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Abstract: Shiga toxin 2a (Stx2a) is the main virulence factor produced by pathogenic Escherichia coli
strains (Stx-producing E. coli, STEC) responsible for hemorrhagic colitis and the life-threatening
sequela hemolytic uremic syndrome in children. The toxin released in the intestine by STEC targets
the globotriaosylceramide receptor (Gb3Cer) present on the endothelial cells of the brain and the
kidney after a transient blood phase during which Stx2a interacts with blood components, such as
neutrophils, which, conversely, recognize Stx through Toll-like receptor 4 (TLR4). Among non-cellular
blood constituents, human amyloid P component (HuSAP) is considered a negative modulating factor
that specifically binds Stx2a and impairs its toxic action. Here, we show that the soluble extracellular
domain of TLR4 inhibits the binding of Stx2a to neutrophils, assessed by indirect flow cytometric
analysis. Moreover, by using human sensitive Gb3Cer-expressing cells (Raji cells) we found that
the complex Stx2a/soluble TLR4 escaped from capture by HuSAP allowing the toxin to target
and damage human cells, as assayed by measuring translation inhibition, the typical Stx-induced
functional impairment. Thus, soluble TLR4 stood out as a positive modulating factor for Stx2a.
In the paper, these findings have been discussed in the context of the pathogenesis of hemolytic
uremic syndrome.

Keywords: hemolytic uremic syndrome; HuSAP; Shiga toxins; Toll-like receptor 4; decoy receptors

Key Contribution: Characterization of the interactions between Stx2a, soluble TLR4, and HuSAP.

1. Introduction

Shiga toxins (Stx) are powerful exotoxins involved in the pathogenesis of severe illnesses in
children, such as hemorrhagic colitis and hemolytic uremic syndrome (HUS), related to infections
by pathogenic Escherichia coli strains (Stx-producing E. coli, STEC) [1–3]. These bacteria colonize the
human gut after ingestion of contaminated food and intimately adhere to the epithelial lining of the
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intestine where they release Stx [1–3]. Upon absorption into circulation, Stx bind to several circulating
cells (precocious toxaemia) [4,5] before targeting renal and cerebral endothelia which express the
high-affinity receptor of the toxin, globotriaosylceramide (Gb3Cer) [6,7]. The latter event is the crucial
point in the pathogenesis of HUS and occurs during advanced toxemia. Within cells, internalized Stx
damage irreversibly ribosomes and DNA, causing the arrest of protein synthesis and the formation of
apurinic sites in the nucleus [8,9]. As a consequence of the resulting endothelial injury/dysfunction,
the formation of microthrombi occurs in renal glomeruli, causing the HUS triad, i.e. acute renal failure,
mechanical damage of erythrocytes, and thrombocytopenia [1,3].

During precocious toxemia the multiple interactions with blood components would foment or
prevent the onset of HUS. Gb3Cer is also expressed by monocytes and platelets which are targeted
by Stx (reviewed in [4]). The binding of Stx to monocytes induces the release of pro-inflammatory
molecules involved in HUS [5], whereas the interaction of Stx with platelets has been suggested to be
directly related to thrombocytopenia [10]. Conversely, human neutrophils can recognize Stx by means
of the pattern recognition receptor Toll-like receptor 4 (TLR4), which is also present on the membrane
of monocytes and platelets [11]. In contrast to the latter cells, human neutrophils interact with Stx
only via-TLR4 since they do not express the repertoire of enzymes necessary to synthesize the neutral
glycolipid Gb3Cer [12]. The role of neutrophils is controversial since these cells have been considered
protective (toxin sponge effect) or causal (toxin delivery to target cells) in the pathogenesis of HUS [4].

Among Stx, the subtype Stx2a is the most dangerous toxin produced by STEC which confers
HUS [13], in spite of the presence of a specific inhibitor of this toxin in human blood, named human
serum amyloid P component (HuSAP). HuSAP is associated to high density lipoproteins [14] and is
present in soluble form at constant concentrations as a pair of pentagonally structured subunits [15–18].
Even low concentrations of HuSAP inhibit the toxic activity of Stx2a for target cells in vitro and protect
mice from lethal effects induced by this toxin [15,18]. The interaction of HuSAP with Stx2a is mediated
both by the A subunit and the B pentamer [16], whereas the A chain or the B-pentamer of the toxins
are mainly responsible for the interaction with TLR4 on neutrophil membrane [19,20] or with Gb3Cer
expressed by platelets, monocytes, and renal endothelial cells, respectively [4,21].

Upon stimulation of TLRs by pathogen-associated molecular patterns (PAMPs), the cells of the
innate immunity are activated [22,23] and capable of releasing the decoy form of the corresponding
TLR [24]. Soluble forms of TLR2 and TLR4 have been described in humans, which capture the specific
stimulating PAMP hence reducing the responses of monocytes and neutrophils [25,26]. This mechanism
is useful in preventing endotoxic shock by reducing the burden of pro-inflammatory cytokines
released by monocyte/macrophages stimulated by the bacterial lipopolysaccharide via TLR4 (and
the co-receptor MD2) [27–29]. The soluble decoy forms of TLR2 and TLR4 can be generated by
(1) alternative mRNA splicing [30] or (2) conversion of the membrane receptor after endocytosis,
followed by proteolysis in acidic compartments and subsequent exocytosis of the truncated form [25].
Recombinant soluble forms of the extracellular domain of TLR4 (70 kDa sTLR4) capable of dampening
LPS-mediated TLR4-signaling have been obtained [28,29].

Since neutrophils and other innate immunity cells bind Stx through TLR4 and become activated
after toxin stimulation, we have studied the effect of 70 kDa sTLR4 on the biological activity of these
toxins and on the Stx2a/HuSAP interactions.

2. Results

2.1. Effect of the Soluble Recombinant Extracellular Domain of TLR4 on the Binding of Shiga Toxins
to Neutrophils

Human neutrophils from healthy donors were treated with 60 nM Stx1a and Stx2a to reach full
saturation of receptors [31]. The presence of 10-fold excess of 70 kDa sTLR4 inhibited the interaction
of both toxins with neutrophils (Figure 1), further confirming the identity of TLR4 as a Stx receptor.
The presence of the co-receptor MD2 did not significantly modify the inhibitory power of the 70 kDa
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sTLR4. The effect of 70 kDa sTLR4 on the binding of Stx to neutrophils is specific since the decoy form
of TLR2 [24] was not able to confer the protection.
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Figure 1. Inhibitory effect of the 70 kDa sTLR4 on the binding of Stx1a and Stx2a to human neutrophils.
Neutrophils isolated from healthy donors were treated with Stx (60 nM) in the absence and in the
presence of 600 nM of 70 kDa sTLR4, 70 kDa sTLR4/MD2, or sTLR2. The extent of binding of Stx to
neutrophils was measured by indirect flow cytometric analysis as described in Materials and Methods
(Section 4.3). The mean channel values of fluorescence (MCVs) of neutrophils treated with Stx1a or
Stx2a were (mean ± SD, n = 3) 4.35 ± 0.14 or 3.90 ± 0.33, respectively. The data shown in the figure are
expressed as binding percentages (mean ± SD, n = 3, unpaired t-test) *** p < 0.0001, ** p < 0.001.

2.2. Effect of the Soluble Recombinant Extracellular Domain of TLR4 on the Activity of Shiga Toxin 2a on
Target Cells

To study the effect of 70 kDa sTLR4 on the biological activity of Stx2a, we used Stx-sensitive
human cells that express Gb3Cer, namely Raji cells. According to a previously described method [32],
cells were treated for a short time (3 h) with Stx, and then cell translation was measured after the
addition of a radioactive amino acid. The extent of protein synthesis inhibition with respect to control
untreated cells was determined. The presence of 70 kDa sTLR4 (5 µg/mL) or of the complex 70 kDa
sTLR4/MD2 (5 µg/mL) did not modify the IC50 of Stx2a on protein synthesis in Raji cells (Table 1),
suggesting that a putative complex between Stx2a and cell-free soluble TLR4 is active in intoxicating
target cells. Conversely, it is well known that Stx2a, but not Stx1a, acting on the same cellular model
was greatly impaired by the presence of human serum containing HuSAP [32]. The effect of HuSAP
on Stx2a is dramatic since even low concentration of purified HuSAP (10 nM) significantly impaired
the cytotoxicity of Stx2a on Raji cells (Table 1). To verify if the binding of soluble TLR4 to Stx2a allows
the toxin to escape from the capture by HuSAP, we pre-incubated Stx2a (0.5 nM) with a 1000 molar
excess of both factors in different combinations and, after complexes formation, aliquots of the mixture
were withdrawn and added to Raji cells to obtain a concentration of Stx2a (10 pM) approximately
equal to its IC80, the inhibitor concentration that decreases translation by 80%. The strong protection
induced by HuSAP was significantly alleviated by pre-incubating Stx2a with 70 kDa sTLR4 (Figure 2).
Moreover, the simultaneous addition of HuSAP, 70 kDa sTLR4, and Stx2a to the assay allowed similar
effects (Figure 2). Thus, the soluble form of TLR4 may impair HuSAP protection by creating physical
hindrance for binding between HuSAP and Stx2a. It should be noted that if the opposite experiment
was performed, i.e. pre-incubation of the toxin with HuSAP and then addition of 70 kDa sTLR4 to the
assay, no action of the toxin was permitted. Hence, soluble TLR4 is not able to displace the toxin from
the HuSAP/Stx2a complex. One can conclude that the simple release of soluble TLR4 in patients′ sera
after monocyte/neutrophil challenge induced by LPS or Stx would have no effect once the binding of
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HuSAP with Stx2a had occurred. On the other hand, soluble TLR4 could interfere with HuSAP binding
to freshly entered Stx2a in blood stream from the intestine. Although these experiments allowed us
to conceptualize the reciprocal relationship between Stx2a and protective and/or inhibitory factors,
they have been performed in conditions far from those observed in human sera. Thus, we calculated
the IC50 of Stx2a on Raji cell translation in the presence of normal human serum. It was shown that
simultaneous addition of Stx2a and high concentration of 70 kDa sTLR4 (10 nM) to Raji cells containing
10% human serum had no effect (Table 1) on IC50 compared with Raji cells without adding soluble
TLR4. Conversely, the addition of Stx2a pre-incubated with 70 kDa sTLR4 significantly decreased the
IC50 (Table 1). Therefore, a substantial increase of Stx2a toxicity would be achieved if TLR4/Stx2a
complex is formed before Stx2a interacts with HuSAP.

Table 1. Effects of the soluble extracellular domain of TLR4 or of HuSAP on the inhibition of translation
induced by Stx2a in Raji cells.

Additions IC50
a Stx2a

Fold Increase
IC50

Determination (r)
Statistical

Significance b

None 1 −0.991 -
5 µg/mL sTLR4 (70 nM) 1 −0.999 n.s.

5 µg/mL sTLR4/MD2 (55 nM) 1 −0.999 n.s.
0.25 µg/mL HuSAP (1 nM) 1.6 −0.977 n.s.

2.50 µg/mL HuSAP (10 nM) 52.2 −0.999 p < 0.0001
10% human serum 20.7 −0.992 p < 0.0001

10% human serum + sTLR4 (10 nM) 21.0 −0.967 p < 0.0005
10% human serum + (Stx2a
pre-incubated with sTLR4) 14.7 * −0.999 p > 0.0001

a IC50 were calculated by the linear regression between fractional activity and the log of Stx2a concentrations. b The
statistical significance of the differences between the intercepts of the straight lines obtained with the indicated
additions with respect to Stx2a alone (none) are reported (n.s., not significant). * Significant difference between the
intercepts of the straight lines obtained in the presence of 10% human serum with Stx2a and with Stx2a/ 70 kDa
sTLR4 complex (p < 0.05).
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Figure 2. Effect of HuSAP and 70 kDa sTLR4 on the inhibitory activity of Stx2a on Raji cell translation.
Preincubation: Stx2a (0.5 nM) was preincubated in the absence and in the presence of HuSAP (0.5 µM)
or 70 kDa sTLR4 (0.5 µM) in 22.5 µL PBS for 10 min at 37 ◦C. After incubation, 10 µL aliquots were
withdrawn and added to Raji cells (final volume 500 µL) to reach the final concentrations 10 pM
Stx2a (IC80 on Raji cell translation), 10 nM HuSAP, and 10 nM 70 kDa sTLR4. Where indicated Stx2a
(10 pM), HuSAP (10 nM), and 70 kDa sTLR4 (10 nM) were directly added to the assay. The data are
expressed as percentage activity (mean ± SD, two-tailed paired t-test, n = 4), * p < 0.01. +: addition of
the indicated compounds.
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3. Discussion

In this paper the effects of the extracellular soluble domain of TLR4 on the biological activity of
Stx and Stx interaction with blood components (neutrophils, HuSAP) involved in the pathogenesis
of HUS have been investigated. The soluble form of TLR4 was found to impair neutrophil/Stx
interactions. However, high concentrations of 70 kDa sTLR4 were required to achieve this negative
modulating function: 600 nM (~40 µg/mL) when the receptors on neutrophils are 100% saturated
(Figure 1) or 60 nM (~4 µg/mL) when the receptors are 50% saturated (data not shown). These high
concentrations of sTLR4 appear well beyond the capability of circulating monocytes or neutrophils
because the maximal concentrations of the top mediators induced by Stx in these cells usually range
from ~1 ng/mL (CXCL8, neutrophils) to ~30 ng/mL (CXCL8, monocytes) [5]. Moreover, 60 nM 70 kDa
sTLR4 corresponds to 3.6 × 1013 molecules per milliliter, while the average numbers of neutrophils
and monocytes in a two-year-old child’s blood are about 3.5 × 106 and 5 × 105 per milliliter [33],
respectively, suggesting each cell has to release 1–7 × 107 sTLR4 molecules to reach the needed level,
which is highly unlikely. Based on preliminary ELISA on sera from patients with STEC-induced HUS
the concentration of the soluble form of TLR4 was nanogram per milliliter level (data not shown).
Thus, the hypothesis that the soluble TLR4 would inhibit the binding of freshly entered Stx in blood
from the gut to neutrophils seems unlikely during the natural course of STEC-infections.

Our results demonstrated that cell-free TLR4 protected Stx2a from capturing by HuSAP in blood
that inhibits Stx2a interaction with Gb3Cer on target cells. Once a Stx2a/HuSAP complex is formed,
soluble TLR4 is no longer able to displace HuSAP. Conversely, formation of Stx2a/70 kDa sTLR4
complex allows the toxin to bind Gb3Cer. According to calculation of the reciprocal interactions
between these factors based on the physiological concentrations of HuSAP and on experiments with
human serum as source of HuSAP, it is also unlikely that soluble TLR4 would be able to prevent the
formation of the Stx2a/HuSAP complex in patients’ blood.

A possible explanation for Stx2a forming complex with sTLR4 before interacting with HuSAP is
that certain amounts of soluble TLR4 could be produced during the intestinal phase of STEC-infections
by LPS- or Stx2a-stimulated macrophages resident in the lamina propria of the gut. In this case,
the toxin would translocate through the intestinal barrier as Stx2a/sTLR4 complex.

Another attractive hypothesis is that detachment of Stx2a already bound with TLR4 in circulating
cells would allow Stx2a to escape from HuSAP negative modulating effect. This could happen (1) after
proteolytic processing of the membrane TLR4 originating macromolecular complexes Stx2a/sTLR4 or
(2) considering Stx2a as a membrane component bound to TLR4 present on microvesicles released by
activated circulating cells after toxin challenge. It is worth noting that one of the most recent hypotheses
on the pathogenesis of STEC-induced HUS proposed that Stx-containing microvesicles released by
circulating cells may be the main trigger. In this model, circulating cells represent a reservoir of toxins
available for the follow-up intoxication of the renal target cells after their release. At a molecular level,
the binding of the extracellular domain of TLR4 exposed on microvesicles to Stx2a could protect toxin
from binding by HuSAP, hence favoring its toxicity for target endothelial cells. As shown in Figure 2
and Table 1, the toxicity of Stx2a rescued by soluble TLR4 is only partial, however, over a sufficiently
long period of time, this toxicity could accumulate to a level high enough to cause diseases. The role of
blood cell-derived Stx-containing microvesicles and the relevance of the soluble form of TLR4 in HUS
needs to be further validated in studies on patients during the natural course of STEC-infections.

4. Materials and Methods

4.1. Materials and Toxins

Stx1a produced by E. coli C600 (H19J) and Stx2a produced by E. coli C600 (933W) were purified
by receptor analog affinity chromatography, on globotriose-Fractogel (IsoSep, Lund, Sweden) [34] and
on (Gala1-4Galb-O-spacer)-BSASepharose 4B (Glycorex, Lund, Sweden) [35], respectively, followed in
both cases by a passage through ActiClean Etox columns (Sterogene Bioseparations, Carlsbad, CA,
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USA) to remove trace endotoxin contaminant. HuSAP was purchased from Sigma-Aldrich (St. Louis,
MO, USA); 70 kDa sTLR4 (human recombinant extracellular domain of TLR4), 70 kDa sTLR4/MD2
complex, and recombinant human TLR2 were obtained by R&D Systems (Minneapolis, MN, USA) and
resuspended as described in the manufacturer′s instructions.

4.2. Experimental Binding of Shiga Toxins to Human Neutrophils

Highly pure neutrophils (99.7%) were isolated under endotoxin-low conditions from buffy coats
of healthy donors after centrifugation over Ficoll-Paque, followed by dextran sedimentation, hypotonic
lysis of contaminating erythrocytes, and removing of any eventual contaminating cells by using the
EasySep human neutrophil enrichment kit (Stemcell Technologies, Vancouver, BC, Canada) [11,36].
Healthy donors gave their informed consent for the use of their blood samples in the experiments
described in this paper. For binding experiments with purified Stx1a and Stx2a, Eppendorf tubes were
precoated with PBS containing 1% endotoxin-low (≤1 endotoxin unit/mg) BSA to avoid nonspecific
loss of the toxins. Neutrophils (5 × 105) were incubated for 90 min at 37 ◦C with 60 nM Stx in 250 µL
of the same buffer (PBS-BSA). After incubation, the cells were spun down at 200× g for 5 min and
washed three times with 100 µL incubation buffer at 37 ◦C. Stx bound to neutrophils were detected by
flow cytometry as describe in the paragraph below.

4.3. Detection of Shiga Toxins Bound to Neutrophils

Stx bound to neutrophils were detected by flow cytometry, as reported in a specific methodological
article in which all technical details were carefully described [31]. The assay was validated by
comparing control subjects and HUS patients in a blinded manner [31] and by challenging Stx-positive
neutrophils with a negative control antibody [37]. Briefly, untreated or Stx-treated neutrophils were
incubated with mouse monoclonal antibodies (IgG) against Stx1a (Stx1-13C4, Toxin Technology,
Sarasota, FL, USA) or Stx2a (Stx2-BB12, Toxin Technology, Sarasota, FL, USA) in the presence of human
serum to saturate Fc receptors on leukocytes. After incubation with FITC-goat anti-mouse IgG, flow
cytometric analysis was used to reveal the neutrophil-bound fluorescence, allowing a highly sensitive
detection of both Stx. Cells were visualized by a cytogram that combined forward scatter versus
90◦ side scatter, and fluorescence was analyzed by a cytogram that combined 90◦ side scatter and
fluorescence and by a single-fluorescence histogram. Neutrophils were checked by staining with mAb
to Ags associated to granulocytes (FITC-CD16 and FITC-CD65, Beckman Coulter, Miami, FL, USA).
The mean channel value of fluorescence (MCV) was chosen as an objective parameter to measure the
extent of binding of Stx to neutrophils.

4.4. Detection of the Functional Activity of Shiga Toxins in Whole Cells

The rapid intoxication kinetic of human Gb3Cer-expressing Raji cells and their high sensitivity
to Stx were exploited for the detection of the toxic activity of Stx2a by measuring the inhibition of
translation [32]. Protein synthesis was measured after 3 h incubation with different concentrations of
Stx2a as the rate of incorporation of [3H] leucine into proteins during 60 min incubation in complete
medium as described previously [32] in the absence or in the presence of pooled human serum from
three healthy donors as source of HuSAP.

4.5. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 5 software (GraphPad Software,
La Jolla, CA, USA). Continuous variables were described through means and SD. Differences in
continuous variables were tested with a t-test after controlling the normality of their distribution.
Correlation between variables was assessed using the Pearson correlation coefficient. A p value < 0.05
was considered statistically significant.
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