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Abstract: NIR spectroscopy was used as a non-destructive technique for the assessment of 

chemical changes in the main internal quality properties of wine grapes (Vitis vinifera L.) 

during on-vine ripening and at harvest. A total of 363 samples from 25 white and red grape 

varieties were used to construct quality-prediction models based on reference data and on 

NIR spectral data obtained using a commercially-available diode-array spectrophotometer 

(380–1,700 nm). The feasibility of testing bunches of intact grapes was investigated and 

compared with the more traditional must-based method. Two regression approaches 

(MPLS and LOCAL algorithms) were tested for the quantification of changes in soluble 

solid content (SSC), reducing sugar content, pH-value, titratable acidity, tartaric acid, malic 

acid and potassium content. Cross-validation results indicated that NIRS technology 

provided excellent precision for sugar-related parameters (r
2
 = 0.94 for SSC and reducing 

sugar content) and good precision for acidity-related parameters (r
2
 ranging between 0.73 

and 0.87) for the bunch-analysis mode assayed using MPLS regression. At validation level, 

comparison of LOCAL and MPLS algorithms showed that the non-linear strategy 
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improved the predictive capacity of the models for all study parameters, with particularly 

good results for acidity-related parameters and potassium content. 

Keywords: NIR spectroscopy; quality parameters; on-vine; bunch analysis 

 

1. Introduction 

The achievement of high quality standards in modern wine production depends on harvesting grapes 

at the optimum stage of ripeness [1]. By determining the right moment for harvesting, winemakers can 

ensure the best possible wine for any given year or conditions. For this purpose, it is essential to 

measure a number of grape quality parameters, including soluble solid content, reducing-sugar content, 

titratable acidity, pH-value, tartaric acid and malic acid contents and sensory attributes [2]. 

Flanzy [3] has noted that grape organic-acid content determines wine acidity, and also governs the 

stability, color and acceptability of the final product, since a wine with the right amount of acidity 

lingers longer on the palate. At the same time, accurate grape-quality measurements enable wineries to 

stream fruit for crushing and blending, thus maximizing the profitability of their production [4]. 

Existing analytical methods for the measurement of grape and wine composition do not meet the 

requirements of modern wine production in a global market, where there is a clear need for fast, 

accurate, simultaneous and non-destructive measurement of quality parameters both in the raw 

material and in the finished product [5-7]. 

Conventional laboratory techniques for measuring different quality characteristics in grapes and 

wines are tedious, time-consuming and technically demanding, and thus constitute a barrier to the 

widespread uptake and use of quality descriptors by the grape and wine industry [8]. 

Because certain variables change in the course of ripening, there is an evident need for non-invasive, 

objective methods of constantly monitoring the ripening process [9]. These methods can also be used 

to separate grapes of different qualities at harvest, thus increasing the economic value of the harvest as 

a whole through product differentiation [10]. 

The potential of NIRS technology as a non-destructive method for the quantitative characterization 

of grape quality parameters, using either grape berries or must, has been amply demonstrated [6,10-15]. 

However, all these studies have required a certain amount of data processing prior to analysis. The 

authors have thus failed to exploit one of the major advantages of NIRS: the fact that it requires no 

sample preparation, and is therefore very fast.  

Although González-Caballero [7] have addressed the use of NIR spectroscopy models for predicting 

SSC, reducing sugar content, pH-value, titratable acidity, tartaric acid levels and malic acid content in 

whole grapes using a spectral range of up to 1,700 nm, the authors stress that the results obtained when 

analyzing grapes in bunch form should only be considered a first step in the fine-tuning of NIRS 

technology for on-site control purposes, and that the expectations aroused by NIRS technology for 

quality control during the ripening process in intact grapes need to be confirmed by increasing the 

sample set, with a view to improving the specificity, accuracy and robustness of the calibrations 

obtained. 
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In practice, however, when new sample groups are included in the calibration set, robustness tends 

to be increased at the expense of accuracy [16]. One way of overcoming this problem is to develop 

specific calibrations for small groups of similar samples within the product domain [17]. The method 

used, known as local regression, combines the advantages of global calibrations obtained using a 

sample set large enough to ensure coverage of extensive product variation with the accuracy provided 

by specific calibrations [17]. 

Dambergs [12] reported improved accuracy in models to predict grape anthocyanin content and pH 

when sample subsets were selected on the basis of vintage, grape variety and growing region, due to a 

reduction of calibration non-linearity; in their view, the LOCAL algorithm appears to provide a 

practical solution to developing robust models for the prediction of these parameters in grapes. They 

note, however, that the models constructed using MPLS and LOCAL algorithms performed equally 

well for measuring total soluble solid content. 

The aim of this study was to develop accurate and robust NIRS models for measuring major internal 

quality parameters in intact wine grapes (soluble solid content, reducing sugar content, pH-value, 

titratable acidity, tartaric acid, malic acid, and potassium content) during ripening and at harvest, 

regardless of growing season or variety, with a view to enabling growers to routinely use NIRS 

technology under field conditions to predict more precisely the timing of their harvest operations, and 

thus ensure the highest possible grape and wine quality. 

2. Material and Methods 

2.1. Grape Sampling During Ripening 

The sample set for all the parameters tested, except for potassium content, comprised 363 samples 

of 25 different white and red wine grape varieties (Vitis vinifera L.). Grape bunches sourced from 

experimental vineyards at the Agricultural Research Training Centre at Cabra, near Cordoba (Spain), 

were harvested in July, August and September in 2006, 2007 and 2008. Grape samples were collected 

every seven days throughout the study. On arrival at the laboratory, grapes were promptly placed in 

refrigerated storage at 0 °C and 95% relative humidity. All samples were allowed to stabilize at room 

temperature (20 °C) prior to Vis–NIR spectral analysis. 

2.2. Spectrum Collection 

Spectra were collected using a Zeiss CORONA portable and non-contact diode-array spectrometer 

(model CORONA 45VIS/NIR, Carl Zeiss, Inc., Thornwood, NY, USA) equipped with the turnstep 

module (revolving plate) and a 20-cm-diameter Petri dish to hold the samples, working in reflectance 

mode in the spectral range 380–1,700 nm, every 2 nm. The measurement distance from the source of 

light to the sample was 13 mm. 

Samples were presented to the instrument in two modes. Spectra were first obtained for intact 

bunches of grapes. Berries were then passed through a hand-operated food mincer (LI 240, Sammic, 

SL, Azpeitia, Guipúzcoa, Spain) which enabled constant pressure to be maintained during juice 

extraction with minimal seed and skin shearing. The must was then centrifuged at 4,000 rpm for  

10 min (Centronic 7000577, Selecta, Barcelona, Spain) to remove suspended solids, and the 
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supernatant was used for NIR spectroscopy purposes. A folded-transmission gold reflector cup, 

diameter 3.75 cm, was used with a pathlength of 0.1 mm.  

Eight spectra were captured per sample for each sample presentation mode, and the average of the 

eight was used in calculations. The signal was captured using CORA software version 3.2.2 (Carl 

Zeiss, Inc., Thornwood, NY, USA), and subsequently pretreated using the Unscrambler version 9.1 

program (CAMO, ASA, Oslo, Norway). 

2.3. Reference Data Analysis 

For each sample, reference data were obtained for SSC, reducing sugar content, pH-value, titratable 

acidity, tartaric acid, malic acid and potassium content. SSC (°Brix), reducing sugar content, must  

pH-value, titratable acidity, and tartaric and malic acid contents were measured as indicated by 

González-Caballero [7]. Potassium content was measured using a CORNING 410 flame photometer 

(Ciba Corning Diagnostics Limited, Halstead, UK) as previously described by the Spanish Ministry of 

Agriculture, Fisheries and Food [18]. Results were expressed as milligrams per liter. 

2.4. Calibration and Validation Sets 

The sample set, except for potassium cation, comprised all the available samples (363 samples;  

25 varieties) picked during ripening: 108 samples collected in 2006, 120 samples in 2007, and 135 

samples in 2008. After eliminating as outliers (n = 2 samples for 2006; n = 4 samples for 2007;  

n = 13 samples for 2008) those grapes considered over-ripe and thus displaying high sugar content, the 

initial sample set was divided in two subsets: 251 samples (73% of the total) were used to construct 

calibration models (calibration set), and the remaining 93 samples (27%), all picked in 2008, were 

used for external validation (validation set). It should be stressed that the calibration set contained all 

available samples from 2006 (106 samples) and 2007 (116 samples), together with 29 samples from 

2008. These sets were used to develop and subsequently validate models to predict SSC, reducing 

sugar content, pH-value, titratable acidity, tartaric acid, and malic acid. The calibration and validation 

sets used to predict potassium content contained only samples from 2008: 104 (80%) for calibration 

and 44 (20%) for external validation. In all cases, samples were selected solely on the basis of spectral 

data, following Shenk and Westerhaus [19], using the CENTER algorithm included in the WinISI II 

software package version 1.50 (Infrasoft International, Port Matilda, PA, USA) prior to developing 

NIRS calibrations, in order to determine the structure and spectral variability of the study population. 

This algorithm was applied over the samples belonged to 2008 season. 

2.5. Chemometric Data Treatment  

The WinISI II software package version 1.50 was used for the chemometric treatment of data [20]. 

Prior to model development using the two regression algorithms (MPLS and LOCAL), different  

pre-processing combinations were evaluated. As spectral treatments, standard normal variate plus 

detrending [21] were used to remove multiplicative scatter interferences, and four derivative treatments 

were tested (1,5,5,1; 2,5,5,1; 1,10,5,1 and 2,10,5,1), where the first number denotes the derivative 

order, the second denotes the number of nanometers in the segment used to calculate the derivative, 
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and the third and fourth numbers denote the number of data points over which running-average 

smoothing was conducted [20,22]. 

First, quantitative calibrations were developed using the MPLS algorithm [23] for predicting 

internal quality parameters using the bunch as presentation sample; the results were then compared 

with the calibrations obtained for must. For cross-validation, the calibration set was partitioned into  

4 groups; each group was then validated using a calibration developed on the other samples in order to 

select the optimal number of factors and to avoid overfitting. 

The LOCAL algorithm [17] was then used to predict the same quality parameters but using only the 

bunch as sample presentation, since this is how the winery industry receives the raw material. The 

LOCAL algorithm operates by searching and selecting from a library (based on the training set) the 

samples most spectrally similar to the sample to be predicted. The selected samples are used to develop 

a specific (local) calibration using a modified PLS regression for the prediction of the unknown 

sample. Selection is based on the coefficient of correlation between the spectrum of the sample to be 

predicted and each of the sample spectra belonging to the spectral library; those samples displaying the 

highest correlation are selected. 

Different parameters have to be evaluated in order to optimize the LOCAL algorithm [24,25]. In the 

present study, for each dataset, an optimization design was set up by varying the number of calibration 

samples (k) from 25 to 150 in steps of 25, but including 110, for predicting SSC, reducing sugar 

content, pH-value, titratable acidity, tartaric acid, malic acid; and from 25 to 75 in steps of 25 for 

predicting potassium content in bunches; the number of PLS terms (l) was varied from 14 to 16 in 

steps of 1, where the number of predicted values corresponding to the first PLS terms discarded was 4. 

Finally, the minimum number of samples used for each calibration was set to 15. 

For both algorithms, the following spectral regions were tested for calibration purposes:  

380–1,650 nm (the highest spectral range with useful information covering the VIS + NIR regions); 

780–1,650 nm (the highest spectral range covering the NIR region and including the very near infrared 

region) and 1,100–1,650 nm (including only the strict near-infrared region). In order to eliminate noise 

at the end of the spectral range, the region between 1,650–1,700 nm was discarded. 

Mahalanobis distance statistics, Hglobal and Hneighbour, were computed from the principal components 

of the selected samples to check the accuracy of predictions [17,26]. The effect of the different settings 

on the performance of MPLS and LOCAL was evaluated by comparing the standard error of prediction 

(SEP), the coefficient of regression for the external validation (r
2
), the bias, and the standard error of 

prediction corrected for bias or SEP(c).  

3. Results and Discussion  

3.1. Chemical Composition 

During ripening, the study parameters covered a relatively wide range, due to the constant changing 

of sample matrices. Changes in chemical composition are shown in Table 1, which also indicates the 

number of samples in the calibration and validation sets following application of the CENTER 

algorithm, together with mean, standard deviation (SD), and coefficient of variation (CV) values. 

Samples were collected over the critical months to check for variations in SSC (10.60–58.60 °Brix), 
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titratable acidity (0.20–20.50 g/L tartaric acid) and tartaric acid (4.90–18.60 g/L tartaric acid) in  

the berry. 

Table 1. Statistical analysis of calibration and validation sets: data range, mean and 

standard deviation (SD) and coefficient of variation (CV). 

Parameter Item 

Calibration Set 

(n = 251 Except 

Potassium, n = 104) 

Validation Set 

(n = 93, Except 

Potassium, n = 44) 

Soluble solid content (°Brix) Range 10.60–58.60 11.80–27.50 

 Mean 20.49 19.88 

 SD 5.84 3.77 

 CV (%) 28.51 18.96 

Reducing sugar content (g/L) Range 81.50–586.40 114.30–287.00 

 Mean 198.39 203.88 

 SD 64.95 41.58 

 CV (%) 32.74 20.40 

pH-value Range 2.48–4.60 2.60–3.80 

 Mean 3.35 3.33 

 SD 0.34 0.25 

 CV (%) 10.19 7.60 

Titratable acidity (g/L tartaric acid) Range 0.20–20.50 3.40–19.10 

 Mean 6.72 6.42 

 SD 3.52 3.07 

 CV (%) 52.29 47.79 

Tartaric acid (g/L tartaric acid) Range 4.90–18.60 7.30–15.70 

 Mean 9.48 9.74 

 SD 2.80 1.96 

 CV (%) 29.53 20.14 

Malic acid (g/L malic acid) Range 0.10–14.50 0.30–13.10 

 Mean 2.33 2.74 

 SD 2.32 2.51 

 CV (%) 99.71 91.85 

K (mg/L) Range 841.00–2,737.00 938.00–2,522.00 

 Mean 1,692.28 1,675.99 

 SD 401.12 340.02 

 CV (%) 23.70 20.29 

 

The sample set was highly variable, since it contained data from grapes sampled at different stages 

of ripening over three years; this accounts to a large extent for the high CV values recorded, 

particularly for SSC, reducing sugar content, titratable acidity, tartaric acid, malic acid and potassium 

content (Table 1). The results confirm the suitability of this method for selecting the validation set, 

since calibration and validation set displayed similar values for mean, SD, range and CV for all 

parameters studied, and the ranges for the validation set lay within the range recorded for the 

calibration set. 
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During veraison and until ripening, there is a progressive decline in malic, and to a lesser extent in 

tartaric acid levels. Flanzy [3] notes that tartaric acid is mostly formed in growing organs and cannot 

be metabolized except at temperatures over 35 °C. Since temperatures are highest at the end of 

ripening, it is at this stage when the lowest tartaric acid levels are recorded. Malic acid is synthesized 

following the combustion of sugars in chlorophyll-containing tissues. Unlike tartaric acid, it is 

unstable, and is metabolized during ripening, leading to low levels at harvest. 

Potassium is the major mineral cation in grapes and plays a major role in the neutralization of 

tartaric and malic acid in the berries, thereby affecting the grape‘s acid profile [27,28]. Potassium 

directly determines the pH not only of wine but also of must [29]. It is present in wines mainly as 

potassium bitartrate, an unstable compound that can precipitate at cool temperatures as a crystalline 

deposit [30].  

3.2. Calibration Development using MPLS Regression and NIR Spectra  

3.2.1. Prediction of Sugar-Related Quality Parameters in Grapes 

Table 2 shows the best calibration models obtained using the global set (n = 251) for the prediction 

of SSC and reducing sugar content according to the spectral range and derivative treatment used, for 

bunches and musts, using the MPLS algorithm. 

The equation displaying the greatest predictive capacity for SSC in bunches was that obtained over 

the broadest spectral range, i.e., 380–1,650 nm, with statistical values of r
2
 = 0.94; SECV = 1.00 °Brix; 

RPD = 4.12; CV = 5.08%. The predictive capacity of this equation was slightly poorer than that of the 

equation obtained with grape must (RPD = 4.29; CV = 4.81%). However, both models displayed 

excellent predictive capacity in term of the criteria outlined by Williams [31], who suggest than an r
2
 

value greater than 0.9 and RPD values greater than 3 indicate excellent quantitative information. 

For reducing sugar content, the equation displaying the greatest predictive capacity in bunches was 

obtained over the range 780–1,650 mm, yielding statistical values for r
2
, SECV and RPD slightly 

higher than those obtained for must samples. The RPD value (3.95) together with the r
2
 value (0.94) 

for bunches demonstrated the robustness and power of the calibration models. 

No previously-published studies address the direct measurement of SSC in bunches, and values 

reported for measurements in berries tend to be lower than those obtained here; Larraín [13], for 

example, recorded an RPD value of 3.40. Kemps [10] reported a RPD value of 5.05 when measuring 

sugar concentrations in grape berries. 

The literature contains only one report evaluating the use of NIRS to measure internal sugar-related 

quality parameters in grape bunches [7]. The results obtained for SSC (r
2
 = 0.89; SECV = 1.41 °Brix; 

RPD = 2.92) and reducing sugar content (r
2
 = 0.87; SECV = 17.13 g/L; RPD = 2.77) were lower than 

those recorded here, confirming the need to work with broad-based sample sets which reflect  

existing variability, with a view to increasing model robustness and precision. Williams [31] and  

Pérez-Marín [32] highlight the importance of both sample set size and sample distribution within the 

calibration set, noting that sample sets for calibration should ideally ensure uniform distribution of 

composition across the range of the study parameter in question. 
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Table 2. Calibration statistics for the models obtained for predicting soluble solid content 

(SSC), reducing sugar content, pH-value, titratable acidity, tartaric acid, malic acid and 

potassium content for the different sample presentations and spectral ranges studied 

(calibration set, n = 251 samples except for potassium cation, n = 104) using MPLS 

regression. 

Parameter 
Sample 

Presentation 

Spectral 

Range 

(nm) 

Mathematic 

Treatment 
Mean 

1
 SD 

2
 SEC 

3
 R 

2 4
 SECV

5
 r

2 6 
RPD

7
 CV(%) 

8
 

SSC (°Brix) 
Bunch 380–1,650 2,5,5,1 19.71 4.13 0.74 0.97 1.00 0.94 4.12 5.08 

Must 780–1,650 1,10,5,1 19.92 4.11 0.86 0.96 0.96 0.95 4.29 4.81* 

Reducing 

sugar content 

(g/L) 

Bunch 780–1,650 2,5,5,1 191.72 53.80 10.76 0.96 13.63 0.94 3.95 7.11* 

Must 380–1,650 2,5,5,1 195.48 51.14 12.00 0.94 15.36 0.91 3.33 7.86 

pH-value 
Bunch 380–1,650 1,10,5,1 3.34 0.33 0.10 0.91 0.12 0.87 2.73 3.60* 

Must 380–1,650 1,5,5,1 3.36 0.34 0.20 0.65 0.21 0.60 1.58 6.39 

Titratable 

acidity (g/L 

tartaric acid) 

Bunch 380–1,650 1,10,5,1 6.11 2.57 0.96 0.86 1.07 0.83 2.40 17.49* 

Must 380–1,650 1,5,5,1 5.94 2.48 0.82 0.89 1.11 0.80 2.24 18.62 

Tartaric acid 

(g/L tartaric 

acid) 

Bunch 380–1,650 1,10,5,1 9.20 2.49 1.08 0.81 1.18 0.78 2.11 12.78* 

Must 380–1,650 1,5,5,1 8.90 2.36 1.21 0.74 1.28 0.71 1.85 14.35 

Malic acid 

(g/L malic 

acid) 

Bunch 380–1,650 2,5,5,1 1.86 1.57 0.68 0.82 0.81 0.73 1.94 43.48 

Must 380–1,650 2,10,5,1 1.85 1.57 0.56 0.87 0.74 0.78 2.13 39.69* 

K (mg/L) 
Bunch 380–1,650 1,5,5,1 1,634.35 324.74 193.06 0.65 242.26 0.44 1.34 14.82* 

Must 380–1,650 1,5,5,1 1,676.75 319.49 242.97 0.42 258.94 0.35 1.23 15.44 
1 mean of the calibration set; 2 standard deviation; 3 standard error of calibration; 4 coefficient of 

determination of calibration; 5 standard error of cross validation; 6 r2: coefficient of determination of cross 

validation; 7 ratio SD/SECV; 8 coefficient of variation; * best equation. 

3.2.2. Prediction of Acidity-Related Quality Parameters in Grapes 

For pH-value, the best statistics (r
2
 = 0.87; SECV = 0.12; RPD = 2.73) for bunch analysis were 

obtained with the first derivative treatment in the spectral range 380–1,650 nm (Table 2). The value 

obtained for r
2
 (0.87) would, according to the guidelines put forward by Williams [31], provide 

sufficiently good quantitative information to enable the classification of musts obtained from these 

grapes, thus allowing musts to be adjusted prior to fermentation. Interestingly, bunch analysis yielded 

better results than must presentation for pH-value: RPD = 2.73 and CV = 3.60% for bunch mode and 

RPD = 1.58 and CV = 6.39% for must presentation.  

The results obtained using bunch analysis were better than those obtained by González-Caballero [7] 

(r
2
 = 0.69; SECV = 0.19; RPD = 1.81), by Cozzolino [33] (RPD = 1.4) and by Larraín [13] (RPD = 2.2); 

in both these studies, samples were presented in berry form. 

Models constructed to predict other acidity-related parameters in bunches (Table 2) may be 

considered good, as indicated by the values obtained for the determination coefficient (r
2
 = 0.83 for 

titratable acidity; r
2
 = 0.78 for tartaric acid; and r

2
 = 0.73 for malic acid) [31]. It should also be stressed 
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that the best equations for titratable acidity (r
2
 = 0.83; SECV = 1.07 g/L; RPD = 2.40) and tartaric acid 

content (r
2
 = 0.78; SECV = 1.18 g/L; RPD = 2.11) were obtained using bunch rather than must 

analysis. Although better results were obtained for malic acid content using must analysis (r
2
 = 0.78;  

SECV = 0.74 g/L; RPD = 2.13), the statistics obtained for bunch analysis indicated a fairly similar 

predictive capacity (r
2
 = 0.73; SECV = 0.81 g/L; RPD = 1.94).  

As was the case with sugar-related parameters, and due to an increase in the number and variability 

of the samples in the calibration set, the models constructed here displayed greater predictive capacity 

than those obtained by González-Caballero [7] who, in a study of bunch presentation using a set of 108 

samples, reported the following values: titratable acidity RPD = 1.35, CV = 24.63%; tartaric acid 

content RPD = 1.38, CV = 16.02%; and malic acid content RPD = 1.28, CV = 88.42%. 

3.2.3. Prediction of Potassium Content in Grapes 

The predictive capacity of the models constructed to predict potassium content both in bunches and 

in must was relatively poor. For bunch analysis, statistical values (r
2
 = 0.44; SECV = 242.26 mg/L) 

indicated that models were sufficient to distinguish between samples containing high and low levels of 

potassium [31]. It should be noted that the calibration set available comprised only samples picked in 

2008; it is therefore reasonable to assume that—as was the case with sugar-related and acidity-related 

parameters—the predictive ability of the models could be improved by increasing the number of 

samples and the variability of sample sets by using samples picked in successive years.  

Potassium is the major mineral cation in grapes. Potassium levels thus influence the grape‘s acid 

profile and thus the final quality of the wine obtained. Simultaneous measurement of potassium levels 

along with other internal quality parameters is therefore clearly of interest to the wine industry. 

There are no previous reports on the use of NIR spectroscopy to measure potassium content in 

grapes, even though information on crop nutrition is essential for winegrowers, enabling them to 

adequately establish nutrient requirements and to fine-tune fertilizer rates. Sauvage [34], however, 

have measured potassium levels in wine using this method (r
2
 = 0.86; SECV = 79.00 mg/L).  

3.3. Comparison of Grape Internal Quality Parameters using MPLS versus LOCAL Algorithms 

The LOCAL algorithm was also used to predict internal quality parameters in bunches. The best 

SEPc values obtained with the best mathematical treatments and spectral ranges over 21 runs (7 values 

for k and 3 for l) are shown in Figure 1. The lowest values for SEPc were achieved with the lowest 

values for k. For application of the LOCAL strategy, only 25 samples were used to predict malic acid 

and potassium content; 50 samples were used for SSC and reducing sugar content predictions, and  

75 samples were used for pH, titratable acidity and tartaric acid. Samples were selected as being the 

most representative of the calibration set, rather than using all the 251 samples or the 104 samples in 

the case of potassium cation employed to construct the calibration model using MPLS regression.  
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Figure 1. Best SEPc values for the prediction of quality parameters in intact grapes using 

the LOCAL algorithm for the different selected samples values (k), PLS factors (l), the best 

mathematic treatments developed and spectral ranges. ( ) 14 PLS factors; ( ) 15 PLS 

factors, ( ) 16 PLS factors).  
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Figure 1. Cont. 
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Table 3. Validation statistics for the best models for predicting soluble solid content 

(SSC), reducing sugar content, pH-value, titratable acidity, tartaric acid, malic acid and 

potassium content using MPLS and LOCAL algorithms. 

Parameter Method 
Mathematic 

Treatment 

Spectral 

Region 
Factors SEP

1
 SEPc

2
 Bias r

2 3
 Slope 

SSC (°Brix) MPLS 2,5,5,1 380–1,650 16 1.69 1.69 0.17 0.80 0.97 

LOCAL (k = 50) 2,10,5,1 780–1,650 16 (−4) 1.33 1.32 0.24 0.88 0.96 

Reducing sugar 

content (g/L) 

MPLS 2,5,5,1 780–1,650 16 16.67 15.80 5.57 0.86 0.94 

LOCAL (k = 50) 2,10,5,1 780–1,650 14 (−4) 16.40 15.02 6.77 0.88 0.91 

pH-value MPLS 1,10,5,1 380–1,650 16 0.17 0.17 0.02 0.58 0.84 

LOCAL (k = 75) 1,5,5,1 780–1,650 15 (−4) 0.15 0.15 0.02 0.66 1.11 

Titratable 

acidity (g/L 

tartaric acid) 

MPLS 1,10,5,1 380–1,650 16 1.73 1.67 −0.49 0.48 0.85 

LOCAL (k = 75) 1,10,5,1 780–1,650 16 (−4) 1.87 1.80 −0.54 0.66 0.97 

Tartaric acid 

(g/L tartaric 

acid) 

MPLS 1,10,5,1 380–1,650 16 1.60 1.49 0.60 0.46 0.88 

LOCAL (k = 75) 1,5,5,1 780–1,650 14 (−4) 1.47 1.47 0.08 0.47 0.79 

Malic acid (g/L 

malic acid) 

MPLS 2,5,5,1 380–1,650 16 1.39 1.39 0.20 0.30 0.95 

LOCAL (k = 25) 2,10,5,1 380–1,650 15 (−4) 1.54 1.55 −0.02 0.51 0.89 

K (mg/L) MPLS 1,5,5,1 380–1,650 14 300.23 301.15 −38.83 0.29 0.67 

LOCAL (k = 25) 2,5,5,1 780–1,650 14 (−4) 284.52 281.71 −69.02 0.39 0.80 
1 standard error of prediction; 2 standard error of prediction bias-corrected; 3 coefficient of determination of 

prediction. 

4. Conclusions 

The results obtained here when analyzing grapes in bunch form—a method that requires no 

previous sample preparation—confirm that NIRS technology is well suited for evaluating internal 

quality characteristics related to sugar content and acidity, for the non-destructive quantification of 

chemical changes taking place during on-vine ripening, and for deciding on the optimum time for 

harvesting. NIR technology additionally enables the classification of bunches in terms of low versus 

and high potassium levels, using a very fast, non-destructive sensor.  

The results also highlight the need to develop models using a database sufficiently large to reflect 

the spectral variability that may be encountered during on-vine ripening. In comparison with MPLS 

regression, the LOCAL algorithm proved to be a highly effective tool for improving the prediction of 

internal quality parameters in intact grapes.  
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