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Background: Standard therapy for acute promyelocytic leukaemia (APL) includes retinoic acid (all-trans retinoic acid (ATRA)),
which promotes differentiation of promyelocytic blasts. Although co-administration of arsenic trioxide (ATO) with ATRA has
emerged as an effective option to treat APL, the molecular basis of this effect remains unclear.

Methods: Four leukaemia cancer human models (HL60, THP-1, NBR4 and NBR4-R2 cells) were treated either with ATO alone or
ATO plus ATRA. Cancer cell survival was monitored by trypan blue exclusion and DEVDase activity assays. Gene and protein
expression changes were assessed by RT-PCR and western blot.

Results: ATO induced an antioxidant response characterised by Nrf2 nuclear translocation and enhanced transcription of
downstream target genes (that is, HO-1, NQO1, GCLM, ferritin). In cells exposed to ATO plus ATRA, the Nrf2 nuclear translocation
was prevented and cytotoxicity was enhanced. HO-1 overexpression reversed partially the cytotoxicity by ATRA-ATO in HL60 cells.
The inhibitory effects of ATRA on ATO-mediated responses were not observed in either the ATRA-resistant NB4-R2 cells or in NB4
cells pre-incubated with the RARa antagonist Ro-41-52-53.

Conclusions: The augmented cytotoxicity observed in leukaemia cells following combined ATO-ATRA treatment is likely due to
inhibition of Nrf2 activity, thus explaining the efficacy of combined ATO-ATRA treatment in the APL therapy.

Acute promyelocytic leukaemia (APL) is a subtype of acute
myeloid leukaemia (AML), characterised by a reciprocal chro-
mosomal translocation t(15;17)(q22;q21) that generates the
genetic fusion between the tumour suppressor – promyelocytic
leukaemia (PML) – and the retinoic acid receptor-a (RARa) genes
(Vardiman et al, 2009; Saeed et al, 2011). The thereby resulting
PML–RARa fusion protein blocks transcription of genes involved
in the differentiation programme of myeloid progenitors
(Vardiman et al, 2009; Kamimura et al, 2011; Saeed et al,
2011). Currently, standard APL therapy includes retinoic acid,

which promotes cell growth arrest, granulocytic differentiation
and apoptosis of myeloid blasts (Huang et al, 1998) that are
ascribed in part to augmented degradation of PML–RARa
(Ablain et al, 2013) and increased RARa expression (Kamimura
et al, 2011). Hence, standard chemotherapeutic regimens to treat
APL involve the co-administration of all-trans retinoic acid
(ATRA) together with anthracyclins (daunorubicin or idarubicin)
or in combination with cytosine b-D-arabinofuranoside (Ara-C;
Tallman and Altman, 2009; Kamimura et al, 2011). Despite the
high rates of remission, undesirable outcomes are often observed
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after prolonged exposition to ATRA and chemotherapeutic drugs,
such as the retinoic acid syndrome (Patatanian and Thompson,
2008), elevated mortality rates and emerging drug resistance
(Kamimura et al, 2011). To avoid the development of such side
effects, improved strategies are required during induction/
consolidation therapies.

In addition to conventional therapies, administration of arsenic
trioxide (ATO) alone (Chendamarai et al, 2012) or in combination
with either retinoic acid or chemotherapeutic drugs (Iland et al,
2012; Park, 2012) has emerged as an effective option to treat newly
diagnosed and relapsed APL patients (Shen et al, 1997;
Chendamarai et al, 2012; Iland et al, 2012), which results in lower
early mortality rates and higher percentages of complete remission
and disease-free survival (Tallman and Altman, 2009; Kamimura
et al, 2011). Furthermore, ATO treatment has been shown to be
effective against other AML subtypes (Wetzler et al, 2011),
myelodisplastic syndrome (Sekeres et al, 2011) and multiple
myeloma (Sharma et al, 2012). ATO effectiveness in APL patients
may be explained not only by its general cytotoxic effect, but also
by its ability to promote PML–RARa degradation (Zhang et al,
2010; Lang et al, 2012). Despite these promising results, acquired
resistance is observed in patients treated with ATO-ATRA (Goto
et al, 2011). Retinoic acid together with ATO is known to enhance
PML–RAR degradation. However, whether ATRA alters cellular
responses triggered by ATO and inhibits survival pathways
required for the development of ATO resistance remains to be
determined.

Survival of leukaemia cells following treatment with chemother-
apeutic drugs is associated with activation of the Nrf2 pathway
(Rushworth and MacEwan, 2011). Under normal conditions,
cytosolic Nrf2 levels are maintained low by the physical interaction
with Keap1, which promotes Nrf2 ubiquitination and subsequent
proteasome-mediated degradation (Ma, 2012). In response to
electrophilic or oxidative stress, S-alkylation or oxidation of
cysteine residues in Keap1 releases Nrf2 from this complex and
permits translocation to the nucleus where Nrf2 recognises the
enhancer antioxidant/electrophilic response elements present in
the promoter of cytoprotective and detoxifying genes. Examples of
such genes include the phase-I drug oxidation enzyme NAD(P)H:
quinone oxidoreductase 1 (NQO1), the cytoprotective haem-
oxygenase-1 (HO-1) and the antioxidant enzymes glutamyl
cysteine ligase modulator (GCLM) and -catalytic subunits,
involved in GSH synthesis, ferritin among others (Rushworth
and MacEwan, 2011). Notably, an additional mechanism regulat-
ing Nrf2 activity has been identified in breast cancer cells, where
Nrf2 transcriptional activity is inhibited by the physical interaction
with RARa in the presence of ATRA (Wang et al, 2007, 2013). At
present, it is not known whether a similar inhibitory mechanism
operates in AML cells and, particularly, in the APL subtype.

In this study, we provide evidence showing that inhibition by
ATRA of the Nrf2-dependent antioxidant response triggered by
ATO correlates with enhanced cytotoxicity in NB4 APL cells. This
effect was dependent on RARa function because Nrf2 activity was
not affected by ATRA in the ATRA-resistant NB4-R2 cells and
RARa antagonist Ro-41-5253 precluded ATRA-mediated inhibition
in NB4 parental cells.

MATERIALS AND METHODS

Drugs and chemicals. Zinc (II) protoporphyrin IX (ZnPP) and
Ro-41-5253 were purchased from Enzo Life Sciences (Plymouth
Meeting, PA, USA); copper (II) protoporphyrin IX (CuPP) was
from Santa Cruz Biotechnology (Santa Cruz, CA, USA); ATRA,
Ara-C, daunorubicin, methotrexate, tert-butylhydroquinone
(t-BHQ), L-buthionine-sulfoximine (BSO) and ATO were from
Sigma-Aldrich (St Louis, MO, USA).

Cell lines and culture conditions. The AML-derived cell lines
HL60 and THP-1 were purchased from the European Cell Culture
Collection (Salisbury, UK). The APL-derived NB4 and NB4-R2
cells, a subline derived from NB4 cells that bears a missense
mutation in the PML fragment of PML–RARa, which inhibits
RARa transcriptional function (Duprez et al, 2000), were kindly
gifted by Mario P Tshan (University of Bern, Bern, Switzerland).
Cells were cultured in RPMI 1640 medium (Gibco, Paisley, UK)
supplemented with 2 mM glutamine, 10% fetal bovine serum
(Hyclone, Logan, UT, USA) and antibiotics (100 U ml� 1 penicillin,
100 mg ml� 1 streptomycin) in a humidified atmosphere with 5%
CO2 at 37 1C.

Western blot analysis. Total-cell extracts were prepared in lysis
buffer (Triton 1%, leupeptin 12.5 mg ml� 1, antipain 10 mg ml� 1,
benzamidine 100 mg ml� 1, phenylmethanesulphonylfluoride
1 mmol l� 1 and sodium orthovanadate 1 mmol l� 1) and protein
concentrations were determined using the Bio-Rad Protein Assay
reagent following the manufacturer’s instructions (Bio-Rad,
Hertfordshire, UK). Total-protein extracts (40 mg per lane) were
separated by SDS–PAGE in 10% mini-gels (Bio-Rad) and
transferred to nitrocellulose as described (Valenzuela et al, 2010).
Blots were blocked with 5% milk in TBS-Tween-20 and then
probed with different antibodies. Mouse monoclonal anti-b-actin
(using a dilution of 1 : 30 000) and anti-HO-1 (1 : 1000) were
purchased from Abcam (Cambridge, UK), whereas anti-NQO1
(1 : 1000), rabbit polyclonal anti-Nrf2 (1 : 1000), anti-TBP1
(1 : 1000) and anti-HSP90 (1 : 3000) were obtained from Santa
Cruz Biotechnology. Bound first antibodies were detected with
horseradish peroxidase-conjugated anti-mouse (1 : 2500, Dako,
Glostrup, Denmark) or anti-rabbit (1 : 2500, Millipore, Billerica,
MA, USA) secondary antibodies followed by incubation with the
Super Signal West Pico Chemiluminescent Substrate (Thermo
Scientific, St Leon-Rot, Germany) and exposure to BioMax MR
film (Kodak, Brussels, Belgium).

Analysis of mRNA levels. Total RNA was isolated using the
Purezol RNA isolation reagent following instructions provided by
the manufacturer (Bio-Rad). RNA samples were employed as
templates to generate total complementary DNA (cDNA) using the
M-MLV reverse transcriptase (Promega, Madison, WI, USA) and
the oligo (dT) 15 primers (Promega).

cDNAs were amplified by PCR with the following specific
primers:

HO-1 (sense primer 50-CAAAGTGCAAGATTCTGCCC-30;
antisense primer 50-CACATGGCATAAAGCCCTAC-30),

NQO1 (sense primer 50-CAAATCCTGGAAGGATGGAA-30;
antisense primer 50-AAGTGATGGCCCACAGAAAG-30),

GCLM (sense primer 50-AGCGAGGAGCTTCATGATTG-30;
antisense primer 50-GAACAGGCCATGTCAACTGC-30),

ferritin heavy chain (sense primer 50-CTGGAGCTCTACGCCT
CCTA-30; antisense 50-TGGTTCTGCAGCTTCATCAG-30) and

GADPH (sense primer 50-TCAACGACCACTTTGTCAAGC-30;
antisense primer 50-CCAGGGGTCTTACTCCTTGG-30).

All amplicons were obtained after 30 amplification cycles, each
of which involved consecutive 1-min steps at 94, 58 and 72 1C and
visualised by electrophoresis in agarose gels (2%).

Trypan blue exclusion assay. Cells were plated at a density of
3.5� 105 per well and incubated for 48 h in the presence of drugs.
Cell viability was evaluated by the trypan blue exclusion assay with
the automated cell counter TC10 (Bio-Rad). The loss of membrane
integrity can be measured by using exclusion dyes that cannot
enter living healthy cells but that are taken up by dying cells with
permeabilized plasma membranes. Although this assay does not
discriminate between different forms of cell death, the loss of
plasma membrane integrity is considered a point of no return,
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while the occurrence of other biochemical events does not
necessarily mean that cell death will ensue (Kroemer et al, 2009).

DEVDase activity. Caspase activity in cell lysates was determined
by quantifying the release of the fluorescent dye 7-amino-
4-trifluoromethylcoumarin (AFC) from the caspase-3 substrate
Asp-Glu-Val-Asp-AFC (Enzo Life Sciences) in the multilabel plate
reader Victor X2 (Perkin Elmer, Waltham, MA, USA). A unit of
enzymatic activity was defined as 1 mmol of substrate
transformed min� 1 per mg protein extract (Nicholson et al,
1995).The general caspase inhibitor Q-VD-OPh (R&D Systems,
Oxfordshire, UK) was added at 10 mM in the reaction as a control.

GSH content. Total GSH content was evaluated following
formation of the yellow derivative 50-thio-2-nitrobenzoic acid
(TNB) produced during the reaction of GSH with the sulphydryl
reagent 5,50-dithio-bis(2-nitrobenzoic acid) (DTNB) at 412 nm.
GSSG was determined in a similar manner, after removal of GSH
with 2-vinylpyridine as described (Rahman et al, 2006). GSH
depletion (90%) was achieved by treating cells for 24 h with BSO
(10 mM).

Nuclear/cytoplasmic protein extraction. Cells were collected,
washed in PBS pH 7.2 and re-suspended in a hypotonic buffer
(Hepes-KOH 10 mM, MgCl2 2 mM, EDTA 0.1 mM, KCl 10 mM,
NP40 0.5%, DTT 1 mM, PMSF 0.5 mM, pH 7.9) for 10 min on ice.
Lysates were centrifuged at 13 000 g for 1 min. Supernatants
(cytoplasmic fractions) were recovered and pellets were re-
suspended in a hypertonic buffer (Hepes-KOH 50 mM, MgCl2
2 mM, EDTA 0.1 mM, NaCl 400 mM, KCl 50 mM, glycerol 10%, DTT
1 mM, PMSF 0.5 mM, pH 7.9). Nuclei were allowed to swell on ice
for 30 min. After centrifugation (13 000 g for 15 min), the super-
natants were recovered and analysed by immunoblotting.

Constructs. The plasmid pSFFV-HO-1 was constructed by
cloning the human HO-1 cDNA obtained by PCR using the sense
primer 50-CCGGAATTCGGGATGGAGCGTCCGCAACCC-30

and antisense 50-CCGGAATTCTCACATGGCATAAAGCCCTA-30

primers in the EcoRI restriction site of the pSFFV-Neo plasmid
(plasmid 8769; Addgene, Cambridge, MA, USA). The short hairpin
RNA (shRNA) expression vector was obtained by cloning a shRNA
cassette directed against human Nrf2 mRNA (shRNA duplex sense
50-GATCCGTAAGAAGCCAGATGTTAAGTCAAGAGCTTAACA
TCTGGCTTCTTACTTTTTTTTGGAA-30 and antisense 50-AGC
TTTCCAAAAAAAAGTAAGAAGCCAGATGTTAAGCTCTTGA
CTTAACATCTGGCTTCTTACG-30) in the BamHI/HindIII cloning
sites of the pRS vector (TR2003, Origene, Rockville, MA, USA).
A plasmid containing a non-effective 29-mer scrambled shRNA
cassette (TR30012, Origene) was used as control. Molecular cloning
was performed with material purchased from Fermentas (St Leon-Rot,
Germany) and Favorgene (Viena, Austria) (DNA purification kits).

Transfection/electroporation. HL60 cells were electroporated
using the 4D-Amaxa Nucleofector kit (Lonza, Verviens, Belgium)
following instructions provided by the manufacturer. For stable
transfection, cells were serially diluted and clones were selected in
the presence of G418 (1000mg ml� 1) for 10 days.

Differentiation assay. Differentiation of cells was assessed by the
nitroblue tetrazolium (NTB) reduction assay following 3 days of
ATRA treatment (Gupta et al, 2011). Briefly, myelocytic blasts
(that is, HL60, THP-1, NB4) respond to ATRA undergoing a
terminal granulocytic maturation and losing their ability to
proliferate. These differentiated promyelocytes also acquire the
ability to trigger a respiratory burst. Thus, when they are pretreated
with 100 ng ml� 1 phorbol myristate acetate, the superoxide anion
generated during the respiratory burst reacts with NTB to produce
a blue–purple precipitate.

Statistical analysis. All data are expressed as the mean±s.e.m. of
at least three independent experiments. Data were processed using
INSTAT v. 3.05 (GraphPad Software, San Diego, CA, USA,
www.graphpad.com). Statistical significance of differences
(Po0.05) was determined using the one-way analysis of variance
test and the Dunnett or Tukey comparison post tests.

RESULTS

Characterisation of ATO-mediated Nrf2 activation in AML
cells. In both HL60 and THP-1 cells, a rapid Nrf2 nuclear
accumulation was observed, which remained stable from 3 to 12 h
and it decreased after 24 h incubation in the presence of 6.25 mM

ATO (Figure 1A). The concomitant increase in the expression of
two downstream Nrf2 targets (NQO1 and HO-1) remained fairly
stable up to 24 h incubation with ATO (6.25 mM). No changes in
Nrf2 expression were observed in untreated cells (basal conditions)
during the 24 h incubation time (data not shown). This enhanced
protein expression was associated with transcriptional activation of
Nrf2 targets by ATO and by t-BHQ, a well-known electrophilic
Nrf2 activator, as shown by RT-PCR analysis of HO-1, NQO1,
GCLM and ferritin mRNA levels (Figure 1B, upper panels).
Interestingly, nuclear accumulation of Nrf2 was more pronounced
when cells were treated with ATO as compared with t-BHQ
(Figure 1B, lower panels). To confirm that the observed induction
of downstream targets was really dependent on Nrf2 activation, its
expression was silenced by using shRNA (shNrf2 cells). In shNrf2
cells, induction of both HO-1 and NQO1 by ATO was reduced
(Figure 1C).

To investigate whether the presence of chemotherapeutic drugs
currently used in AML therapy was sufficient to modulate Nrf2
activation, both HL60 and THP-1 cells were exposed for 24 h to
ATO (6.25–12.5 mM), Ara-C (1–5 mM) or daunorubicin (0.25–1 mM).
Western blot analysis revealed that exposure of cells to ATO
induced NQO1 and HO-1 expression, but these proteins were not
detected when cells were treated with Ara-C or daunorubicin
(Figure 1D). Notably, the highest concentration of ATO (25 mM)
did not induce the expression of either NQO1 or HO-1, likely due
to an inhibitory effect on transcription as a consequence of DNA
damage, as recently reported (Nakamura et al, 2013). Regarding
GSH levels, an elevated intracellular content was observed only
when cells were exposed for 24 h to both ATO (6.25 mM) and t-
BHQ (25 mM), whereas in the presence of either Ara-C (5 mM) or
daunorubicin (0.5 mM) no GSH increase was observed (Figure 1E).
These data indicate that ATO triggers in AML cells an antioxidant
response characterised by Nrf2 activation and induction of its
downstream targets.

The effects of ATO on both Nrf2 nuclear translocation and
target induction were inhibited by N-acetyl-cysteine (NAC) but not
by other antioxidant molecules like mannitol or tiron
(Supplementary Figure 1A and B). In this context, the effect by
NAC is in agreement with a previous report showing the use of
thiol compounds as antidote against ATO overdoses (Isbister et al,
2004). Furthermore, no ROS formation was detected at low
concentration of ATO in AML cells loaded with the fluorescent dye
DCFH-DA (Supplementary Figure 1C). These results suggest that
ROS is not the main mechanism triggering Nrf2 activation in cells
treated with low ATO concentrations.

Pharmacologic inhibition of HO-1 or GSH depletion sensitises
AML and APL cells to ATO. Antioxidant elements induced
during the activation of Nrf2 pathway (that is, HO-1 and GSH)
may have a critical role in a putative resistance against ATO-
mediated cytotoxicity in both AML and APL cells. To explore this
likelihood, HL60, THP-1 and the NB4 (PML–RARa/RARa) cells
were first incubated with different concentrations of ATO in the
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presence or absence of either the active HO-1 inhibitor ZnPP or
CuPP, its inactive form. As shown in Figure 2A, ZnPP (5 mM)
augmented cell cytotoxicity in HL60 and THP-1 exposed to ATO
for 48 h, as determined by the trypan blue exclusion assay. This
effect was not observed when CuPP (5 mM) was used as a control
(data not shown). Interestingly, NB4 cells were sensitive to lower
ATO concentrations and the effect of ZnPP was limited to
concentrations varying between 0.35 and 0.75 mM ATO. To
discard unspecific effects of ZnPP, K562 cells (which do not
induce HO-1 in response to either ATO or t-BHQ) were
subjected to similar conditions. ATO-mediated cytotoxicity was
not affected by the presence of ZnPP in these cells

(Supplementary Figure 2). Regarding the apoptosis-like induced
cell death, the DEVDase assay indicated that caspase activity was
increased by three-fold when HL60 cells were treated with
6.25 mM ATO in the presence of 5 mM ZnPP as compared with
ATO alone (Figure 2B). Moreover, the incubation of HL60 cells in
the presence of 5 mM ZnPP did not modify the caspase activation
induced by methotrexate, daunorubicin or Ara-C (Supplementary
Figure 3).

In a second step, the GSH content in HL60 and NB4 cells was
modulated by pre-incubating with 10 mM BSO, an inhibitor of GSH
synthesis, which depletes its content by B90% (data not shown).
In this context, the ATO-mediated cell death – when used at
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6.25 mM in HL60 cells and at 0.75 mM in NB4 cells, respectively –
was notably augmented, as determined by trypan blue exclusion
assay (Figure 2C) and DEVDase activity (Figure 2D) after 12 h
treatment.

These results indicated that interference with Nrf2-induced
targets, namely, HO-1 expression and GSH levels, led to an
increased ATO-mediated cytotoxicity. Consequently, these Nrf2-
induced targets should have a protective role during ATO
challenge in both AML and APL cells.

The association of ATRA and ATO inhibited Nrf2 nuclear
translocation and leads to an enhanced cell death in both AML
and APL cells. As ATRA inhibited the Nrf2 transcriptional
activity in breast cancer cells (Wang et al, 2007), we explored
whether retinoic acid may modulate the characterised Nrf2
activation in response to ATO in both AML and APL cells. Rather
strikingly, when HL60 and NB4 cells were exposed to ATO in the
presence of 1mM ATRA, Nrf2 nuclear translocation, induction of
HO-1 and NQO1 expression (Figure 3A), as well as the increase in
GSH content (Figure 3B) were reduced.

Interestingly, the ATRA-mediated inhibition of ATO-induced
Nrf2 activity was accompanied with an enhanced cytotoxicity.
Cancer cell viability, as determined by the trypan blue exclusion
assay (Figure 3C), was 80 and 65% in HL60 and NB4 cells,
respectively, when exposed to ATO alone. However, in cells
pretreated for 2 h with ATRA (1 mM) and then further incubated for
24 h with ATO, the cell viability was decreased to 20 and 40% in
HL60 and NB4 cells, respectively. Similarly, the caspase activation
as measured by using the DVEDase assay (Figure 3D) was

enhanced from five-fold (ATO alone) to seven-fold when ATO was
associated with ATRA in HL60 cells. In NB4 cells, the activation of
caspase was enhanced from 3.5-fold (ATO alone) to 5.5-fold
(ATOþATRA).

Ectopic expression of HO-1 in HL60 cells precluded ATRA/
ATO-promoted cytotoxicity. Previous results show that HO-1
expression – via Nrf2 activation – would have a major protective
role in the survival of cells exposed to both ATRA and ATO. To
explore this, HL60 cells were stably transfected with a plasmid
expressing the human HO-1 gene (pSFFV-HO-1). As shown in
Figure 4A, the SFFV promoter was activated in these cells and
ectopic HO-1 expression was maintained even in the presence of
ATRA-ATO combination. Such forced HO-1 expression was
sufficient to reduce ATO-mediated cytotoxicity, but partially
reverted (not significant) the enhanced cytotoxicity triggered by
ATRA during ATO challenge, as determined by the trypan blue
exclusion (Figure 4B) and DEVDase activity (Figure 4C) assays.

Taken together, these results confirm that ATRA synergizes
with ATO to enhance cytotoxicity by inhibiting the Nrf2 pathway
in AML cells.

Involvement of RARa in ATRA-mediated Nrf2 inhibition.
Previous results showed that ATRA enhances ATO-mediated
cytotoxicity by inhibiting the Nrf2 pathway in AML cells. This led
us to explore the potential role of RARa in the ATRA-mediated
effects on Nrf2 pathway in response to ATO. To this end, in
addition to NB4 cells, we included in our study the ATRA-resistant
NB4-R2 cells, a cellular subline bearing a missense mutation in the
PML fragment of PML–RARa that inhibits RARa transcriptional
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function (Duprez et al, 2000). These cells do not differentiate even
following 3 days of exposure to 1 mM ATRA (Figure 5A).
Conversely, HL60 and NB4 were able to differentiate under such
conditions. Subsequently, NB4-R2 and NB4 cells were incubated
with ATO-ATRA. Western blot analysis revealed that HO-1
induction was not reduced in NB4-R2 cells treated with ATO in
the presence of ATRA, as was the case for NB4 parental cells
(Figure 5B). Similar results were observed when GSH content was
determined (Figure 5C).

The critical role of RARa and ATRA interaction in Nrf2
responses to ATO was further demonstrated by recording the

cytotoxicity by ATO in both cell lines. As previously shown in NB4
cells (Figure 3C and D), the cytotoxicity by ATO alone was strongly
enhanced by associating ATRA plus ATO. However, cytotoxicity
was not augmented in NB4-R2 cells when treated with ATO in the
presence of ATRA as determined by the trypan blue exclusion
(Figure 5D) and DEVDase (Figure 5E) assays. To evaluate whether
RARa activation by ATRA was indeed necessary to augment
cytotoxicity, NB4 cells were pretreated with the RARa antagonist
Ro-41-5253 (Apfel et al, 1992) and then incubated with ATO-ATRA
for an additional 24 h. Interestingly, Ro-41-5253 eventually
abolished the ATRA-mediated increase in cytotoxicity (Figure 5F).

DISCUSSION

The present study was undertaken to contribute in the elucidation
of the molecular mechanisms underlying the promising anti-cancer
effects shown by ATRA-ATO, particularly in APL therapy. We
characterised the Nrf2 activation in AML cells by analysing the
induction of known Nrf2 targets in response to different drugs
used currently in APL therapy, that is, Ara-C, daunorubicin and
ATO. Results obtained showed that ATO was the only drug able to
induce Nrf2 targets (HO-1, NQO1, GSH content). Although ATO-
mediated cytotoxicity has been associated with ROS generation
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(Alarifi et al, 2013), Nrf2 activation by ATO in AML cells appeared
to be independent of ROS formation. Indeed, in agreement with a
previous study (Morales et al, 2009), antioxidants such as mannitol
and tiron (a metal chelator and scavenger of both superoxide and
hydroxyl radical species) were unable to preclude Nrf2 activation
(Supplementary Figure 1A and B). In addition, a rapid activation of
Nrf2 by ATO (1 mM) via a noncanonical pathway, independent of
ROS formation, has been recently reported (Lau et al, 2013). The
authors reported that arsenic blocks authophagic flux, resulting in
accumulation of p62 and sequestration of Keap1 into autophago-
somes that leads to a prolonged Nrf2 activation. The mechanism
by which ATO induces the formation of ROS has not been totally
elucidated, but upregulation of NADPH oxidase and subsequent
ROS production appear as one of the main intracellular target
induced in NB4 cells treated for 10 days with low doses of ATO
(Chou et al, 2004). Under our experimental conditions, the
formation of ROS by ATO appears to be highly dependent on
utilised doses. For instance, by using the fluorescein probe (DCFH-
DA), the detection of ROS was only observed at ATO doses higher
than 25 mM, whereas at concentrations lower than 12 mM no ROS

formation was detected (Supplementary Figure 1C). These results
are consistent with previous reports showing that concentrations of
ATO higher than 12 mM (Alarifi et al, 2013) or doses of sodium
arsenite higher than 80 mM (Chen et al, 1998) lead to the formation
of ROS. In this context, the activation of Nrf2 pathway and further
protection of cells against ATO-mediated cytotoxicity by lipoic
acid (Wang et al, 2011) or NAC may be explained by covalent
binding of ATO to sulphydryl residues in proteins or other thiol-
rich molecules (Zhang et al, 2010). Accordingly, NAC inhibited
Nrf2 nuclear translocation mediated by ATO (Supplementary
Figure 1A).

HO-1, catalysing the catabolism of pro-oxidant haem to
carbon monoxide, biliverdin and free iron (Gozzelino et al, 2010),
has been shown to protect AML cells against standard
chemotherapeutic drugs, proteasome inhibitors and TNF-a-
induced apoptosis (Rushworth et al, 2010). Despite the fact that
HO-1 induction is a biological marker for ATO exposition (Miller
et al, 2002), there is controversy as to whether HO-1 protects cells
against ATO-induced cytotoxicity (Morales et al, 2009; Wang
et al, 2011). Our results underline the major role of HO-1 to resist
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the ATO-mediated cytotoxicity in AML cells. Although a
previous study showed that HO-1 induction protected AML cells
against daunorubicin and Ara-C (Heasman et al, 2011), our data
demonstrated that it was not the case even when HO-1 was
inhibited with ZnPP in HL60 cells (Supplementary Figure 3). In
addition, GSH content is considered relevant in the resistance to
ATO-mediated cytotoxicity and high GSH content had been
related with a less sensitivity to ATO (Davison et al, 2003).
Indeed, when GSH synthesis was inhibited with BSO, we
observed an augmented DEVDase activity with a concomitant
loss of cell viability. Taken together, these results support
the involvement of both HO-1 and GSH in cell sensitivity
to ATO.

ATRA-ATO co-treatment has shown to be an effective option in
the APL therapy (Chendamarai et al, 2012); therefore, we
investigated whether the characterised Nrf2 protective activity may
be modified by ATRA during ATO challenge. As shown here, ATRA
inhibited Nrf2 activity during ATO challenge and as expected, it was
associated with enhanced cytotoxicity (Figure 3C and D). Notably,
this inhibitory effect was not observed in the NB4-derived ATRA-
resistant NB4-R2 cells (PML–RARaþ , RARaþ ). These cells were
previously characterised as containing a mutation in the RARa
E-domain of PML–RARa that substitutes Gln903 for a stop codon,
generating a truncated protein that displays a dominant negative
effect on RARa transcriptional activity (Duprez et al, 2000). Results
obtained in NB4-R2 cells (Figure 5) are similar to those in MCF-7
cells, where RARa expression was silenced by shRNA, resulting in
the abolishment of ATRA-mediated inhibition of Nrf2 activity
(Wang et al, 2007). To confirm a major role played by RARa, NB4
cells were pre-incubated with the RARa antagonist Ro-41-5153. As
expected, a potentiating effect by ATRA on cytotoxicity was also
precluded (Figure 5E). This led us to hypothesise that a physical
interaction between RARa and Nrf2 may occur during ATO-ATRA
treatment in AML cells.

In a clinical study conducted by Goto et al (2011), a relapsed
APL patient following chemotherapy with insufficient response to
ATRA was later treated with a combination protocol of ATO
plus ATRA, and promyelocytes resistant to ATO were isolated
during the terminal stage of its clinical course. Interestingly, a
clonal expansion of two subpopulations of blasts was detected. A
main population presented missense mutations in both the B2 and
LBD domains of PML–RARa and a minor emergent population
with a missense mutation in the LBD domain. To note, mutations
in the retinoic acid-binding domain in PML–RARa are related with
ATRA resistance (Marasca et al, 1999; Zhou et al, 2002). On the
basis of these results, we would like to hypothesise that
the presence of these mutations generating ATRA resistance may
be linked to ATO resistance via the Nrf2 pathway. In this context,
when the ATRA-resistant NB4-R2 and NB4 cells were treated with
ATO, a stronger induction of HO-1 protein was observed in the
former cells (Figure 5B). A link between ATRA and ATO
resistance via the Nrf2 pathway may thus be suggested.

Total elimination of promyelocytic blasts during chemotherapy
seems to be crucial in APL. Indeed, recent studies indicated that even
being differentiated with retinoids, blasts harbouring the genetic
fusion PML–RARa still conserved the capacity to reboot APL in an
animal model (Ablain et al, 2013). Thus, molecular bases of
resistance to ATO are necessary to be elucidated to develop effective
chemotherapies eliminating blasts and improving clinical outcome.

In summary, our current results provide evidence implicating
ATRA as an inhibitor of Nrf2 transcriptional activity in AML cells
during ATO challenge that correlates with enhanced cytotoxicity
via a mechanism involving RARa activation. Future research will
explore the molecular mechanism involving Nrf2 inhibition by
ATRA in response to ATO, as well as the role of mutations present
in the LBD domain of RARa and/or PML–RARa, to predict
resistance during ATO-ATRA therapy.
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