and
700 W microwave power. The Trolox equivalent antioxidant capacity value obtained in optimal
conditions was in agreement with the predicted value. Besides, MAE improved the extraction
efficiency compared with maceration and Soxhlet extraction methods. Additionally, the phenolic
profile in the extract was analyzed by UPLC-MS/MS, and eight kinds of phenolic compounds
were identified and quantified, including epicatechin, protocatechuic acid, ferulic acid, gallic acid,
p-coumaric acid, caffeic acid, quercetin, and p-hydroxycinnamic acid. This study could contribute to
the value-added utilization of the waste from Sterculia nobilis fruit, and the extract could be developed
as food additive or functional food.
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1. Introduction

The imbalance between the production of reactive oxygen species and the antioxidant defense
system could induce oxidative stress [1,2]. Oxidative stress could cause cell death and tissue damage,
and was related to some diseases, including cardiovascular diseases, diabetes, neuronal disorders,
and cancer [3]. There is growing scientific evidence that antioxidants could reduce or prevent the
negative effects of oxidative stress on living tissues and inhibit aging processes and the development of
many diseases [4–6]. In addition, antioxidants also play a vital role in the food industry, since they are
required for the preservation of biological materials. Synthetic antioxidants such as BHA and BHT have
been found very effective in the preservation of foods and in prolonging the shelf life of foods, but are
considered to be controversial by consumers. Recently, natural antioxidants have gained increasing
attention due to their low toxicity, and they are widely produced by plants including medicinal plants,
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fruits, and vegetables [7–15]. Hence, extraction and identification of natural antioxidants are very
necessary and valuable.

Sterculia nobilis belongs to the family of Sterculiaceae, and is a tropical woody plant [16].
Sterculia nobilis is a valuable medicine for treatment of gastroenteric disorder and bloody flux [17,18].
Sterculia nobilis fruit was rich in protein, fiber, vitamins, amino acids, and trace elements. In addition,
it contained lots of polyphenols with strong antioxidant activities. The waste of Sterculia nobilis fruit
was massively produced during food processing, and contains lots of natural antioxidants. Thus,
to make good use of waste materials, natural antioxidants in the hull of Sterculia nobilis fruit were
extracted and identified in this study.

There are several methods that could extract antioxidants from natural materials. Conventional
methods included Soxhlet extraction, maceration, and steam distillation, while non-conventional
methods included MAE, ultrasound-assisted extraction, subcritical water extraction, and supercritical
fluid extraction [19–22]. Non-conventional methods usually consumed less time and organic solvents
than conventional ones. Recently, environmentally friendly and high efficient extraction techniques
have been popular. MAE, as a green and efficient extraction method, has gained increasing attention.
There are some studies indicating that MAE could reduce extraction time, lower extraction temperature,
and achieve a high extraction yield [23–25]. The physical principle of the MAE method might be the
interaction of materials and microwave energy, as well as the dielectric properties of materials [26,27].
Besides, MAE is maneuverable and inexpensive, and has been selected to extract several bioactive
constituents from natural materials [28,29]. Therefore, the MAE method was tested in this study for
extracting natural antioxidants from the hull of Sterculia nobilis.

Some independent parameters (ethanol concentration, solvent/material ratio, extraction time,
temperature, and microwave power) could influence the efficiency of MAE, respectively, and could
also have interaction effects [30–36]. Recently, the response surface methodology (RSM) was utilized
frequently for optimizing extraction conditions, because RSM as a mathematical and statistical tool
was efficient and reliable [37–39]. In this study, the influences of five variables (ethanol concentration,
solvent/material ratio, extraction time, temperature, and microwave power) on extraction efficiency
were studied respectively via single-factor experiments. Then, RSM was conducted to investigate
the interaction of three influential factors. Additionally, MAE was compared with two conventional
extraction methods (maceration and Soxhlet extraction). Furthermore, the natural antioxidants in the
extract were identified and quantified by UPLC-MS/MS.

2. Results and Discussion

2.1. Single-Factor Experiment Analysis

2.1.1. Influence of Ethanol Concentration

Compared to other organic solvents, aqueous ethanol is safer, cheaper, more easily accessible,
and more highly affinitive [40]. Thus, aqueous ethanol was selected as a solvent in this experiment,
and toxic methanol and acetone have not been tested in this study. The effect of ethanol concentration
on extraction efficiency was studied with solvent/material ratio, 30 mL/g; extraction time,
30 min; temperature, 30 ◦C; and microwave power, 500 W. It was observed in Figure 1a that
Trolox equivalent antioxidant capacity (TEAC) values elevated markedly from 25.16 ± 0.65 to
55.98 ± 1.38 µmol Trolox/g DW, in which ethanol concentration ranged from 0% to 40%. The peak
of TEAC value was discovered when ethanol concentration was 40%. Following this, a significant
decrease was found with higher ethanol concentration from 50% to 70%. Therefore, 40% ethanol was
used in the following experiments.
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Figure 1. The influence of ethanol concentration (a), solvent/material ratio (b), extraction time (c), 
temperature (d), and microwave power (e) on extraction efficiency. 

2.1.2. Influence of Solvent/Material Ratio 

Solvent/material ratio (10:1, 20:1, 30:1, 40:1, 50:1, 60:1, and 70:1, mL/g) was chosen to study its 
impact on the TEAC values of the extract from the hull of Sterculia nobilis fruit. Other four variables 
were designed as follows: 40% ethanol concentration, 30 min at 30 °C, and 500 W microwave power. 
The data are displayed in Figure 1b. The TEAC values improved gradually when the 
solvent/material ratio ranged from 10:1 to 30:1. Then, it was almost unchanged with the further 
solvent/material ratio enhancement from 30:1 to 70:1. Theoretically, a higher solvent/material ratio 
could provoke bigger concentration difference and promote mass transfer and diffusion [35]. 
Nevertheless, elevation of solvent/material ratio might have had little influence on extraction 
efficiency when the mass transfer reached its peak. Similar results were found in the article about 
extraction of polysaccharides from the Sargassum thunbergii [41]. Thus, 30:1 was the optimal 
solvent/material ratio. 

Figure 1. The influence of ethanol concentration (a), solvent/material ratio (b), extraction time (c),
temperature (d), and microwave power (e) on extraction efficiency.

2.1.2. Influence of Solvent/Material Ratio

Solvent/material ratio (10:1, 20:1, 30:1, 40:1, 50:1, 60:1, and 70:1, mL/g) was chosen to study its
impact on the TEAC values of the extract from the hull of Sterculia nobilis fruit. Other four variables
were designed as follows: 40% ethanol concentration, 30 min at 30 ◦C, and 500 W microwave power.
The data are displayed in Figure 1b. The TEAC values improved gradually when the solvent/material
ratio ranged from 10:1 to 30:1. Then, it was almost unchanged with the further solvent/material ratio
enhancement from 30:1 to 70:1. Theoretically, a higher solvent/material ratio could provoke bigger
concentration difference and promote mass transfer and diffusion [35]. Nevertheless, elevation of
solvent/material ratio might have had little influence on extraction efficiency when the mass transfer
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reached its peak. Similar results were found in the article about extraction of polysaccharides from the
Sargassum thunbergii [41]. Thus, 30:1 was the optimal solvent/material ratio.

2.1.3. Influence of Extraction Time

The impact of extraction time (0, 15, 30, 45, 60, and 75 min) on the TEAC values of the extract
was explored with the following design: 40% ethanol concentration, 30 mL/g solvent/material ratio,
and 500 W microwave power at 30 ◦C. It was found in Figure 1c that the TEAC values promoted
markedly from 42.47 ± 0.95 to 77.98 ± 1.19 µmol Trolox/g DW with the extraction time prolonged
from 0 to 30 min. However, extraction efficiency increased no more and even decreased a little when
the duration of microwave was longer. Obviously, microwave could improve the extraction efficiency
in a short duration. However, as the exposure time was longer, microwave caused no promoting effects
on extraction efficiency or even might have destroyed the antioxidants. Thus, it is suitable to choose
30 min in the following parts.

2.1.4. Influence of Temperature

Figure 1d displayed the impact of temperature (30, 45, 60, 75, and 90 ◦C) on TEAC values of the
sample, which was studied with 40% ethanol concentration, 30 mL/g solvent/material ratio, 30 min
extraction time, and 500 W microwave power. It could be observed in Figure 1d that TEAC values
increased significantly from 67.63 ± 0.73 to 91.16 ± 0.57 µmol Trolox/g DW with an elevation of
the temperature (30 to 60 ◦C). This phenomenon could be attributed to the diffusion accelerated by
suitable high temperature. Following this, a falling trend of extraction efficiency appeared. The reason
for this trend might be thermolabile antioxidants decomposed by high temperature (>60◦C) [40].
Consequently, 60 ◦C was the optimal temperature.

2.1.5. Influence of Microwave Power

Microwave power was another important factor affecting extraction efficiency. Different
microwave power (300, 400, 500, 600, 700, 800, and 900 W) was studied with four variables designed as
40% ethanol concentration, 30 mL/g solvent/material ratio, and 30 min at 60 ◦C. According to Figure 1e,
the yield of antioxidants presented an uptrend, as the microwave power increased (300 W to 700 W).
The TEAC values achieved the maximum (92.67 ± 0.46 µmol Trolox/g DW), while the microwave was
700 W. When microwave power exceeded 700 W, the antioxidant activity slightly decreased. This fact
indicated that extraction efficiency could be improved by microwave exposure via accelerating the
movement of solvents, diffusion of antioxidants, and breaking of cell wall. Besides, microwave had
negative effects of inducing degradation of antioxidants [42,43]. When microwave power was not
extremely high, beneficial effects of microwave were greater than negative effects, and extraction
efficiency could be elevated. Hence, 700 W was the suitable microwave power.

2.2. RSM Analysis

2.2.1. Central Composite Rotatable Design (CCRD) and Results

RSM using CCRD design was chosen for further optimization of the extraction efficiency of
antioxidants from the hull of Sterculia nobilis. Three parameters (ethanol concentration, extraction
time, and temperature) that made greater influences on extraction efficiency than other factors
were selected. The middle level of these factors was 40% ethanol concentration, 30 min extraction
time, and 60 ◦C temperature, which were obtained from the single-factor experiments. Besides,
the other two factors were controlled as 30 mL/g solvent/material ratio and 700 W microwave power.
The data were displayed in the Table 1, which included 20 runs experiment designs, actual values, and
corresponding predicted values. The data showed that the actual TEAC values varied from 46.08 to
94.25 µmol Trolox/g DW.
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Table 1. The experimental design and results of RSM.

Run
X1 (Ethanol

Concentration, %)
X2 (Extraction

Time, min)
X3

(Temperature, ◦C)
Y (TEAC Value, µmol Trolox/g DW)

Actual Value Predicted Value

1 40 55.23 60 80.50 82.38
2 40 30 60 92.64 89.16
3 30 45 70 88.26 85.23
4 30 15 50 46.08 46.38
5 30 15 70 76.50 71.37
6 40 30 76.82 80.73 86.10
7 40 30 60 94.25 89.16
8 23.18 40 60 65.21 70.08
9 30 45 50 67.75 65.55
10 40 30 60 93.10 89.16
11 50 45 70 89.64 87.01
12 40 30 60 90.79 89.16
13 40 4.77 60 54.38 55.78
14 50 45 50 65.44 68.25
15 40 30 60 92.41 89.16
16 50 15 70 74.66 74.54
17 40 30 43.18 51.39 49.31
18 40 30 60 72.36 89.16
19 56.82 30 60 76.60 75.02
20 50 15 50 49.77 50.48

2.2.2. Fitting the Model

A quadratic regression equation was obtained by analysis of the data in Table 1. Equation (1)
showed the combined influences of three parameters (ethanol concentration (X1), extraction time (X2),
and temperature (X3)) on TEAC values (Y).

Y = −417.92 + 5.05X1 + 3.04X2 + 10.56X3 − 0.0023X1X2 − 0.0023X1X3 − 0.0088X2X3 − 0.059X1
2 − 0.032X2

2 − 0.076X3
2 (1)

Analysis of variance (ANOVA) was used to examine the reliability of the fitting model. As shown
in Table 2, the high F value (10.06) and very low p value of 0.0006 (<0.001) of the model indicated that
this regression model was credible. Besides, low F value of 0.35 and high p value of 0.8657 suggested
that “lack of fit” was not significant, which further confirmed that the model was valid and able to
predict the variation precisely. Additionally, according to determination coefficient (R2) (0.9006) and
the adjusted R2 (0.8110), the regression model could elucidate almost 81.10% of the response value
variations. For the three parameters, both the linear and quadratic effects of extraction time (X2) and
temperature (X3) were significant (p < 0.05) on the TEAC values, while the ethanol concentration (X1)
only presented a significant (p < 0.05) quadratic effect.

Table 2. ANOVA for the response surface model.

Source Sum of Squares df Mean Square F Value p Value Significant

Model 4252.35 9 472.48 10.06 0.0006 significant
X1 29.51 1 29.51 0.63 0.4463
X2 854.21 1 854.21 18.19 0.0016
X3 1633.58 1 1633.58 34.79 0.0002

X1X2 0.97 1 0.97 0.021 0.8888
X1X3 0.42 1 0.42 0.009 0.9262
X2X3 14.04 1 14.04 0.30 0.5964
X1

2 497.42 1 497.42 10.59 0.0087
X2

2 726.50 1 726.50 15.47 0.0028
X3

2 829.77 1 829.77 17.67 0.0018

Residual 469.59 10 46.96
Lack of Fit 120.65 5 24.13 0.35 0.8657 not significant
Pure Error 348.94 5 69.79
Cor Total 4721.94 19

R-Squared 0.9006
Adj R-Squared 0.8110
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2.2.3. Response Surfaces Analysis

The interaction between the response value (Y, TEAC value) and major parameters (X1, ethanol
concentration; X2, extraction time; X3, temperature) can be seen directly from the three-dimensional
response surface plots and contour plots. As displayed in Figure 2a, the response value improved with
the longer extraction time, when the temperature was 60 ◦C. However, as the extraction time exceeded
38 min, a decrease of response value was found. Besides, the increasing ethanol concentration (from
30% to 40%) induced an increase of response value. It was observed that the extraction time had a
greater influence on the TEAC value than ethanol concentration. In Figure 2b, when the extraction
time was set as 30 min, initial increase of extraction temperature (from 50 ◦C to 67 ◦C) exerted a
great elevation of response value. Then, the response value decreased with the further elevation of
temperature. The impact of ethanol concentration on the response value in Figure 2b was similar
to that seen in Figure 2a. In Figure 2c, ethanol concentration was fixed at 40%, and the interaction
between the extraction time and temperature on the TEAC value was elucidated. The effects of the
extraction time and temperature on the TEAC value were similar to those in Figure 2a,b. It was found
that the temperature showed a greater impact on the TEAC value than the ethanol concentration and
extraction time, according to the analysis of ANOVA and the response surface plots.
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Figure 2. Interaction effects of ethanol concentration (%) and extraction time (min) (a); ethanol
concentration and temperature (◦C) (b); and extraction time and temperature (c) on TEAC value
(µmol Trolox/g DW).

2.2.4. Validation of Predicted Value

The most suitable microwave extraction conditions in the study were as follows: 40.96% ethanol
concentration, 30 mL/g solvent/material ratio, 37.37 min extraction time at 66.76 ◦C, and 700 W
microwave power, which were obtained by analyzing the model. The predicted value of the highest
TEAC was 94.88 µmol Trolox/g DW according to the model. The validation experiment under the
optimal conditions was conducted to examine the reliability of the model. The TEAC actual value of
the verification experiment was 93.72 ± 1.05 µmol Trolox/g DW, which corresponded closely to the
predicted value. Therefore, it was reliable to use RSM for optimizing extraction efficiency.

2.3. Comparison of MAE with Conventional Methods

In this part, a comparison of MAE with two conventional extraction methods including maceration
method and Soxhlet extraction was carried out. As shown in Table 3, in terms of extraction efficiency,
the antioxidant activity by MAE (93.72 ± 1.05 µmol Trolox/g DW) was 2.24 times and 3.93 times
that acquired by maceration method (41.92 ± 1.96 µmol Trolox/g DW) and Soxhlet extraction
(23.84 ± 3.06 µmol Trolox/g DW), respectively. In terms of extraction time, MAE (37.37 min) required
significantly less time than maceration method (24 h) and Soxhlet extraction (4 h). Besides, the
temperature of Soxhlet extraction (95 ◦C) was also greatly elevated compared to MAE (66.76 ◦C).
Microwave power polarized the polar molecules and the ionic species, which induced fast volumetric
heating via dipolar polarization and ionic conduction and increased reaction rates [27]. This might
be the reason for the highest efficiency of MAE among the three approaches. The consequences were
similar to two reports related to blueberry leaves and Gordonia axillaris [44,45].

Table 3. The comparison of MAE with maceration and Soxhlet extraction.

Extraction
Methods

Ethanol
Conc. (%)

Extraction
Time (min) Temp. (◦C) TEAC (µmol

Trolox/g DW)
TPC (mg

GAE/g DW)
TFC (mg

QE/g DW)

Maceration 40.96 24 h 25 41.92 ± 1.96 2.74 ± 0.69 0.30 ± 0.17
Soxhlet 40.96 4 h 95 23.84 ± 3.06 2.56 ± 0.64 0.24 ± 0.10
MAE 40.96 37.37 66.76 93.72 ± 1.05 3.67 ± 0.80 0.45 ± 0.13

2.4. Analysis of Phenolic Compounds

Phenolic compounds showed strong antioxidant activity, and the identification of these
components was helpful to understand the antioxidant properties of the extract [46,47]. In this
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part, the phenolic compounds in the hull of Sterculia nobilis fruit were identified by UPLC-MS/MS.
Figure 3 displayed the total ion chromatograms of standard phenolic components and the extract
acquired under the optimal conditions. Table 4 showed eight phenolic constituents that existed in
the sample. The content of epicatechin was the highest, followed by protocatechuic acid, ferulic acid,
gallic acid, p-coumaric acid, and caffeic acid. The antioxidant capacity of the hull of Sterculia nobilis
fruit might be attributed to these phenolic components synergistically. In addition, these phenolic
components also had other bioactivities, including antibacterial, anti-inflammatory, and anticancer
effects [48–50]. Hence, the hull of Sterculia nobilis fruit might possess similar bioactivities and potential
health benefits.
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Table 4. The contents of phenolic compounds in the extract acquired under the optimal condition.

Number Phenolic Compounds Retention
Time (tR, min)

Paront Ion
(m/z, [M − H]−)

Product Ion
(m/z)

Contents
(µg/g DW)

1 Epicatechin 12.3 289 203 56.63 ± 0.58
2 Protocatechuic acid 8.08 153.1 109 21.09 ± 0.16
3 Ferulic acid 14.3 193.1 134 0.84 ± 0.003
4 Gallic acid 4.79 169.1 125 0.53 ± 0.008
5 p-Coumaric acid 15.4 162.7 119 0.45 ± 0.003
6 Caffeic acid 12.4 179.1 135 0.35 ± 0.010
7 Quercetin 16.5 301 179 0.041 ± 0.001
8 p-Hydroxycinnamic acid 14 163.1 119 0.027 ± 0.001

3. Materials and Methods

3.1. Chemicals and Reagents

Trolox (6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) and ABTS (2,20-azinobis(3-ethyl-
benothiazoline-6-sulphonic acid) diammonium salt) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Potassium persulphate was obtained from Tianjin Chemical Factory (Tianjin, China).
Ethanol and methanol were purchased from Kelong Chemical Factory (Chengdu, China). Chemicals
and reagents used in the study were analytically pure and deionized water was used.

3.2. Instruments

The MAE was conducted in an X-100A microwave extraction device (Xianghu Instrumental
Company, Beijing, China) with a 1000 W microwave power, which had temperature monitor and
microprocessor programmer software that could regulate experiment variables including extraction
temperature, time, and microwave power.

3.3. Sample Preparation

The hull of Sterculia nobilis fruit was collected and dried at room temperature. Then, the hull was
ground into fine particles that were smaller than 0.300 mm by a food grinder (RHP-100, Ronghao
Industry & Trade Co. Ltd., Yongkang, China) and was stored at 4 ◦C in a refrigerator until utilized.

3.4. Extraction of Antioxidants

3.4.1. Microwave-Assisted Extraction

The ground powder of the hulls of Sterculia nobilis fruit (0.05 g) was put in a capped tube.
Proper aqueous ethanol was added to the powder. The mixture was shaken for 5 min in vortex mixer
to soak the mixture completely. Then, the sample was placed into a water bath of the microwave device.
After irradiation with the pre-set parameters (extraction time, temperature, and microwave power), the
tube containing the sample was centrifuged at 4200 g for 15 min, and the TEAC value of supernatant
was determined.

3.4.2. Maceration Extraction

Firstly, the ground powder of the hulls (0.05 g) was placed in a capped tube. Then, 15 mL of
40.96% ethanol was added to the powder. After 24 h maceration in a shaking water bath at 25 ◦C,
the mixture in the tube was centrifuged at 4200 g for 15 min, and the supernatant was collected for
subsequent determination.
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3.4.3. Soxhlet Extraction

The Soxhlet extraction referred to the experimental process designed by Xu et al. [51]. The ground
powder of the hulls (2.0 g) was wrapped by Whatman filter paper, with 400 mL of 40.96% ethanol in
Soxhlet extractor. After 4 h extraction at 95 ◦C, the extraction solution was obtained for next analysis.

3.5. Determination of Antioxidant Capacity

There are several methods that could evaluate the antioxidant capacity of the sample, but the
results gained using different methods generally have a very high correlation [7,12]. The TEAC
assay was frequently used for evaluation of antioxidant capacity owing to its simplicity and
rapidness [7]. The antioxidant activity of the extract was evaluated by TEAC assay according to
previous procedure [52]. Tersely, the ABTS•+ stock solution was prepared by mixing potassium
persulfate (2.45 µmol/L) and ABTS•+ (7 µmol/L) with a volume ratio of 1:1. Then, the ABTS•+ stock
solution was incubated for 16 h in dark environment at room temperature and was utilized within
48 h. The ABTS•+ stock solution was diluted to insure that the absorbance of ABTS•+ working solution
was 0.70 ± 0.05 at 734 nm. Finally, 3.8 mL ABTS•+ working solution was added to 100 µL diluted
sample, and the absorbance was determined at 734 nm after incubation 6 min in dark environment at
normal temperature. The results were expressed as µmol Trolox/g DW.

3.6. Determination of Total Phenolic Content

The method of determination of total phenolic content (TPC) in the extract was referred to the
previous article [13]. The gallic acid was employed for reference standard, and the results were stated
as mg gallic acid equivalent (GAE)/g DW.

3.7. Determination of Total Flavonoid Content

The total flavonoid content (TFC) in the extract was measured according to the established
process [53]. The quercetin was selected as the reference standard, and the results were stated as mg
quercetin equivalent (mg QE)/g DW.

3.8. Identification and Quantification of Phenolic Compounds

The phenolic constituents in the sample acquired under optimal conditions were evaluated
referring to the procedure established by Zhou et al. with a little modification [52]. Phenolic compounds
were identified and quantified by AB Sciex 4000 Qtrap liquid chromatography-tandem mass
spectrometry (SCIEX, Framingham, MA, USA), and Acquity UPLC® HSS T3 column (3.0 × 150 mm,
1.8 µm, Waters, Milford, MA, USA) was used to separate at 40 ◦C. Solution A (0.2% formic acid aqueous
solution) and solution B (methanol) formed the mobile phase, and the flow rate was 0.3 mL/min.
The gradient elution was carried out as follows: 0–2 min, 15% (B); 2–8 min, 15–30% (B); 8–15 min,
30–80% (B); 15–17.5 min, 80% (B); and 17.5–19.5 min, 15% (B). The sample was injected with 2 µL.
The parameters of mass spectrometry were controlled as follows: ESI source with negative mode,
ion source temperature at 550 ◦C, 4500 V capillary voltage with the mode of multiple reaction
monitoring and 10 psig curtain gas, and 20 psig nebulizer gas and 20 psig auxiliary gas. Firstly, the
identification of phenolic constituents was conducted by tandem mass spectrometry. Then, verification
and quantification of these constituents were acquired by contrasting the retention times and peak
areas of corresponding standards.

3.9. Experiment Design

3.9.1. Single-Factor Experiments

Five variables, including ethanol concentration, solvent/material ratio, extraction time,
temperature, and microwave power, were selected to evaluate their effects on antioxidant capacity of
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the extract from the hull of Sterculia nobilis fruit. The levels of each factor were designed as follows:
ethanol concentration 20% to 70%, solvent/material ratio 10:1 to 70:1, extraction time 0 to 75 min,
temperature 30 to 90 ◦C, and microwave power 300 to 900 W. Three factors that made significant
differences on extraction efficiencies would be chosen to conduct subsequent experiments.

3.9.2. Response Surface Methodology

RSM using CCRD was used to further optimize the antioxidants capacity of the extract from
the hull of Sterculia nobilis fruit. As shown in Table 5, three key variables (ethanol concentration (X1),
extraction time (X2), and temperature (X3)) were selected and evaluated in 5 levels. 20 experimental
runs including 6 replicates in the central point were carried out. The data of CCRD were based on a
second-order polynomial model, as follows:

Y = β0 + ∑βiXi + ∑βiiXi
2 + ∑βijXiXj (2)

Table 5. Five variables and their levels of CCRD.

Variable Units Symbol
Code Levels

−1.68 −1 0 1 1.68

Ethanol concentration % (v/v) X1 23.18 30 40 50 56.82
Extraction time min X2 4.77 15 30 45 55.23

Temperature ◦C X3 43.18 50 60 70 76.82

3.9.3. Statistical Analysis

All the experiments were conducted in triplicate. The average value ± SD (standard deviation)
was reported. Statistical analysis was implemented using Design Expert 8.0.6 and Excel 2016.

4. Conclusions

An environmentally friendly MAE method has been established to extract antioxidants from the
hulls of Sterculia nobilis fruit, and RSM was selected to further optimize three experimental factors.
The results indicated that the optimal extraction conditions were 40.96% ethanol concentration,
30 mL/g solvent/material ratio, 37.37 min at 66.76 ◦C, and 700 W microwave power. Under the
optimal conditions, the maximum TEAC value obtained was 93.72 ± 1.05 µmol Trolox/g DW, and
TPC, as well as TFC of the extract, was 3.67 ± 0.80 and 0.45 ± 0.13 µmol Trolox/g DW, respectively.
The high R2 and consistency between the predicted and actual value demonstrated the preciseness and
reliability of the model. Additionally, MAE was more efficient at extracting antioxidants from the hulls
of Sterculia nobilis fruit compared to two conventional methods. In conclusion, MAE is a promising
technique for natural constituents extraction because of its high efficiency and environmentally
friendly character. Finally, epicatechin, protocatechuic acid, ferulic acid, gallic acid, p-coumaric
acid, caffeic acid, quercetin, and p-hydroxycinnamic acid were identified and quantified, which might
contribute greatly to the antioxidant activity of the hulls of Sterculia nobilis fruit. This study could be
helpful for the value-added utilization of the waste from Sterculia nobilis fruit, and the extract could be
developed as food additive or functional food.
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