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Cellular plasticity, a feature associated with epithelial-to-mesenchymal transition (EMT),

contributes to tumor cell survival, migration, invasion, and therapy resistance. Phenotypic

plasticity of the epithelium is a critical feature in multiple phases of human cancer in

an oncogene- and tissue-specific context. Many factors can drive epithelial plasticity,

including activating mutations in KRAS, which are found in an estimated 30% of all

cancers. In this review, we will introduce cellular plasticity and its effect on cancer

progression and therapy resistance and then summarize the drivers of EMT with an

emphasis on KRAS effector signaling. Lastly, we will discuss the contribution of cellular

plasticity to metastasis and its potential clinical implications. Understanding oncogenic

KRAS cellular reprogramming has the potential to reveal novel strategies to control

metastasis in KRAS-driven cancers.
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INTRODUCTION

KRAS is mutated in an estimated 30% of all cancers. In fact, the small GTPase KRAS has an
activating point mutation in over 90% of pancreatic cancer patients (1), ∼35% of lung cancer
patients, and ∼40% of colorectal cancer patients (2). As such, oncogenic KRAS is established as
a driver of cancer initiation, progression, metastasis, therapy resistance, and immune suppression
in multiple cancers (3). KRAS is an alluring therapeutic target, yet strategies targeting KRAS have
been largely unsuccessful. However, understanding downstream effectors of KRAS signaling might
provide alternative strategies to indirectly target KRAS and the cellular reprogramming driven by
oncogenic KRAS signaling.

Recent evidence suggests that individual KRAS mutations activate distinct signaling pathways
(2, 4). For example, gene expression analysis of primary human NSCLCs expressing G12C or
G12V activatingmutations in KRAS showed distinct gene expression profiles compared to cell lines
expressing other KRAS activating point mutations (5). Similarly, Hammond et al. (6) engineered
SW48 colorectal cancer cells, which are KRAS wild-type, to express KRAS point mutations:
G12V, G12D, or G13D. Subsequent phosphoprotein expression analysis revealed the activation
of differential signaling pathways in distinct KRAS mutational contexts. In support of these
results, a large-scale screening effort using RNAi, small-molecules, and genetic analysis of cell
lines and TCGA analysis revealed that KRAS binds to different effector proteins depending on
the cellular context, which was determined by cell lineage, secondary mutations, and metabolic
state (7). To further study context-dependent KRAS signaling in cancer, Brubaker et al. (4)
developed a statistical approach to humanize multiplexed quantitative proteomic data from mouse
models of colon and pancreatic cancer. Through the integration of proteomics and mutation data
from human PDAC cohorts they identified synthetic lethal partners with oncogenic KRAS and
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mutant KRAS tissue-specific and cross-tissue signaling. Each of
these studies indicate that the signaling outcome and thus cellular
phenotype driven by KRAS mutation is deeply dependent on
cellular context.

Epithelial plasticity or an epithelial-to-mesenchymal
transition (EMT) is a key cellular program that can be
activated by KRAS. EMT contributes to tumor progression by
enhancing tumor cell survival and therapy resistance and by
facilitating success in the metastatic cascade. In this review,
we will introduce cellular plasticity and its effect on cancer
progression and therapy resistance and then summarize drivers
of EMT with an emphasis on KRAS signaling. Lastly, we will
discuss the contribution of cellular plasticity to metastasis and its
potential clinical implications.

CELLULAR PLASTICITY AND EMT

Cellular plasticity serves as a mechanism of tissue adaptation and
regeneration in normal tissues and can also predispose tissue to
cancer transformation (8). In the pancreas, pancreatic epithelial
and acinar cells display robust plasticity, enabling adaptation to
metabolic and environmental stress. In pancreatic cancer, tumor
cells alter their phenotype as a result of exposure to diverse
metabolic conditions, signaling molecules, stromal elements, and
therapeutic agents. This plastic state in tumor cells can facilitate
tumor progression, including metastasis, chemoresistance, and
immune evasion (8).

Acinar-to-ductal metaplasia (ADM) (9), describes a process
where normal pancreatic acinar cells assume a duct-like state
in the setting of chronic injury, such as pancreatitis. When
pancreatitis resolves in normal/non-malignant pancreatic tissue,
ADM lesions revert to acinar morphology. However, if KRAS-
transformed acinar cells are subjected to the stress of pancreatitis,
precancerous pancreatic intraepithelial neoplasia often forms
(10–14). This suggests that pancreatic ductal adenocarcinomas
(PDACs) may arise from acinar cells that have undergone
transdifferentiation to a duct-like state. Normal pancreatic cells
are sensitive to the transforming effects of mutant KRAS and the
loss of phosphatase and tensin homolog (15), indicating that the
likelihood of tumor formation and eventual histologic tumor type
depends on the specific drivers that are present as well as the
cellular compartments in which they are expressed (16–20).

EMT is another example of cellular plasticity program that
is used by cells and tissues to adapt to cues or cellular stress.
EMT classically defined is a developmental program that is
instrumental in early embryo patterning during gastrulation
(21, 22) and is characterized by epithelial cells losing cell-
to-cell adhesion, epithelial tight junctions, and desmosomes.
These changes are thought to occur through coordinated genetic
reprogramming induced by EMT-transcription factors (EMT-
TFs) that are activated in response to extracellular cues (21).
These cues include growth factors such as transforming growth
factor-β (TGFβ), epidermal growth factor (EGF), hepatocyte
growth factor (HGF), and insulin-like growth factor 1 (IGF1) (21,
23–26). This essential developmental program can be hijacked
during tumorigenesis to promote increased cell migration
and survival.

EMT in tumor cells can also be induced by cellular stress
such as inflammation or nutrient/oxygen deprivation (27), and
transforming oncogenes including oncogenic KRAS (28, 29). The
genetic reprogramming associated with EMT in normal tissue
or cancer leads to a shift from an epithelial to a mesenchymal
phenotype. Epithelial cells often have polygonal shapes in
monolayer culture, are polarized along their apical-basal axis
and are tightly joined to one another laterally through adherens
junctions. In contrast, mesenchymal cells exhibit spindle-like
morphology and are loosely attached to the surrounding stroma
through focal adhesions, which contributes to increased motility
and invasive behavior (30) (Figure 1).

In epithelial tumors, the manifestation of an EMT program
is associated with tumor grade. High-grade cancer is aggressive
and characterized by a loss of normal tissue structure and
architecture. High-grade tumors are often described as poorly
differentiated and mesenchymal, displaying tumor cells that have
undergone EMT. In contrast, low-grade tumors are characterized
as well-differentiated cancers that retain an epithelial phenotype.
Across human cancer, tumors that are high grade and poorly
differentiated carry a worse prognosis with a high likelihood of
metastasizing to distant organs (8).

EMT is a common feature associated with tumor progression
and is thought to be critical to cancer cell dissemination in
some tumors (31–33). The metastasis of epithelial tumors, such
as PDAC, requires the cancer cells to escape epithelial nests,
invade surrounding stroma, intravasate into blood or lymphatic
vessels, survive circulation, and extravasate at the secondary
site, where successful cells form micrometastases and eventually
macrometastases (34). The escape of tumor cells from tumor cell
nests encapsulated by a basement membrane can be facilitated
by tumor cell epithelial plasticity, which results in epithelial
tumor cells losing contact with the basement membrane and
nearby cells while adopting mesenchymal-like features that
enable cell migration and invasion. This is a common feature
in mouse models of PDAC (35–37). While epithelial plasticity
alters morphology and cell-cell contact it also enhances tumor
cell survival under stressful environmental conditions, such as
chemotherapy and radiation (32, 38–40). EMT andmetastasis are
generally considered to be late events in tumorigenesis; however,
EMT and the metastatic cascade has been shown to occur even
in “preinvasive” stages of PDAC (35). Thus, the concept that
EMT is driven by the oncogenotype of a tumor is worthy
of consideration.

In KRAS-driven tumors, such as PDAC, tumorigenesis and
epithelial plasticity programs are often intertwined. For example,
in genetically engineered mouse models (GEMMs) of PDAC
harboring mutant KRAS, EMT was found to be an early
event after tumor formation (35). Furthermore, co-expression
of mutant KRAS and a polycomb-group repressor complex
protein, Bmi1, in normal human pancreatic duct-derived cells
(HPNE) induces partial EMT via upregulation of the EMT-TF
Snail (28, 41–43). In addition, multiple receptor tyrosine kinases
(RTKs) implicated in the induction of EMT activate RAS and
the resulting signaling cascade induces the expression of EMT-
TFs in a RAS-dependent manner (43–46). Other pathways have
also been shown to interact with mutant KRAS to drive EMT.
For example, the EMT-TF, Snail has been shown to induce TGFβ
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FIGURE 1 | Activation of epithelial-to-mesenchymal transition (EMT). During EMT, epithelial cells lose their cell-to-cell adhesion and adopt a more spindle-like

morphology due to the expression of mesenchymal markers. This morphology change results in the ability to escape the basement membrane and invade and survive

stressful situations, including therapy. EMT can be induced by a variety of growth factors, signaling pathways, and cellular stress such as hypoxia and nutrient

deprivation. MET, mesenchymal-to-epithelial transition; MMP, matrix metallopeptidase.

signaling in a mutant KRAS dependent manner to drive EMT
(47). Other studies revealed that signal transducer and activator
of transcription 3 (STAT3) can mediate a synergistic interaction
between TGFβ and RAS resulting to enhance Snail driven EMT
(48). Other small GTPases, RAC, and RHO, are also activated by
RAS via PI3K to drive EMT by regulating adherens junctions
and focal adhesions (49). Thus, while mutant KRAS driven
tumors are often dependent on RAS activity for development and
maintenance (28, 41, 42) the prominent oncogenic mutation also
is a critical component of epithelial plasticity.

EMT AND THERAPY RESISTANCE

Epithelial plasticity is a key chemoresistance and immune
surveillance evasion strategy exploited by tumor cells (50, 51).
Plastic tumor cells exhibit increased rates of resistance to
therapy including radio-, chemo-, targeted, and immunotherapy
(39, 40, 52–54). Stress, such as inflammation, nutrient/oxygen
deprivation, and therapy can induce epithelial plasticity in
cancer cells (27). A common consequence of EMT is reduced

drug uptake by tumor cells. For example, the expression
of equilibrative nucleoside transporter 1 (ENT1), which can

transport nucleoside analog chemotherapy into cells, is often
reduced in tumor cells that have undergone EMT. However,
tumors engineered to lack EMT transcription factors (EMT-
TFs), such as Snail and Twist, showed elevated ENT1 expression
and increased sensitivity to gemcitabine, a nucleoside analog
(55). Consistent with these results, Ludwig et al. (54) found
that inhibition of AXL reduced epithelial plasticity in models
of PDAC, increased ENT1 expression and enhanced sensitivity

to gemcitabine when compared to gemcitabine alone or
control treated animals. To combat chemoresistance in cancer
patients, intermittent dosing or “drug holidays” have been
suggested, although recent studies have revealed that resistance
driven by oncogenic KRAS is not reversible (56). In human
cancer cell lines, therapy resistance driven by mutant KRAS
was found to irreversibly drive ZEB1-dependent EMT and
chemoresistance through the hyperactivation of ERK1/2 (56),
arguing against the use of intermittent dosing in tumors driven
by oncogenic KRAS. Fischer et al. (57) showed in a spontaneous
breast-to-lung metastasis model that EMT contributes to
chemotherapy resistance, as mesenchymal-like tumor cells
survived cyclophosphamide treatment, demonstrating reduced
proliferation, apoptotic tolerance, and increased expression of
chemoresistance-related genes. These observations highlight the
potential increase in therapeutic efficacy that might result
from combining standard therapy with strategies to combat
epithelial plasticity.

The hypoxic state of pancreatic tumors increases tumor

cell migration and chemoresistance (58). In fact, EMT can

be driven by hypoxia often via the induction of TGFβ (59).

Additionally, in human pancreatic cancer cell lines, hypoxia

has been shown to drive EMT in an NFκB dependent manner

through the stability of hypoxia-inducible factor 1 alpha (HIF-
1α) and subsequent activation of RelA (p. 65) (60–63), a subunit
of the NFκB family of transcription factors (64, 65). NFκB is
considered a crucial component of drug resistance in mutant
KRAS driven tumors such as pancreatic cancer and colorectal
cancer, which typically expresses high levels of the protein
(66). The activation of NFκB has been shown to upregulate
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anti-apoptosis proteins such as Bcl-XL and Bcl-2, promoting
chemoresistance (67, 68). As such, NFκB inhibition might
be an approach to combat chemoresistance in tumors with
KRAS-driven EMT.

Resistance to targeted therapy has also been associated
with a mesenchymal state. In non-small cell lung cancer
(NSCLC), the expression of an EMT gene signature, which
included AXL expression, was associated with resistance to
treatment with epidermal growth factor receptor (EGFR)
and phosphatidylinositol 3-kinase (PI3K) inhibitors (69–
73). Similarly, in vitro studies suggested that epithelial
NSCLC cell lines are more sensitive to EGFR inhibitors
than mesenchymal cell lines (74), and that when AXL is
inhibited, sensitivity to EGFR inhibitors is increased (75, 76).
In breast cancer patients, the EMT program also serves as a
major driver of drug resistance, disease occurrence, and systemic
dissemination (52, 77, 78).

In addition to targeted and chemotherapy, EMT has been
associated with resistance to immunotherapy (79). In murine
melanoma cells, Snail, a canonical EMT-TF, was found to
be necessary and sufficient for resistance to cytotoxic T-cell–
mediated killing via the induction of regulatory T cells. The effect
was driven by immunosuppressive CD11c+ dendritic cells, which
were generated in response to Snail-expressing melanoma cells
(40). Similarly, immune therapy-resistant melanomas display a
mesenchymal gene signature, including the downregulation of
E-cadherin and upregulation of factors involved in extracellular
matrix (ECM) remodeling, angiogenesis, and wound healing
(80). Additionally, the immune system is a key component
of chemotherapy responses, as many chemotherapeutic agents
directly affect the immune landscape of tumors (81). Therefore,
identification of key signaling pathways involved in epithelial
plasticity could reveal overlap with tumor immune evasion and
new therapeutic targets, inhibition of which increases the efficacy
of chemo- and immunotherapy.

EMT AND TUMOR METABOLISM

Metabolic alterations are associated with mutant KRAS-
induced EMT. Cancer cells often increase glycolytic flux to
meet the high energy demand to support rapid cell growth
and division (82). In contrast to normal cells that typically
generate energy via the breakdown of pyruvate, cancer cells
generate energy by the non-oxidative breakdown of glucose
with tumor cells displaying glycolytic rates up to 200 times
higher than normal cells in the body (83). This preferential
activation of glycolysis for energy supply is referred to as the
“Warburg Effect” (83). In pre-clinical models as well as human
patient samples, oncogenic Kras signaling can transcriptionally
upregulate the glucose transporter GLUT1, as well as multiple
enzymes in the glycolytic pathway [e.g., Hexokinase1 (HK1),
Hexokinase2 (HK2), Phosphofructokinase1 (PFK-1), and Lactate
dehydrogenase A (LDHA)] (82, 84, 85). Hypoxia, a common
environmental condition in solid tumors, triggers O-linked
β-N-acetylglucosamine (O-GlcNAcylation) at S529 of PFK-1,
inducing glycolysis and giving a selective growth advantage to

the cancer cells (86, 87). Cancer induced HIF-1α and MUC1
have also been shown to upregulate the expression of key
glucose transporters and glycolytic enzymes, including GLUT1
and aldolase A, which leads to increased glucose uptake and
glycolysis (82, 84, 88). In addition to glycolysis, recent evidence
suggests oncogenic KRAS drives glucose into the hexosamine
biosynthetic pathway (HBP), which is required for multiple
glycosylation events (89, 90). Taparra et al. (91), recently showed
in models of lung tumorigenesis, that KRAS and the EMT
program coordinated elevated expression of key enzymes within
the HBP pathway. Additionally, they showed that elevated O-
GlcNAcylation of intracellular proteins such as the EMT-TF
Snail results in suppressed oncogenic-induced senescence and
accelerated lung tumorigenesis (91). Understanding the evident
metabolic changes driven by oncogenic KRAS and reinforced
by epithelial plasticity may reveal novel therapeutic targets for
KRAS-driven tumorigenesis.

DRIVERS OF EMT

A variety of stimuli can induce EMT, including soluble factors,
ECM components, environmental conditions, and oncogenic
transcriptional programs (92). These stimuli, which include
signaling factors such as TGFβ, Wnt, Notch, and Sonic hedgehog
(Shh), as well as growth factors such as EGF and platelet-derived
growth factor (PDGF) and vascular endothelial growth factor
(VEGF), serve as ligands for the signaling pathways they activate
(Figure 1). EMT programs can also be activated in response to
several paracrine signals in parallel (21). These networks activate
signal cascades and intermediates that include mitogen-activated
protein kinases (MAPKs), PI3K, AKT, Smads, RhoB, c-Fos, and
RAS (93), which then regulate EMT-TFs. RTKs are common
initiation sites for signaling that induces EMT-TF activity.

AXL
AXL is an archetypal RTK associated with EMT (94–96) and
with worse outcomes in multiple tumor types (71, 94, 97,
98). Consistent with poor outcomes, AXL expression also is
associated with metastasis and resistance to therapy (54, 96).
AXL is a member of the TAM (Tyro3, AXL, MerTK) family
of RTKs (99). Its ligand, growth arrest-specific gene 6 (GAS6)
induces AXL signaling by stimulating the auto-phosphorylation
of several tyrosine residues of AXL, which function as docking
sites for multiple substrates including PI3K, phospholipase C,
and c-SRC (100, 101). Additionally, AXL can be activated by
forming heterodimers with non-TAM family proteins, such as
EGFR, PDGFR, or another TAM family member (71). Elevated
AXL expression is found in multiple cancer types, including
lung, breast, ovarian, gastric, colon, pancreatic, and prostate (71–
73, 94, 95, 97, 102, 103). AXL expression is induced by drivers of
EMT, for example TGFβ, and is generally associated withmarkers
of EMT including N-cadherin and vimentin (104, 105).

Our lab and others have shown that AXL expression in RAS-
driven cancers, such as PDAC,maintains epithelial plasticity (96).
GAS6-AXL signal transduction is required tomaintain epithelial-
mesenchymal plasticity traits of PDAC (96). When AXL was
inhibited in GEMMs of pancreatic cancer, Ludwig et al. (54)
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observed an increase of epithelial differentiated tumor cells. In
addition to chemotherapy resistance, AXL has been strongly
implicated in resistance to targeted therapy such as EGFR and
PI3K/AKT inhibitors (72, 73).

Oncogenic KRAS
RAS genes (HRAS, KRAS, and NRAS) are the most frequently
mutated gene family in cancer (106). Of these, KRAS is the most
mutated (86% of all RAS-mutant cancers), followed by NRAS
(12%), and HRAS (4%) (107). KRAS mutations are frequent in
PDAC, lung, and colorectal cancers, and also occur in other
cancers such as multiple myeloma (2, 108).

KRAS, a small GTPase, functions as a molecular switch,
cycling between an active guanosine triphosphate (GTP)-bound
and inactive guanosine diphosphate (GDP)-bound states (109).
In non-transformed cells, RAS is typically GDP-bound and
inactive, but upon activation of RTKs, there is a rapid activation
of RAS-GTP, leading to the activation of intracellular signaling
networks that promote growth, proliferation, and migration
(110) (Figure 2). Because KRAS-activating mutations cluster
around the nucleotide-binding pocket (2), these mutations cause
RAS to be persistently GTP-bound and constitutively active,
resulting in the hyperactivation of signaling networks to drive
cancer growth and progression (111).

Multiple RTKs, including AXL and EGFR, can activate
KRAS (112). Signaling networks downstream of RAS such as
ERK/MAPK and PI3K/AKT can mediate mutant Ras-induced
EMT, such that the inhibition of MEK1 or AKT (113) can
reverse RAS-stimulated epithelial plasticity. Genovese et al.
(114) completed a gene set enrichment analysis of highly
metastatic and poorly metastatic clonal cells lines isolated from a
GEMM of PDAC, i.e., KPfC mice (KRASLSLG12D/+; Trp53Lox/Lox;
Pdx1Cre/+). Their analysis revealed that “metastasis-low” clones
exhibited a downregulating of KRAS signature genes, whereas
“metastasis-high” clones exhibited a higher expression of KRAS
signature genes (114). After validation through in vivo lineage
tracing, their study demonstrated that in PDAC, cells reside in a
spectrum of epithelial-mesenchymal states where mesenchymal
cells activate KRAS signaling at a higher level.

Other genome-sequencing studies revealed genetic
heterogeneity beyond a few frequently mutated drivers in
human PDAC (115–121). The heterogeneity in genomic changes
makes it challenging to link definitive genomic alterations to
biological, morphological, or clinical phenotypes (116, 121).
Despite these challenges, Mueller et al. (37), found that the
gene dosage of KRAS G12D in human and mouse PDAC
correlated with a markedly increased metastatic potential and
a mesenchymal phenotype. These results link the aggressive
mesenchymal PDAC subtype with the highest dosage of mutant
KRAS and Ras-related transcriptional programs. Additionally,
oncogenic Ras is closely associated with resistance to drug
therapy and pathways that drive PDAC initiation, progression,
and metastasis.

TBK1
Although the majority of RAS effector-targeted therapies
inhibit the RAF and PI3K signaling networks, the RALGEF
pathway encompassing RALA and RALB GTPases are more

consistently activated than RAF or PI3K in human PDAC (122,
123). Additionally, it has been demonstrated in human cell
lines that RALGTPase activation is essential for RAS-induced
transformation in a spectrum of human epithelial cells and that
RALGTPase activation alone is sufficient to induce a tumorigenic
phenotype in some settings (124, 125). Given that RAS signaling
is a driver of epithelial plasticity and that the RALGEF pathway is
a critical effector of RAS, investigating RALGEF signaling has the
potential to reveal novel targets involved in epithelial plasticity,
metastasis, and therapy resistance in RAS-mutant tumors.

The serine/threonine protein kinase TANK-binding kinase 1
(TBK1) is an atypical Ikβ kinase, that together with its homolog,
IKKε, contributes to innate immunity by activating interferon
regulatory factor 3/7 (IRF3/7) thereby inducing type 1 interferon
gene expression in response to pathogen exposure (126, 127).
Additionally, TBK1 kinase activity supports cell growth, self-
renewal, pathogen clearance, and organelle function (128–131).
TBK1 is a constituent of the RAL pathway and is crucial to
the induction and progression of RAS-driven cancers (105, 130,
132, 133). Additionally, TBK1 has been linked to the survival
of mutant KRAS-expressing cells (128) and can directly activate
AKT (130). The importance of RALB and TBK1 to RAS-
induced lung cancer was confirmed in a RNA inhibitor screen
of synthetic lethal partners of oncogenic KRAS, where RALB
and TBK1 were identified as top targets (132). Further, Cooper
et al. (134) screened 100 NSCLC lines for sensitivity to TBK1
inhibitors Bx795 and compound II to tease out biological features
of TBK1-dependent cell lines. Sensitivity profiles correlated
strongly with profiles of multiple inhibitors of the AKT/mTOR
pathway, particularly in mutant KRASNSCLC lines, suggesting a
mechanistic interaction between TBK1 and the mTOR pathway
(134). Further analysis of TBK1 inhibitor (TBK1i)-sensitive cell
lines revealed mutations in RAS family members and increased
mesenchymal gene expression compared to TBK1i-resistant cell
lines, which had a more differentiated gene expression profile.

In support of the contribution of TBK1 to RAS-induced
EMT, we reported that TBK1 expression is associated with a
poor prognosis in pancreatic cancer patients (135). Furthermore,
we found that the loss of TBK1 function resulted in reduced
invasion, migration, and tumor growth, and reduced metastatic
events in preclinical models of mutant KRAS PDAC, indicating
that TBK1 actively contributes to pancreatic cancer progression
(105). In fact, one of the most significant and top dysregulated
gene networks distinguishing TBK1 WT and TBK1-mutant
tumors was the cancer/cellular movement networks, including
many genes involved in EMT. In comparison with TBK1 WT
tumors, tumors from TBK1 mutant mice showed a trend toward
higher expression of epithelial markers and lower expression
of mesenchymal markers; this trend was confirmed at the
protein level (105). Mechanistic studies established that TBK1
promotes EMT downstream of AXL in PDAC, in a RAS-RALB
dependent manner (105). Although the precise mechanism
of how TBK1 promotes EMT is unclear, evidence suggests
that TBK1 can directly activate AKT (130), which can drive
EMT via the induction of EMT-TFs (e.g., Snail and Slug)
(38, 136, 137). Further studies are needed to delineate the
whether the interaction between TBK1 and AKT is critical
to the mesenchymal phenotype of tumor cells in PDAC. The
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FIGURE 2 | Oncogenic KRAS effector pathways. When a receptor tyrosine kinase (RTK) is activated by its ligand, KRAS binds to GTP, rendering it active until the GTP

hydrolyzes to GDP, turning KRAS off. When KRAS is mutated, KRAS remains bound to GTP, leading to the overstimulation of KRAS signaling pathways, resulting in

cell survival and proliferation, epithelial plasticity, and migration. The activation of RTK AXL by GAS6 is shown as a potential signaling pathway that can drive an

epithelial-to-mesenchymal transition via the activation of KRAS.

identification of additional TBK1 substrates that might promote
EMT programs is also needed.

In contrast, knockdown of TBK1 in estrogen receptor
α-positive (ERα) breast cancer cells resulted in enhanced
tumorigenesis and lung metastasis in part by increasing EMT
(138). Further studies are required to investigate if this pathway
is dependent on oncogenic RAS. Another group observed that
TBK1 is active in mutant NRAS melanoma and promoted
migration and invasion of these cells (139), suggesting that RAS-
driven epithelial plasticity may be active in the presence of other
RAS isoform-driven cancers. Regardless, these studies suggest
that therapies targeting TBK1 could be used to reduce EMT in
Ras-mutant tumors.

cGAS-STING and Innate Immunity in EMT
In agreement with the concept that TBK1 loss affects antitumor
immunity, studies by the Cantley (140) and Barbie (133) groups
have reported that immune evasion and metastatic behavior are
associated with the cGAS/STING/TBK1 innate immune pathway

in cancer cells (133, 140, 141). Canadas et al. (133) revealed that
mesenchymal tumor subpopulations with high AXL expression
and low histone-lysine N-methyltransferase levels trigger the
expression of a specific set of interferon-stimulated antisense
endogenous retroviruses (ERVs). These ERVs were present in
human cancer cells that produced tumors with hyperactive innate
immune signaling, myeloid cell infiltration, and utilized immune
checkpoint pathways. Therapeutically, this may have important
implications for immune oncology drug combinations. In the
second study, Bakhoum et al. (140) found that chromosomal
instability (CIN) of cancer cells, promoted cellular invasion and
metastasis through the presence of double-stranded DNA in
the cytosol. Clustering of tumor cells via EMT genes accurately
classified most cells according to their CIN status and revealed
that CIN-high cells expressed mesenchymal markers. This CIN-
high population also exhibited increased migratory and invasive
behavior in vitro, underwent actin cytoskeletal reorganization,
and stained positive for mesenchymal markers such as vimentin
and β-catenin. Additionally, cells derived from metastases more
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frequently exhibited cytoplasmic micronuclei than CIN-low or
primary tumor-derived cells. These studies showed that cytosolic
DNA activates the cGAS/STING pathway to mediate EMT,
invasion, and metastasis (140). Under normal conditions, the
cGAS-STING pathway functions as an innate cellular defense
mechanism against viral infections. Once STING activates TBK1,
TFs such as IRF3 and NF-κB are phosphorylated and translocate
to the nucleus (142), where they mediate the transcription of
inflammatory genes (143–146). In human breast and lung cancer-
derived cell lines, chronic cGAS-STING activity resulting from
chromosome instability has been shown to drive migration,
invasion, and metastasis (140). Additionally, CIN can result
in elevated mutant KRAS gene dosage in pancreatic cancer,
which can drive higher expression of EMT genes and increase
metastasis (37).

Similar to epithelial plasticity, CIN has been implicated
in treatment resistance by generating heterogeneity within
the tumor that enhances natural selection, thereby promoting
tumor cell survival, immune evasion, drug resistance, and
metastasis (37, 147–152). Given the widespread nature of CIN
in human cancer, therapies targeting CIN and cGAS/STING
have therapeutic potential to reduce therapy resistance and
reduce metastasis.

Downstream Transcriptional Networks of
Epithelial Plasticity
EMT is thought to be regulated largely through changes in the
expression of genes necessary for the epithelial state, such as
adherens junctions and tight junction components, which are
transcriptionally repressed through the activation of EMT TFs
including Snail, Twist, and Zeb (153). As previously mentioned,
EMT can be induced by many signaling factors, such as TGFβ,
EGF, FGF, HGF, NOTCH, andWnt ligands. These factors initiate
signaling cascades, leading to the expression of one or more
EMT-TFs, which inhibit E-cadherin transcription by binding to
E-boxes within the E-cadherin promoter region (154, 155).

EMT-TFs are often associated with poor patient outcomes.
In resected PDAC, nearly 80% of tumors expressed moderate
to strong levels of SNAI1, while only 50% showed SNAI2
expression, and very few expressed TWIST (156). Additionally,
ZEB1 expression in pathologic specimens correlated with
advanced tumor grade and worse outcomes (157, 158).
Functions for individual EMT-TFs in different cancers have
been described: for ZEB1 and ZEB2 in melanoma (159, 160),
Snail and Slug in breast cancer (161), and for Sox4 (162),
and Prrx (163) in PDAC. These functions can be tissue-
specific, as demonstrated by the different functions of Snail in
the metastasis of breast cancer (164) and PDAC (55). Such
functional diversity of EMT-TFs suggests that distinct EMT
programs operate in different tissues during tumor progression.
With this in mind, therapeutic strategies targeting EMT-TFs
should consider tissue context and target multiple factors
simultaneously (112).

ZEB1 is a zinc finger/homeodomain protein that is associated
with EMT and tumor progression. ZEB1 functions as a
transcriptional activator by binding to CtBP co-repressors,

histone acetyl-transferase TIP60, chromatin remodeling ATPase
BRG1, and SIRT1, a histone deacetylase (21). Larsen et al.
(165) found that ZEB1-induced EMT was crucial for the
development of NSCLC but required premalignant oncogenic
mutations such those for KRAS. Moreover, they found that
ZEB1-driven EMT was a crucial early event in the progression
of human bronchial epithelial cells to malignancy (165).
These results supported previous in vitro (166) and in
vivo (167–170) studies that established ZEB1 as a driver of
EMT in lung cancer tumorigenesis. In PDAC, Krebs et al.
(112) demonstrated that ZEB1 is a key driver of PDAC
progression from early tumorigenesis to late-stage metastasis,
highlighting the important contribution of EMT activation in
these processes (112).

Beyond the levels of mRNAs, EMT-TFs can alter chromatin
to achieve the stable, long-term silencing of epithelial genes
required for complete EMT (171). Snail, an EMT-TF, can recruit
a series of chromatin-modifying enzymes to the E-cadherin
promotor to erase a mark of active transport and replace it
with a trimethylated H3K9 mark that promotes the recruitment
of DNA methyltransferases, causing CpG methylation of the
promoter and formation of a constitutive heterochromatin
resistant to transcription activation (172). Additionally, TFs
of the Zeb family form a double-negative feedback loop with
the miR-200 family of microRNAs (miRNA), causing this
regulatory loop to operate as a switch between epithelial and
mesenchymal states in a variety of tumor types (173–175).
Similarly, Snail represses the expression of miR-34, a miRNA
that binds to the 3′ UTR of Snail mRNA to mark it for
degradation (176).

TARGETING KRAS SIGNALING AS A
THERAPEUTIC APPROACH

Direct Targeting of KRAS
Targeting RAS proteins was first attempted when the proteins
were shown to be modified and rendered functional by
farnesylation (177–179). This initiated the launch of identifying
compounds that block farnesyl transferase activity. Farnesyl
transferase inhibitors were developed with impressive potency
and selectivity, but they failed to show efficacy in the clinic (180).
Another approach that has been considered is the development
of a GTP antagonist. However, due to the picomolar affinity
of GTP and RAS and the millimolar concentration of GTP in
the cell, GTP antagonists had long been deemed impossible
(111) until recently. In 2013, the dream of directly targeting
RAS was re-imagined when Shokat and colleagues identified
compounds that bind covalently and specifically to KRAS G12C
(181). Lead compounds were further developed by Wellspring
Biosciences, who showed that the compounds ARS853 and
ARS1620 inhibit KRAS G12C effectively and specifically in cells
and animals (182, 183). The first KRAS G12C inhibitor to
enter clinical trials is Amgen 510 (Table 1). Multiple groups
are working to create improved G12C-targeted compounds with
better RAS-GTP destabilizing activity (184, 185). These studies
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TABLE 1 | Clinical trials targeting KRAS, AXL, and TBK1.

Target Drug Disease Trial phase Results Identifier

KRAS G12C AMG 510 NSCLC 1/2 Ongoing NCT03600883

KRAS G12C MRTX849 Advanced solid tumors 1/2 Ongoing NCT03785249

AXL Bemcentinib (BGB324) Glioblastoma 1 Ongoing NCT03965494

AXL Bemcentinib (BGB324) Pancreas 1/2 Ongoing NCT03649321

AXL Bemcentinib (BGB324) NSCLC 2 Ongoing NCT03184571

AXL Bemcentinib (BGB324) NSCLC 1/2 Status unknown NCT02424617

AXL Bemcentinib (BGB324) Malignant mesothelioma 2 Ongoing NCT03654833

AXL Bemcentinib (BGB324) NSCLC 1 Ongoing NCT02922777

AXL Bemcentinib (BGB324) TNBC 2 Completed NCT03184558

AXL Bemcentinib (BGB324) Melanoma 1/2 Ongoing NCT02872259

AXL Bemcentinib (BGB324) Acute myeloid leukemia 2 Ongoing NCT03824080

AXL TP-0903 NSCLC, colorectal, ovarian, melanoma 1 Ongoing NCT02729298

AXL TP-0903 Leukemia, lymphoma 1/2 Ongoing NCT03572634

TBK1 Amlexanox Type 2 diabetes 2 Finished recruitment NCT01842282

TBK1 Amlexanox Type 2 diabetes 2 Optimal drug dose wasn’t reached. NCT01975935

NSCLC, non-small cell lung cancer; TNBC, triple-negative breast cancer.

have reinvigorated the field and initiated research efforts, such as
the NCI-supported RAS initiative.

Although this recent breakthrough suggests that targeting
KRAS G12C may be effective, it is possible that this targetable
allele may be an outlier (186). KRAS G12C is rarely mutated
in KRAS-addicted cancers and it is likely that KRAS G12D
and G12V, the most common mutant KRAS alleles, will be
more challenging to specifically inhibit (187). As a result, the
development of therapeutic strategies that either inhibit RAS
effector signaling elements, such as TBK1, or inhibit elements
that can activate RAS, such as AXL, remain an attractive
therapeutic alternative.

Targeting AXL and TBK1 as a Therapeutic
Strategy for KRAS-Driven Cancers
Due to its implication in metastasis, EMT, and drug therapy
resistance, large efforts are focused on pharmacologically
inhibiting AXL. In fact, multiple strategies are being tested
clinically, including blocking GAS6 or AXL with monoclonal
antibodies and small molecules (99, 188). One of the most
advanced selective AXL inhibitors to date is bemcentinib
(BGB324), developed by BerGenBio ASA. BGB324 has been
investigated by our group in preclinical models of late-stage
PDAC and shown promising therapeutic effects in enhancing
gemcitabine efficacy and reducing metastasis (54). Other groups
have also investigated BGB324, where it has been found to
have antitumor, antimetastatic, and therapy-sensitizing effects
in preclinical models of pancreatic cancer, breast cancer,
glioblastoma, prostate cancer, chronic myeloid leukemia, ovarian
cancer, and uterine serous cancer (189–195). Recently phase II
clinical trials have begun to enroll patients using bemcentinib
in multiple cancer types as a single agent or in combination
with targeted or chemo- and immunotherapies (Table 1).
Another selective AXL inhibitor is TP-0903, developed by Tolero
Pharmaceuticals. In preclinical models, TP-0903 has been shown

to have antitumor and therapy-sensitizing effects on multiple
cancers, including neuroblastoma, leukemia, and lung cancer
(196–199). TP-0903 is currently being evaluated clinically in
multiple indications (Table 1).

For TBK1 to be a relevant target in the clinic, it will
be necessary to evaluate the therapeutic efficacy of TBK1
inhibition in preclinical cancer models. Currently there are at
least six distinct small molecules that inhibit TBK1, including
BX795, compound II, CYT387, MRT67307, GSK2292978A,
and Amlexanox, although none are highly selective. Currently,
Amlexanox is the only TBK1i known to enter clinical testing,
which is in a phase 2 study for the treatment of type 2 diabetes,
non-alcoholic fatty liver disease, or obesity (Table 1). Further
investigations and better inhibitors will be needed before TBK1
can be directly targeted in RAS-driven cancer in preclinical and
clinical settings. Moving forward, it will be vital to understand
the distinct function of TBK1 in each relevant cell type within
tumors. As mesenchymal tumor cells express high levels of
active TBK1 (105) and are associated with aggressive disease,
metastasis, and poor patient outcomes (30), targeting TBK1 in
RAS-driven cancers is a promising alternative strategy to reduce
the tumor-promoting effects of KRAS-driven EMT.

CONCLUSIONS AND FUTURE
PERSPECTIVES

EMT is a key cellular program that is activated by KRAS and
thus contributes to tumor progression by enhancing tumor
cell survival, tumor cell dissemination, and therapy resistance
and has a strong association with worse clinical prognosis in
many KRAS-driven cancers. Because KRAS is not currently
an amenable target for many of these KRAS-driven cancers,
targeting KRAS effector signaling is an attractive alternative.
With this in mind, pharmacologically targeting the pathways
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that contribute to KRAS-driven EMT is worth considering as
a strategy to improve response to standard therapy and reduce
clinical progression, therapy resistance, and metastasis.

Despite significant evidence that EMT directly contributes to
tumor progression, several studies have suggested EMT is not
required for themetastatic spread of PDAC and breast cancer (55,
57, 200, 201). For example, most metastatic lesions are known
to exhibit epithelial features, an observation that seems to be at
odds with EMT as a prerequisite for metastasis (30, 202, 203).
As such, the importance of EMT in cancer biology has long been
questioned (204).

Epithelial plasticity not only includes the process of EMT, but
also the reverse, mesenchymal-to-epithelial transition or MET.
Recent evidence suggests that MET is required for successful
metastatic colonization, although it remains unknown whether
the tissue-specific adaptations are acquired thorough epigenetic
or genetic means. Distant metastases in carcinoma patients often
present with epithelial features having a similar histology as
the tissue of origin (205, 206). These observations support that
epithelial plasticity lies at the heart of tumor development and
progression, and that such plasticity is necessary for tumor cell
survival and colonization. It has become increasingly evident
that EMT encompasses a range of hybrid plastic states, a
phenotype coined as “partial EMT” (36, 207, 208). Because
partial EMT is not well-defined, it is unclear whether this
hybrid status signifies a transitional phase during EMT or
represents its own state. Similarly, using a mouse model of
PDAC, the Stanger group has shown that individual tumors can
activate different plasticity programs, such as “classical EMT”
which involves transcriptional repression and an alternative
program in which the epithelial state is lost post-transcriptionally
(36). These plasticity programs were associated with either
single-cell invasion or collective invasion, respectively (36).
It is unclear what underlies this phenotypic heterogeneity,
considering the tumors investigated in this study had the
same oncogenic drivers (TP53 and KRAS). Perhaps the only
difference between the states is the tumor microenvironment,
as Aiello et al. found that when partial EMT cells are
exposed to TGFβ, they execute a classic EMT program (36,
209). This constant plastic state may partially explain the

intratumoral heterogeneity that is often seen in carcinomas such
as PDAC (210–212).

The chronic activation of an EMT program within a
tumor may depend on paracrine signals within the tumor
microenvironment, dictating whether the tumor cells undergo
EMT or MET. Because these cells exist in a plastic state, it is
possible that these tumor cells readily revert their phenotype
based on a microenvironment-specific context and factors (36,
205, 213, 214). One challenge impeding current in vivo studies
is the difficulty of distinguishing carcinoma cells that have
undergone EMT from fibroblasts or other mesenchymal cells
that are normally found in the tumor stroma. To combat
this, many labs have begun to use single-cell sequencing
technology in KRAS-driven cancers such as PDAC to investigate
EMT in vivo (215). Additionally, current in vivo lineage-
tracing technology has not settled the debate between the
importance of collective migration and/or EMT for metastatic
dissemination. Additionally, the mechanisms of invasion and
metastatic potential and their correlation with clinical outcome
has yet to be defined. Regardless, epithelial plasticity remains as
an indispensable feature in multiple phases of human cancer in
an oncogene- and tissue-specific manner.
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