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Abstract: The analytical solution for the displacements of an anisotropic piezoelectric material in the
uniform electric field is presented for practical use in the “global excitation mode” of piezoresponse
force microscopy. The solution is given in the Wolfram Mathematica interactive program code, allow-
ing the derivation of the expression of the piezoresponse both in cases of the anisotropic and isotropic
elastic properties. The piezoresponse’s angular dependencies are analyzed using model lithium
niobate and barium titanate single crystals as examples. The validity of the isotropic approximation
is verified in comparison to the fully anisotropic solution. The approach developed in the paper is
important for the quantitative measurements of the piezoelectric response in nanomaterials as well
as for the development of novel piezoelectric materials for the sensors/actuators applications.

Keywords: piezoelectric response; capacitor geometry; piezoelectric materials; piezoresponse force
microscopy; uniform electric field; interferometry; Doppler laser vibrometer; quantification

1. Introduction

Piezoelectric materials are an important class of materials with applications as sensors,
actuators, resonators [1–3], electric energy harvesters [4,5], in various microelectronic de-
vices [6–8], and in the piezoelectric catalysis for wastewater treatment [9]. Evaluating the
effective piezoelectric coefficients via macroscopic response and predicting the response
based on the known piezoelectric coefficients are vital in designing efficient electrome-
chanical devices based on new materials. Piezoresponse force microscopy (PFM) is a
local technique allowing the measurement of the surface piezoresponse with a unique
high spatial resolution of 10–20 nm and vertical sensitivity around 100 fm [10,11]. PFM
allows measuring the piezoresponse in the micro and nano-objects where macroscopic
measurement techniques fail and PFM becomes the only way to quantify the material’s
piezoelectric coefficients [12–17]. Despite the rapid development of the PFM technique
within the last 30 years, many issues still remain, such as the contribution from the electro-
static force [18–20] and other parasitic effects [11,21–23], as well as the difficulties of the
PFM response quantification, i.e., understanding the relationship between the measured
surface displacement and components of the piezoelectric tensor [17,24–28].

The most straightforward PFM implementation is in the so-called “global excitation
mode”, where an electric field is applied through micro- or nano-sized electrodes, while
signal registration is performed utilizing scanning probe microscopy (SPM) probe rastering
across the surface [16,29–35]. Global excitation can be realized via an electric field applied
to the conductive tip across the tip-electrode interface and simply by the excitation of
the electrode with probe acting as a mechanical sensor. In both cases, the solution of
the problem of electromechanical response quantification in the applied electric field is
close to the conventional laser interferometry problem of the response under the action
of the uniform or close-to-the uniform electric field. Contrary to the highly non-uniform
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electric field from the SPM probe, where the solution is usually limited to the case of the
uniform elastic properties or needs numerical calculations [24,26,27,36,37], the piezoelectric
response in the uniform electric field allows an accurate solution. Lefki and Dormans
derived the solution [38] for the case of the tetragonal (001) oriented ferroelectric materials
bonded to the rigid substrate, as it is imperative to the interpretation of the Doppler
vibrometer and laser interferometry data [39–41]. More complicated cases considering the
flexible substrate contribution, top electrode lateral size, and multilayered structure were
studied using sophisticated analytical models and finite element simulations [41–47].

In this paper, we provide the complete solution of this problem for the arbitrarily
oriented ferroelectric sample covered by the top electrode and fixed on the rigid substrate
for the cases of the transversally isotropic and fully anisotropic elastic properties. The
solutions reveal the contribution of the elastic anisotropy to the piezoresponse, as well they
are of interest for the determination of the piezoelectric coefficients from the displacement
of the piezoelectric material in the uniform electric field. The results are important for
understanding the “global excitation mode” of PFM and conventional PFM response in
the case of the measurements in the piezoelectric thin films with the thickness much lower
than the tip radius (e.g., for 2D piezoelectric materials) [48]. The solutions are represented
in the Wolfram Mathematica interactive code, allowing the visualization and study of the
equations in the crystals with arbitrary elastic/piezoelectric matrices and orientation.

2. Theoretical Framework

The direct piezoelectric effect is the appearance of the electric charge at the surface of
the crystal with a specific symmetry class under the mechanical force’s action. The polariza-
tion vector is linearly connected with the mechanical stress components σkl (k, l = 1, 2, 3)
by the equation:

Pi = diklσkl , (1)

where dikl are the piezoelectric coefficients, representing the 3rd rank tensor.
PFM usually exploits the converse piezoelectric effect representing a change of the

piezoelectric crystal dimensions under the external electric field’s action. The deformation
tensor εij is linearly dependent on the electric field vector Ei in the mechanically free crystal
(σij = 0):

εij = dkijEk. (2)

In both Equations (1) and (2), the same piezoelectric coefficient appears that can be
justified by the thermodynamical analysis. In the general case, the third rank tensor has
27 independent components. εij = εji, dkij piezoelectric tensor is symmetrical by the two
last indexes, which leads to the reduction of the independent component number to 18.

The problem of the crystal deformation under the action of the external electric field
can be written in the isothermal state (θ = 0) as:

σij = cE,T
ijkl εkl − eT

ijmEm,

Dm = εε,T
mk Ek + eT

mijεij, (3)

where D is an electric induction, T is a temperature.
To shorten the notations, upper indexes will be further omitted. The equation of

the motion for the piezoelectric media without an accounting of the mass forces can be
written as:

∂σij

∂xj
= ρ

∂2ui
∂t2 . (4)

Neglecting the magnetic effects and in the quasi-static approximation for the elec-
tric field:

∂Di
∂xi

= 0. (5)
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Substituting the expression for the electric field Ei = −
∂ϕ
∂xi

through the scalar potential
to the equation of the state (3), the following can be obtained:

σij = cijkl
∂uk
∂xl

+ ekij
∂ϕ

∂xk

Di = eikl
∂uk
∂xl
− εik

∂ϕ

∂xk
(6)

The system of the linear equation of the piezoelectric media electro-elasticity can be
obtained by the substitution equations of the state (6) to the equations of the motion (4)
and electrostatics (5):

cijkl
∂2uk

∂xl∂xj
+ ekij

∂2 ϕ

∂xk∂xj
= ρ

∂2ui
∂t2 , (7)

eikl
∂2uk

∂xl∂xi
− εik

∂ϕ

∂xk∂xi
= 0. (8)

Let us consider an infinite layer of the piezoelectric material with arbitrary anisotropy
of the elastic, dielectric, and piezoelectric properties covered by the electrode from both
sides and bonded on the rigid grounded substrate under constant voltage and in the
condition of the free surface (Figure 1a). The task is one-dimensional, which means
functions changing only along the axis z. In the equilibrium state, it transforms (7) to the
system of the uniform differential equation, which can be expressed in the Voigt notation
for the tensors as: 

e35 ϕ′′ + c55u′′x + c45u′′y + c35u′′z = 0

e34 ϕ′′ + c45u′′x + c44u′′y + c34u′′z = 0

e33 ϕ′′ + c35u′′x + c34u′′y + c33u′′z = 0

e35u′′x + e34u′′y + e33u′′z − ε33 ϕ′′ = 0

, (9)

where eij are piezoelectric constants.

Figure 1. Schematics illustrating (a) geometry of the problem, (b) orientation of the axis, and
corresponding choice of the Euler angles for the description of the material rotation.

The boundary conditions for the grounded stationary substrate:
ϕ|z=0 = 0
ux|z=0 = 0

uy
∣∣
z=0 = 0

uz|z=0 = 0

. (10)
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The boundary conditions for the free electrode surface under the voltage U without
applied force can be derived using the condition σiknk = 0 [49] by the substitution σik
from (6): 

ϕ|z=h = U(
e35 ϕ′ + c55u′x + c45u′y + c35u′z

)∣∣∣
z=h

= 0(
e34 ϕ′ + c45u′x + c44u′y + c34u′z

)∣∣∣
z=h

= 0(
e33 ϕ′ + c35u′x + c34u′y + c33u′z

)∣∣∣
z=h

= 0

. (11)

The solution of the boundary problem (9)–(11) can be derived as:

ϕ[z] = Uz
h

ux[z] = −
c35c44e33−c34c45e33−c34c35e34+c33c45e34+c2

34e35−c33c44e35

(c2
35c44−2c34c35c45+c33c2

45+c2
34c55−c33c44c55)

·Uz
h

uy[z] = −
−c35c45e33+c34c55e33+c2

35e34−c33c55e34−c34c35e35+c33c45e35

(c2
35c44−2c34c35c45+c33c2

45+c2
34c55−c33c44c55)

·Uz
h

uz[z] = −
c2

45e33−c44c55e33−c35c45e34+c34c55e34+c35c44e35−c34c45e35

(c2
35c44−2c34c35c45+c33c2

45+c2
34c55−c33c44c55)

·Uz
h

(12)

The complete solution is represented as a Wolfram Mathematica interactive program
code (Appendix A) [50], which allows extracting a solution for any given orientation of
the piezoelectric plate. In order to study the solution of the boundary problem (9)–(11)
illustrating the behavior of the piezoelectric material in the uniform electric field, the
solution was simplified for the case of the barium titanate and lithium niobate single
crystals, which are model ferroelectric materials with the tabulated piezoelectric proper-
ties. These crystals possess different symmetries at room temperature: tetragonal and
rhombohedral, respectively.

3. Results and Discussion
3.1. Barium Titanate: Material Tensors

Piezoelectric constant tensor e0
ij and piezoelectric coefficient tensor d0

ij can be written
for the tetragonal barium titanate (4 mm point group) in the laboratory system of the
coordinates as following [51]:

e0
ij =

 0 0 0

0 0 0

e0
31 e0

31 e0
33

0 e0
15 0

e0
15 0 0

0 0 0

 (13)

d0
ij =

 0 0 0

0 0 0

d0
31 d0

31 d0
33

0 d0
15 0

d0
15 0 0

0 0 0

 (14)

To write analytical equations for the displacement
→
u through the piezoelectric coeffi-

cients, Equation (15) will be used for the relation between the tensors eijk and dijk, which
can lead to the following relationships in the laboratory system of the coordinates:

e0
mij = d0

mklc
0
klij. (15)

The anisotropic elastic properties for the barium titanate were taken from [52], while
isotropic elastic properties: Young modulus and Poisson ratio were calculated by the
Voigt averaging of the elastic tensor [53]. Piezoelectric and elastic properties used for the
calculations are presented in Appendix B.
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3.2. Barium Titanate: Isotropic Elastic Properties

In the approximation of the isotropic elastic properties, an elastic tensor can be reduced
to the:

c0
ij = ciso =



λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

µ 0 0
0 µ 0
0 0 µ

 (16)

where λ, µ-Lame elastic modulus, which can be determined through Young’s modulus, Y,
and Poisson coefficient, ν, as follows:

λ = νY
(1+ν)(1−2ν)

µ = Y
2(1+ν)

(17)

For the description of the sample rotation in relation to the laboratory coordinate
systems, Euler angles {φ, θ, ψ} are used, which correspond to the subsequent counter-
clockwise rotation around the axis Z1X2Z3 (Figure 1b). The rotational matrix used in the
calculation can be found in Appendix C. The angle φ is responsible for the rotation of the
crystal in relation to the crystallographic axis Zc, angle θ-for the tilt of the axis Zc in relation
to the axis Z, angle ψ-for the rotation of the plate with regard to the axis Z.

Equation (12) for the
→
u displacement vector components can be written for the plate of

the barium titanate with the thickness, h, infinite in the XY plane, and rotated at the random
angles {φ, θ, ψ} in the approximation of the elastic properties’ isotropy (16) as follows:

ux[z, φ, θ, ψ] =
Sin[θ]Sin[ψ]2(1+ν)(e0

31−e0
33+(2e0

15+e0
31−e0

33)Cos[2θ])
Y ·Uz

h

uy[z, φ, θ, ψ] =
Sin[θ]Cos[ψ]2(1+ν)(e0

31−e0
33+(2e0

15+e0
31−e0

33)Cos[2θ])
Y ·Uz

h

uz[z, φ, θ, ψ] =
Cos[θ](1+ν)(2ν−1)(2e0

15+e0
31+e0

33−(2e0
15+e0

31−e0
33)Cos [2θ])

2Y(1−ν)
·Uz

h

(18)

The solution does not depend on the angle φ, which is due to the material isotropy
in the plane of the crystallographic axis XcYc. The absolute value of the lateral response

(
√

u2
x + u2

y) does not depend on the angle of the plate rotation around the Z-axis (ψ angle).
For the case of the isotropic elastic material according to (15), non-zero components

of the piezoelectric constant tensor in the laboratory coordinate system can be derived
through the piezoelectric coefficients as follows:

e0
15 =

d0
15Y

2+2ν

e0
31 = −Y(d0

31+d0
33ν)

−1+ν+2ν2

e0
33 =

Y(d0
33(−1+ν)−2d0

31ν)
−1+ν+2ν2

(19)

Thus, solution (18) can be represented through the piezoelectric coefficients as:

ux[z, φ, θ, ψ] = Sin[θ]Sin[ψ]
(
d0

31 − d0
33 +

(
d0

15 + d0
31 − d0

33
)
Cos[2θ]

)
·Uz

h

uy[z, φ, θ, ψ] = Sin[θ]Cos[ψ]
(
d0

31 − d0
33 +

(
d0

15 + d0
31 − d0

33
)
Cos[2θ]

)
·Uz

h

uz[z, φ, θ, ψ] = Cos[θ]
(

d0
15+d0

31+d0
33−2ν(d0

15−d0
31)

4(ν−1) +

+
(d0

15+d0
31−d0

33)(2ν−1)Cos[2θ]

2(ν−1)

)
·Uz

h

(20)
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It should be noted that the lateral response in the uniform electric field approximation
in the form (20) does not depend on the material’s elastic properties and has the only
contribution from the piezoelectric coefficients.

3.3. Barium Titanate: Anisotropic Elastic Properties

The tensor of the anisotropic elastic modules for the crystal with the 4 mm symmetry
can be written in the laboratory coordinate system as:

c0
ij = c4mm =



c0
11 c0

12 c0
13

c0
12 c0

11 c0
13

c0
13 c0

13 c0
33

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

c0
44 0 0
0 c0

44 0
0 0 1

2
(
c0

11 − c0
12
)

 (21)

Equation (12) for the
→
u displacement vector components can be written for the

anisotropic barium titanate plate rotated at random angles {φ, θ, ψ} as:

ux[z, φ, θ, ψ] =

Sin[θ]



(3c0
33
(
e0

15 + e0
31
)
+
(
c0

13 + 2c0
44
)(

e0
31 − 3e0

33
)
−

−c0
11
(
3e0

15 + e0
33
)
+ 4(c0

11e0
15 + c0

33
(
e0

15 + e0
31
)
−

−
(
c0

13 + 2c0
44
)
e0

33)Cos[2 θ]− (−c0
33
(
e0

15 + e0
31
)
+

+c0
11
(
e0

15 − e0
33
)
+
(
c0

13 + 2c0
44
)(

e0
31 + e0

33
)
)Cos[4θ])




−
(
c0

13
)2

+ c0
11c0

33 − 2c0
13c0

44 + 3
(
c0

11 + c0
33
)
c0

44+

+4Cos[2θ]
(
−c0

11 + c0
33
)
c0

44+

+Cos[4θ]
((

c0
13
)2 − c0

11c0
33 +

(
c0

11 + 2c0
13 + c0

33
)
c0

44

)


· Sin[ψ]Uz
4h

ux[z, φ, θ, ψ] =

Sin[θ]



3c0
33
(
e0

15 + e0
31
)
+
(
c0

13 + 2c0
44
)(

e0
31 − 3e0

33
)
−

−c0
11
(
3e0

15 + e0
33
)
+ 4(c0

11e0
15 + c0

33
(
e0

15 + e0
31
)
−

−
(
c0

13 + 2c0
44
)
e0

33)Cos[2θ]− (c0
33
(
e0

15 + e0
31
)
−

−c0
11
(
e0

15 − e0
33
)
−
(
c0

13 + 2c0
44
)(

e0
31 + e0

33
)
)Cos[4θ]




−
(
c0

13
)2

+ c0
11c0

33 − 2c0
13c0

44 + 3
(
c0

11 + c0
33
)
c0

44+

+4Cos[2θ]
(
−c0

11 + c0
33
)
c0

44+

+Cos[4θ]
((

c0
13
)2 − c0

11c0
33 +

(
c0

11 + 2c0
13 + c0

33
)
c0

44

)


·Cos[ψ]Uz
h

uz[z, φ, θ, ψ] =



−c0
33e0

15 − c0
33e0

31 − 2c0
44e0

31 − 2c0
44e0

33−
−c0

11
(
3e0

15 + e0
33
))

+ c0
13
(
4e0

15 + e0
31 + e0

33
)
+

+4
(
c0

11e0
15 − c0

13e0
15 + c0

44
(
e0

31 − e0
33
))

Cos[2θ]+

+(c0
33
(
e0

15 + e0
31
)
− c0

11
(
e0

15 − e0
33
)
−

−
(
c0

13 + 2c0
44
)(

e0
31 + e0

33
)
)Cos[4θ])




−
(
c0

13
)2

+ c0
11c0

33 − 2c0
13c0

44 + 3
(
c0

11 + c0
33
)
c0

44+

+4Cos[2θ]
(
c0

33 − c0
11
)
c0

44+

+Cos[4θ]
((

c0
13
)2 − c0

11c0
33 +

(
c0

11 + 2c0
13 + c0

33
)
c0

44

)


·Cos[θ]Uz
h

(22)

The anisotropic case’s solution becomes significantly more complicated, which is
sourced by the diversification of the elastic properties in different crystallographic direc-
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tions. By analogy with Equation (19), piezoelectric modules relate to the piezoelectric
coefficients (21) as:

e0
15 = d0

15c0
44

e0
31 = d0

33c0
13 + d0

31
(
c0

11 + c0
12
)

e0
33 = 2d0

31c0
13 + d0

33c0
33

(23)

Substitution of the (23) to the displacement vector
→
u (22) leads to a significant compli-

cation of the equations, making it challenging to represent and intuitively interpret it in a
general form.

3.4. Analysis of the Solution for the Barium Titanate: Anisotropic Elastic Properties

To illustrate the behavior of the solutions (18) and (22), they were analyzed for three
orientations (cuts) of barium titanate crystals: (001)c, (011)c, and (100)c, which correspond
to the (0, 0, 0), (180◦, 45◦,0), and (90◦, 90◦, 0) values of the Euler angles, respectively.
The solutions (18), (20), (22), and (22) through (23) for the displacement vector of the
differently oriented crystals (chosen angles θ, ψ = 0, and ∀φ) are summarized in Table 1.
Equation (22) is well-known as the Lefki and Dormans solution [38]. The expression has the
most simple shape for the case of the crystal cut along the possible polarization directions,
while it becomes much more complicated for the case of (011)c crystal orientation, where a
combination of the elastic modulus contributes.

Table 1. The expressions of the displacement vector for the case of the differently oriented crystals of the barium titanate
derived from (18), (20), (22), (22) via (23).

θ→
u

(001)c ux
uy
uz


(100)c ux

uy
uz


(011)c ux

uy
uz



(18)


0
0

U(1+ν)(1−2ν)e0
33

Y(ν−1)




0
2U(1+ν)e0

15
−Y
0




0
U(ν+1)(e0

31 − e0
33)√

2Y
U(1+ν)(1−2ν)(2e0

15+e0
31+e0

33)
2
√

2Y(ν−1)


(20)


0
0

2Uνd0
31

ν−1 −Ud0
33




0
−Ud0

15
0




0
(d0

31−d0
33)U√

2
U((1−2ν)d15+(1+2ν)d31+d33)

2
√

2(ν−1)


(22)


0
0

−Ue0
33

c0
33




0

−Ue0
15

c0
44

0




−U
((

c0
13 + 2c0

44
)(

e0
31 − e0

33
)
− c0

33
(
e0

15−e0
31
)
+

+c0
11
(
e0

15 + e0
33
))

√
2
(
(c0

13)
2
+2c0

13c0
44−c0

33c0
44−c0

11(c0
33+c0

44)
)

U
(
c0

33
(
e0

15 + e0
31
)
−

−c0
13
(
2e0

15 + e0
31 + e0

33
)
+ c0

11
(
e0

15 + e0
33
))

√
2
(
(c0

13)
2
+2c0

13c0
44−c0

33c0
44−c0

11(c0
33+c0

44)
)



(22)


0
0

− 2c0
13Ud0

31
c0

33
−Ud0

33




0
−Ud0

15
0





−U
(
−
(
c0

33
)2d0

33 + 4
(
c0

13 + 2c0
44
)(

c0
12d0

31−
−2c0

13d0
31 + c0

13d0
33
)
+ c0

11
(
−c0

44
(
d0

15 − 8d0
31
)
+

+
(
c0

12 − 2c0
13 + 3c0

33
)
d0

31 +
(
c0

13 − 3c0
33
)
d0

33
)
+

+c0
33
(
c0

44d0
15 + 3c0

12d0
31 − d0

33
(
c0

13 + 8c0
44
)
−

−2c0
13d0

31
)
+
(
c0

11
)2d0

31

)
2
√

2
(
(c0

13)
2
+2c0

13c0
44−c0

33c0
44−c0

11(c0
33+c0

44)
)

U
(
c0

13
(
2c0

44d0
15 +c0

12d0
31
)
+

+
(
c0

13
)2(2d0

31 + d0
33
)
+ c0

33
(
c0

44d0
15 + c0

12d0
31
)
+

+c0
11
(
c0

44d0
15 +

(
c0

13 + c0
33
)
d0

31 + c0
33d0

33 )√
2
(
(c0

13)
2
+2c0

13c0
44−c0

33c0
44−c0

11(c0
33+c0

44)
)


Further, the response was analyzed in dependence on the angles θ and ψ (Figure 2), which

was the equivalent in the “global excitation mode” PFM experiments to the choice of the
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specific cut of the crystal at the angle θ, or rotation of the sample under SPM probe at angle
ψ, respectively. (100)c cut of the crystal most effectively illustrates piezoresponse behavior
with the crystal rotation (Figure 2a,b). The same as it is in the isotropic approximation, the
rotation of the (100)c oriented plate around the axis of the normal to the surface conserves
the absolute value of the lateral piezoresponse, while ux and uy components transform by
the cosine and sinus laws, respectively. It means that PFM in the “global excitation mode”
should be gradually redistributed from the twisting to the buckling component of the
cantilever motion [10]. As expected, normal piezoresponse, i.e., vertical PFM signal, was
absent on this crystal cut. Comparison between anisotropic and isotropic cases revealed
that the piezoresponse in the anisotropic case was around 20 percent lower. However, the
general trend of piezoresponse behavior conserves for both cases (Figure 2a,b).

Figure 2. The dependencies of the displacement vector on the angles: (a–d) ψ and (e,f) θ in the
barium titanate single crystal. (a,c,e) Isotropic and (b,d,f) anisotropic elastic properties.

As expected, the normal piezoresponse in (001)c had a contribution not only from
the d33 coefficient but from the d31 as well (Table 1). In the case of the anisotropic elastic
properties, contribution to the displacement vector from the d31 coefficient was proportional
to the ratio between c33 and c13 elastic coefficients, which was about 0.92. In contrast, in the
isotropic case, the displacement vector was proportional to the ν/(ν − 1), which was about
0.67. Thus, the deviation of the response due to d31 was more significant for the case of the
anisotropic elastic properties.

The plot of the surface displacement
→
u vector components for the (010)c cut of the

crystal (θ = 45◦) depending on the angle ψ is presented in Figure 2c,d. In this case,
the lateral response conserves the behavior, and a normal response appears, which was
independent of the rotational angle. On this cut, the piezoresponse for the anisotropic
crystal properties was more than twice as larger as the response calculated in the isotropic
approximation. Other informative plots represent the dependencies of the lateral and
vertical surface displacements on the angle θ (the angle between the outer normal to
the plate and the crystallographic axis Zc), which revealed a significant difference of the
dependencies of the vertical and lateral piezoresponses in the isotropic and anisotropic
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cases (Figure 2e,f). Notably, not only the value of the piezoresponse changes after the
transition from the anisotropic case to isotropic approximation but also the profile of the
piezoresponse signal changes significantly.

3.5. Lithium Niobate Material Tensors

Lithium niobate is a rhombohedral material at room temperature, which belongs to
3m point group [54]. The tensor of piezoelectric constants e0

ij and coefficients d0
ij in the

laboratory coordinate system has the form:

e0
ij =

 0 0 0

−e0
22 e0

22 0

e0
31 e0

31 e0
33

0 e0
15 −e0

22

e0
15 0 0

0 0 0

 (24)

d0
ij =

 0 0 0

−d0
22 d0

22 0

d0
31 d0

31 d0
33

0 d0
15 −d0

22

d0
15 0 0

0 0 0

 (25)

The anisotropic elastic properties for the lithium niobate were taken from [54], while
isotropic elastic properties, Young’s modulus and Poisson ratio, were calculated using
Voigt averaging the elastic tensor [53]. Piezoelectric and elastic properties used for the
calculations are presented in Appendix B.

3.6. Lithium Niobate: Isotropic Elastic Properties

The displacement vector
→
u for XY-infinite lithium niobate plate of the thickness h

rotated at arbitrary Euler angles {φ, θ, ψ} can be written in the approximation of elastic
properties isotropy (50) as:

ux[z, φ, θ, ψ] = (1 + ν)Sin[θ](−Sin[θ](Cos[ψ](Sin[φ] + 3Sin[3φ]) + Cos[θ](Cos[φ]+

+3Cos[3φ])Sin[ψ])e0
22 + 2Sin[ψ]

(
e0

31 + Cos[2θ]
(
e0

15 + e0
31 − e0

33
)
− e0

33
)
)·Uz

Yh

uy[z, φ, θ, ψ] = Cos[ψ]
(
e0

31 − e0
33 +

(
2e0

15 + e0
31 − e0

33
)
Cos[2θ]− e0

22Cos[3φ]Sin[2θ]
)

·
(
e0

22Cos[3φ]Sin[2θ]
)
+ 2e0

22Sin[θ]Sin[3φ]Sin[ψ])Uz(1+ν)
Yh

uz[z, φ, θ, ψ] = (1 + ν)(2ν− 1)(
(
−2e0

15 − e0
31 − e0

33
)
Cos[θ] +

(
2e0

15 + e0
31 − e0

33
)
Cos[θ]Cos[2θ]+

+2e0
22Cos[3φ]Sin[θ]3)· Uz

2Yh(ν−1)

(26)

Similar to the case of the barium titanate, the absolute value of the lateral response

(
√

u2
x + u2

y) does not depend on the angle of plate rotation around the Z-axis (angle ψ) but
depends on the other angles. According to (15), the non-zero components of the piezoelec-
tric constant tensor in the elastically isotropic material can be expressed in the laboratory
coordinate system through the components of the elastic moduli tensor as follows:

e0
15 =

Yd0
15

2+2ν

e0
22 =

Yd0
22

1+ν

e0
31 = −Y(d0

31+νd0
33)

−1+ν+2ν2

e0
33 =

Y(−2νd0
31+(−1+ν)d0

33)
−1+ν+2ν2

(27)
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Therefore, the solution (26) is expressed through (27) as:

ux[z, φ, θ, ψ] = −Sin[θ](Cos[ψ]Sin[θ](Sin[φ] + 3Sin[3φ])d0
22 + Sin[ψ](Cos[θ]·

·(Cos[φ] + 3Cos[3φ])Sin[θ]d0
22 − 2d0

31 −Cos[2θ]
(
d0

15 + 2d0
31 − 2d0

33
)
+ 2d0

33))·
Uz
h

uy[z, φ, θ, ψ] = (Cos[ψ]
(
d0

31 − d0
33 +

(
d0

15 + d0
31 − d0

33
)
Cos[2θ]− d0

22Cos[3φ]Sin[2θ]
)
+

+2d0
22Sin[θ]Sin[3φ]Sin[ψ]))·Uz

2h

uz[z, φ, θ, ψ] = (Cos[θ]
(
d0

15 + d0
31 + d0

33 − 2d0
15ν + 2d0

31ν +
(
d0

15 + d0
31 − d0

33
)
(−1 + 2ν)Cos[2θ]

)
+2d0

22(−1 + 2ν)Cos[3φ]Sin[θ]3) Uz
2h(ν−1)

(28)

The lateral response in the form (28), as well as for barium titanate, does not depend
on the elastic properties of the material.

3.7. Lithium Niobate: Anisotropic Elastic Properties

The tensor of elastic moduli for crystals of similar symmetry (3m) in the laboratory
coordinate system:

c0
ij = c0

3m =



c0
11 c0

12 c0
13

c0
12 c0

11 c0
13

c0
13 c0

13 c0
33

c0
14 0 0

−c0
14 0 0

0 0 0

c0
14 −c0

14 0

0 0 0

0 0 0

c0
44 0 0

0 c0
44 c0

14

0 c0
14

1
2
(
c0

11 − c0
12
)


(29)

The piezoelectric constants are expressed through the piezoelectric coefficients as:

e0
15 = c0

44d0
15 − c0

14d0
22

e0
22 = −c0

14d0
15 +

(
c0

11 − c0
12
)
d0

22

e0
31 = c0

11d0
31 + c0

12d0
31 + c0

13d0
33

e0
33 = 2c0

13d0
31 + c0

33d0
33

(30)

The expression for the displacement vector
→
u in the fully anisotropic case is too tedious

to present here in the analytical form. Thereby, the solution is given in the main text only
for some specific chosen Euler angles.

3.8. Analysis of the Solution for the Lithium Niobate: Anisotropic Elastic Properties

Analytical expressions for the displacement vector of points of the plate surface (z = h)
at various angles θ (at ψ = 0 and ∀φ) for the lithium niobate are summarized in Table 2.
Analysis of the piezoresponse dependencies on the angle ψ revealed a similar trend as
in barium titanate, but without such a large difference between isotropic and anisotropic
cases. It did not exceed 3% for various orientations. It was also important that (100)c
and (010)c oriented crystals possessed equivalent ψ-angle dependencies in the tetragonal
barium titanate, while the dependencies were different for the lithium niobate, where
piezoresponse did not nullify on (100)c cut at the angle ψ = 0 due to rhombohedral
symmetry of the crystalline lattice (Figure 3a,b). The dependencies on the cut angle θ were
also significantly different for the case of lithium niobate in comparison to barium titanate
(Figure 2e,f and Figure 3e,f). In the lithium niobate case, a negligible difference between
isotropic and anisotropic cases was observed, which demonstrated that the isotropic
approximation’s applicability is highly dependent on the symmetry and elastic properties
of the crystal.
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Table 2. The expressions of the displacement vector for the case of the differently oriented crystals of the lithium niobate
derived from (26), (27), (12) via (29), (12) via (29), and (30).

θ
..→
u

(001)c
ux
uy
uz


(100)c

ux
uy
uz


(26)


0
0

(1+ν)(1−2ν)e0
33U

Y(ν−1)




2e0
22U(1+ν)

Y

− 2e0
15U(1+ν)

Y
0


(27)


0
0

2Uνd0
31

ν−1 −Ud0
33




2d0
22U

−d0
15U
0


(12)
via
(29)


0
0

−Ue0
33

c0
33




− 2(c0
14e0

15+c0
44e0

22)U
2c0

14
2+(c0

12−c0
11)c0

44

(c0
11e0

15−c0
12e0

15+2c0
14e0

22)U
2c0

14
2+(c0

12−c0
11)c0

44

0


(12) via
(29) and

(30)


0
0

− 2c0
13Ud0

31
c0

33
−Ud0

33




2(c0
14

2+(−c0
11+c0

12)c0
44)d0

22U
2c0

14
2+(c0

12−c0
11)c0

44

(−2c0
14

2d0
15+(c0

11−c0
12)c0

44d0
15+(c0

11−c0
12)c0

14d0
22)U

2c0
14

2+(c0
12−c0

11)c0
44

0



Figure 3. The dependencies of the displacement vector on the angles (a–d) ψ and (e,f) θ for the
lithium niobate crystals. (a,c,e) Isotropic and (b,d,f) anisotropic elastic properties.

Table 3 shows the ratios between the contributions to the piezoelectric response
from each component of the piezoelectric coefficient tensor calculated for lithium niobate
crystals with the different orientations. The total measured piezoresponse was taken
as 100%. Negative values, thus, indicate that the given coefficient reduced the total
piezoelectric response. For example, a major contribution to the piezoresponse in (001)c
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cut lithium niobate comes from the d33 coefficient, while the contribution from the d31
coefficient reduces the total electromechanical response. d15 and d22 coefficients determine
the response in the (100)c− and (010)c nonpolar cuts. In contrast, the (011)c cut of the
crystal has a valuable contribution from all piezoelectric coefficients of the lithium niobate
piezoelectric tensor, which makes difficult the recovery of piezoelectric coefficients in this
orientation from the values of the measured piezoresponse.

Table 3. The ratios of the contributions to the piezoresponse in the lithium niobate from each of the
piezoelectric tensor components.

(001)c (011)c

d15 d22 d31 d33 d15 d22 d31 d33
ux 0 0 0 0 0 0 0 0
uy 0 0 0 0 0 157% −4% −53%
uz 0 0 −5% 105% 60% 26% −2% 16%

(010)c (100)c

d15 d22 d31 d33 d15 d22 d31 d33
ux 0 0 0 0 0 100% 0 0
uy 101% −1% 0 0 96% 4% 0 0
uz 0 100% 0 0 0 0 0 0

4. Verification of the Analytical Model
4.1. Verification of the Analytical Model by the Finite Element Modeling (FEM)

The analytical results were verified by the quantitative comparison with the numerical
solution of the same problem with FEM in the COMSOL Multiphysics software. The model
was realized using “Electrostatics” and “Structural mechanics” modules. The piezoelectric
sample of a finite-size was clamped to the rigid non-deformable steel plate. The constant
potential was applied to the top surface, while the bottom surface of the piezoelectric plate
was grounded. The rotation of the plate was performed with the same Euler matrix as
used in the analytical theory (Appendix C). The comparison of the results was made for
the (010)c cut of the lithium niobate single crystal. The same properties of the crystal were
used in the FEM and analytical model.

The image illustrating the piezoelectric displacement in the electric field for the (010)c
cut of the lithium niobate single crystal is presented in Figure 4a. It is seen that shear
deformation due to the d15 shear coefficient dominates against other contributions. The top
surface moved along x-direction in the sample Cartesian coordinate system (polarization
direction in (010)C crystal cut). At the same time, the bottom part of the plate was con-
strained to the substrate. The uniform electric field led to the uniform displacement of the
piezoelectric surface almost in the whole area of the sample. The non-uniformity of the
strain could be observed only immediately in the vicinity of the sample edges, which is
related to the contribution of the sample edges in the fixed-size sample (enhanced electric
field on the sample edges). This non-uniformity is not crucial if measurements are done far
from the sample edges (Figure 4b). However, the electrode deposition in the experimental
realization is also usually imperfect near the boundaries. Thus, the measurements near the
sample edges should be avoided anyhow. Thereby, FEM verified well the validity of the
one-dimensional approximation in the solution of the problem. The piezoresponse angular
dependencies calculated with the analytical solution and FEM (data from the middle part
of the sample) revealed perfect coincidence with each other (Figure 5).
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Figure 4. (a) Shear deformation of the (010)c lithium niobate plate under the action of the uniform
electric field. (b) The piezoresponse profile across the piezoelectric plate. The deformation of the
plate is represented on the image 107 times larger than the actual deformation shown at the color
scale bar. Blackline contour shows an initial undeformed sample shape.

Figure 5. The dependencies of the displacement vector on the angles ψ for the (010)c cut of the
lithium niobate single crystals: (a) analytical theory and (b) finite element simulations.

4.2. Experimental Verification of the Analytical Model

Experimental verification of the theoretical results was performed in (010)c cut crystal
of the lithium niobate (Yamaju Ceramics, Owariasahi, Japan). 50-nanometer-thick copper
electrodes were deposited on both crystal surfaces using magnetron sputtering. The sample
was glued onto the metal disc by the silver paint (Figure 6a). “Global-excitation” mode
PFM measurements were realized with the NTEGRA Aura scanning probe microscope
(NT-MDT, Russia) using an external Zurich Instruments HF2LI lock-in amplifier. Com-
mercial uncoated Multi−75EG (Budget Sensors, Bulgaria) cantilevers were utilized for
the piezoresponse signal detection. The scheme illustrating experimental conditions is
presented in Figure 6a. 5 V amplitude AC was applied to the bottom electrode while the top
electrode and AFM tip were grounded. PFM measurements were done at low frequency
(400 Hz) on the resonance-free plateau. The phase offset of the lock-in was kept at zero
for all the measurements, and X = Rcosϕ was measured in dependence on the rotational
angle ψ. To calibrate vertical and lateral piezoresponse “inverted optical level sensitivity”
calibration factors were extracted from the vertical and lateral force-distance curves’ mea-
surements [55,56]. The values of the piezoresponse were divided by the amplitude of the
applied AC voltage and by the respective vertical and lateral shape factors of the cantilever
extracted using the procedure described in [56,57]. Lateral response angular dependence
was measured and quantified (Figure 6b) to compare theoretical results with the experi-
ments, while the vertical signal was captured in the 180-degree angular position, where
the contribution of the cantilever buckling was minimal [22]. A pure vertical displacement
was evaluated to be −14.5 pm/V. Both vertical and lateral measured responses matched
well the results of the analytical model.
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Figure 6. (a) Schematics of the “global-excitation” mode PFM measurements. (b) Theoretical and
experimental dependencies of the lateral displacement on the anglesψ for the (010)c cut of the lithium
niobate single crystals.

5. Conclusions

In this work, piezoelectric response in the uniform electric field created by the top
electrode was analyzed for the case of the arbitrarily oriented piezoelectric material bonded
to the rigid substrate, which presents “global excitation mode” PFM measurements. As
the measurements of the piezoresponse angular dependencies often become crucial for
interpreting the material piezoelectric properties [12], the particular focus in this paper was
on the analysis of the angular dependencies. Based on the results of differently oriented
barium titanate and lithium niobate crystals, the piezoelectric response was found to
contain several contributions to the piezoelectric coefficients, which are often ignored in the
measurements. The displacements were calculated for the case of fully coupled conditions
both for the anisotropic and isotropic elastic properties. The anisotropic case was compared
with the often considered transversally isotropic approximation. The difference between
these two cases was shown to be significant for the case of barium titanate crystals and
insignificant for lithium niobate. Thus, the isotropic approximation can be safely used only
in specific crystals. The derived analytical theory was verified by finite element modeling
and the global excitation mode PFM experiment demonstrated the very well coincidence.

Additionally, the solutions were represented in the Wolfram Mathematica interactive
code, allowing easy access for researchers to the developed theoretical methodology. The
code was shared in the Wolfram Notebook Archive cloud service and is available for
the researcher community. The analytical model and interactive program code can be
used to predict the piezoresponse angular behavior in various piezoelectric materials.
This study is important for the further development of the quantitative “global excitation
mode” PFM measurements, especially in low-dimensional materials, such as 2D and 1D
piezoelectric nanostructures.
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Appendix A. The Interface of the Developed Interactive Program Code in the
Wolfram Mathematica

Figure A1. The interface of the developed interactive program code in the Wolfram Mathematica allowing analysis of the
piezoresponse angular dependencies in the arbitrary oriented piezoelectric material. The program code can be found in [50].

Appendix B. Piezoelectric and Elastic Coefficients Used for the Calculations

Table A1. Piezoelectric and elastic coefficients for the barium titanate from [52] used for the calcula-
tions in the paper. Young modulus and Poisson coefficient were calculated by the Voigt averaging
the elastic tensor [53]. Adapted from Li, Z.; Chan et al. The elastic and electromechanical properties
of tetragonal BaTiO3 single crystals. J. Appl. Phys. 1991, 70, 7327–7332, with the permission of
AIP Publishing.

e0
15 = 21.3 C

m2 e0
31 = −2.69 C

m2 e0
33 = 3.65 C

m2

c0
11 = 275 GPa c0

12 = 179 GPa c0
13 = 152 GPa

c0
33 = 165 GPa c0

44 = 54.3 GPa
Y = 113 GPa ν = 0.4

Table A2. Piezoelectric and elastic coefficients for the lithium niobate from [54] used for the calcula-
tions in the paper. Young modulus and Poisson coefficient were calculated by Voigt averaging of
the elastic tensor [53]. Adapted from Andrushchak, A.S. et al. Complete sets of elastic constants
and photo elastic coefficients of pure and MgO-doped lithium niobate crystals at room temperature.
J. Appl. Phys. 2009, 106, 073510, with the permission of AIP Publishing.

e0
15 = 3.67 C

m2 e0
22 = 2.38 C

m2 e0
31 = 0.34 C

m2

e0
33 = 1.6 C

m2 c0
11 = 199.2 GPa c0

12 = 54.7 GPa
c0

13 = 70 GPa c0
14 = 7.9 GPa c0

33 = 240 GPa
c0

44 = 59.9 GPa
Y = 170 GPa ν = 0.25
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Appendix C. The Rotation Matrix Used in the Calculations and Simulations

Z1X2Z3 =

− Cos[φ]Cos[ψ]−Cos[θ]Sin[φ]Sin[ψ] Cos[ψ]Sin[φ] + Cos[θ]Cos[φ]Sin[ψ] Sin[θ]Sin[ψ]

Cos[φ]Cos[ψ]Sin[φ]−Cos[φ]Sin[ψ] Cos[θ]Cos[φ]Cos[ψ]− Sin[φ]Sin[ψ] Cos[ψ]Sin[θ]

Sin[θ]Sin[φ] −Cos[φ]Sin[θ] Cos[θ]
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