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We consider extensions to previous models for patient level nosocomial infection in several ways, provide
a specification of the likelihoods for these new models, specify new update steps required for stochastic
integration, and provide programs that implement these methods to obtain parameter estimates and model
choice statistics. Previous susceptible-infected models are extended to allow for a latent period between
initial exposure to the pathogen and the patient becoming themselves infectious, and the possibility of
decolonization. We allow for multiple facilities, such as acute care hospitals or long-term care facilities
and nursing homes, and for multiple units or wards within a facility. Patient transfers between units and
facilities are tracked and accounted for in the models so that direct importation of a colonized individual
from one facility or unit to another might be inferred. We allow for constant transmission rates, rates
that depend on the number of colonized individuals in a unit or facility, or rates that depend on the
proportion of colonized individuals. Statistical analysis is done in a Bayesian framework using Markov
chain Monte Carlo methods to obtain a sample of parameter values from their joint posterior distribution.
Cross validation, deviance information criterion and widely applicable information criterion approaches
to model choice fit very naturally into this framework and we have implemented all three. We illustrate our
methods by considering model selection issues and parameter estimation for data on methicilin-resistant
Staphylococcus aureus surveillance tests over 1 year at a Veterans Administration hospital comprising
seven wards.

Keywords: MRSA infection; patient level models; reversible jump MCMC; information criteria; cross
validation.

1. Introduction

A wide variety of microorganisms are transmitted within healthcare settings, posing significant threats to
both patients and healthcare workers. Some pathogens, such as SARS associated coronavirus and Ebola,
have the potential to disseminate widely in community populations. Other types of emergent threats are
represented by antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA)
or vancomycin-resistant Enterococcus, many of which have become endemic in hospitals. Although
a substantial body of knowledge has accumulated about the epidemiology of nosocomial, or hospital
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associated, infections, much remains unknown about modes of transmission. For instance, is acquisition
of a pathogen a consequence of direct patient to patient contact, is it mediated by health care workers,
or is it the result of general environmental contamination? Hospitals routinely collect and maintain
extensive records of patient admission and discharge times to and from wards and units, and records
are also available for the sample times and results of laboratory tests to detect pathogens colonizing
and infecting patients. Colonization generally refers to the situation where bacteria are living on the
skin or in other body sites without causing disease. Our usage of the term also refers to the state in
which an individual is shedding an organism and capable of transmitting to others, i.e. is infectious.
Clinical infection is disease caused by a microorganism. For bacteria that cause nosocomial infection,
colonization typically precedes clinical infection. Because we do not analyse clinical data here, we
are unable to distinguish asymptomatic colonization from clinical infection. The ultimate objective of
our work is to reduce the rates of nosocomial infection. Hospital records have been used in a variety
of ways to estimate rates of colonization and hence measure the effect of interventions designed to
reduce acquisition rates. Our work focuses on patient level models as opposed to compartmental models
(Cooper & Lipsitch, 2004; McBryde et al., 2007), and is thus very much in the vein of Forrester et al.
(2007) and Cooper et al. (2008), and more recently, Kypraios et al. (2010), Worby et al. (2013) and
Haverkate et al. (2015).

Patient level nosocomial infection modelling is a classical hidden variable statistical problem: although
swab tests and admission data are informative, the precise time of colonization is very unlikely to be
observed. Cooper et al. (2008) briefly reviewed previous attempts to address the problem before intro-
ducing an augmented data approach. In this, the observed data are augmented by the unobservable times
of colonization, the values of which are repeatedly imputed based on current parameter values and the
observed data. The imputations and parameter updates are made using Markov chain Monte Carlo sto-
chastic integration (MCMC) which, with care, ensures that the parameter values so generated constitute
a correlated sample from the posterior densities of the parameters in a Bayesian analysis. These meth-
ods can typically also be adapted for stochastic optimization to find maximum likelihood or maximum
posterior estimates, but we will not consider this further in this work.

The benefit of the hidden variable approach is that, given the augmented data values, the estimation
problem is greatly simplified. The cost is that many samplings of the augmented data need to be made
which may be computationally expensive and often intricate to program. Although the model of Cooper
et al. (2008) was specified in continuous time, their program implemented a discrete time approxima-
tion. Thomas et al. (2015) gave a somewhat more efficient discrete time implementation, and provided
a true continuous time solution. They showed that the continuous implementation was no more com-
putationally demanding than the discrete time one, and moreover, eliminated some biases in parameter
estimation. The programs we provide for the analyses described here are implemented in continuous
time.

The novel contribution of this work is to extend the susceptible-infected, or SI, model which
assumes that once colonized an individual immediately becomes infectious and remains so for
the duration of the study, to models that allow for decolonization or loss of infectiousness, i.e.
susceptible-infected-susceptible or SIS models, and for a latent period following exposure and preceding
infectiousness, i.e. susceptible-exposed-infected-susceptible or SEIS models. The model assumption
that the infectious state never resolves conflicts with the current body of knowledge about the nature
of colonization. Substantial empirical evidence has accumulated that a variety of types of bacte-
ria which colonize human hosts, including MRSA, can be lost and reacquired during follow-up
(Huckabee et al., 2009; Haverkate et al., 2014; Shenoy et al., 2014). Rather than assuming that every neg-
ative surveillance test that occurs after a positive test is always a false negative, it is much more realistic to
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allow the possibility of decolonization. For the most part, information for estimating the decolonization
rate comes from tests done on patients with previous positives tests, hence, this will be better estimated
under a regime of regular surveillance testing. Incorporating a latent period enhances the realism of the
model as, in nature, there is always some lag between transmission and onset of infectiousness in the
newly colonized host. For SIS and SEIS models the number of transitions in different imputations of the
augmented data can vary, and, thus, so will the dimensionality of the problem. We address this using
reversible jump MCMC, or RJMCMC, updates for the patient histories that constitute the augmented data
(Green, 1995).

We now also allow for data from multiple facilities and multiple wards or units within a facility. The
movements of patients between units and time spent outside of any unit are tracked and the colonization
status at readmission will depend on the status at previous discharge and the time between these events.
A two- or three-state continuous time Markov process is used to model the out of facility colonization
process depending on whether or not the model allows for a latent state. Models that assume that no patients
are hospitalized more than once fail to account for the reality that readmission occurs with appreciable
frequency. The reason this simplifying assumption is problematic is that readmission provides the key link
between past transmission and future importation. The notion that this is an epidemiologically important
relationship has received support in previous studies of MRSA colonization (Jones et al., 2015): lagged
facility-level MRSA acquisition was found to be temporally correlated with admission prevalence. The
out of unit decolonization rate is informed by the colonization status on readmission for patients likely to
have been colonized on their discharge, and will decrease at the the time interval between hospitalization
increases.

We also introduce a new parameter for the probability that a patient in the unit at the onset of the
study is colonized. In previous models such individuals were typically treated as time zero admissions,
and while the practical effect of this is likely to be minimal, it is clearly an inappropriate assumption
as the patient might be colonized as the result of previous in unit exposure. We note that we regard this
as a nuisance parameter introduced to avoid problems in estimating parameters of interest rather than
something interesting in its own right.

Finally, we consider three types of patient-to-patient transmission models: models where the hazard
to a patient of becoming colonized is constant; is proportional to the number of colonized patients in the
unit and/or facility, usually called the density dependent model; or is proportional to the proportion of
colonized patients, usually called the frequency dependent model (McCallum et al., 2001).

In order to inform model choice, we follow Forrester et al. (2007) in using cross validation, Gelman
et al. (2014) and Cooper et al. (2008) in using the deviance information criterion (DIC), (Spiegelhalter
et al., 2002) as both fit very naturally into our framework, although both require additional MCMC runs
over and above those needed for parameter estimation. We make the slight extension from leave one
out cross validation to a version that allows for arbitrary sets of tests to be omitted in the estimation
phase before being predicted. Celeux et al. (2006) consider several possible versions of the DIC for
missing data problems which treat the augmented variables variously as data or parameters. As the DIC
requires calculation of deviances under fixed parameter estimates, we find it inappropriate in a context
where the augmented variables are complete patient histories rather than simple numerical quantities,
so that using a posterior mean estimate for example is not well defined. We, therefore, have chosen to
implement what Celeux et al. (2006) refer to as DIC6, a version that treats the augmented variables as data.
We also consider the widely applicable, or Watanabe–Akaike, information criteria (WAIC) (Watanabe,
2010). This has the computational attraction of being calculable from statistics generated in the course
of the simulation run for parameter estimation, thus, unlike cross validation and DIC it requires minimal
additional effort. We will explore these model selection approaches in the example we have chosen to
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illustrate our methods. This will be an analysis of MRSA surveillance test results over a 1-year period
from a Veterans Administration hospital comprising seven different units.

2. Methods

2.1 Observable data and events

The hospital record information required for estimating transmission model parameters can conveniently
be specified as a list of events, each specified by five fields: unique integer identifiers for the facility,
unit and patient, a decimal specifying the time of the event and an integer code giving the type of the
event. As we track transfers of patients between facilities and units, it is essential that their identifiers
are uniquely defined throughout the entire data set, not just unique within a unit. Times are expressed as
decimals in days to arbitrary precision and relative to a common reference time. By facility we mean a
hospital, long-term care facility, or similar and units within a facility may include, for instance, wards or
intensive care units.

Observed events include admissions, discharges and tests. We identify patients present in a unit at the
beginning of a study and indicate these with what we refer to as an in situ event and distinguish these from
true admission events that occur subsequently. Test events are taken to occur at the time the test samples
were obtained, not the time at which the results became available. On input, the event list is checked for
consistency so that the admission and discharge times specify a coherent history of inpatient episodes,
and that test events only occur during an episode. Multiple inpatient episodes for the same individual
are identified and linked. If time data are not sufficiently precise, for instance, if reported only to the
nearest day, then concurrent events are sorted so that admissions and discharges make a coherent history.
Concurrent negative and positive test are sorted arbitrarily. We prepend and append events indicating the
start and stop of the study to the list.

2.2 Unobservable events and augmented data

The unobservable elements that complete the augmented data set in this hidden Markov model comprise
the state of a patient on admission to a unit, and subsequent changes in that state. In the three state
SEIS model, a patient may be uncolonized, in the latent period, or colonized and infectious. Acquisition,
progression and decolonization events, respectively, indicate the transitions out of these states and into
the next in a cyclical pattern. Individuals in the latent state are assumed not to be infectious, and should
be negative in any tests. In the two state SIS model, there is no latent period and individuals move directly
from uncolonized to colonized on acquisition.

At the beginning of the MCMC simulation, these unobserved variables specifying each patient’s
underlying colonization status are initialized arbitrarily subject only to their being colonized at the time
of any positive test, so that the initial configuration has positive probability under models that do not
allow for false-positive tests. At subsequent MCMC updates, we use the Metropolis–Hastings method
proposing a new colonization history for each individual inpatient episode and accepting or rejecting
with the appropriate probability.

2.3 Models and parameters

We follow Thomas et al. (2015) in expressing the likelihood for a list of events D containing the augmented
data given the model parameters θ , as product of event terms and gap terms
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π(D|θ) =
∏
e∈D

g(e; θ)h(e−, e; θ) (1)

where the product is taken over all events other than the start event which has no predecessor. The function
h(e−, e; θ) is the probability that none of the potential events that could have occurred in the gap between
e−, the previous event, and e, the current event, did occur, and g(e; θ) is the probability or hazard of the
event e as appropriate for the type of event.

The information required to calculate this likelihood will vary depending on the choice of model,
however, for all the models considered below the following is sufficient. For each event e we
have:

• t(e): The time of the event.

• s(e): For events with an associated patient, the status, uncolonized, latent or colonized, denoted
{0, 1, 2} respectively, of the patient immediately after the event.

• {ni,j,k(e)}: The number of patients in facility i, unit j, who are in colonization state k immediately
after the event. Let ni,j(e) = ∑

k ni,j,k(e).

Much of the programming effort in implementing these analyses is in constructing data structures that
capture this information, and efficiently maintain it in the course of MCMC updates.

The form of the functions g() and h() will also, of course, depend on the model. We will describe
in detail these functions for a three-state model with unit specific colonization rates {λi,j} following
the density dependent form. We will assume that all progressions and decolonizations occur at random
at common rates ρ and δ for each patient in the appropriate state, and that σk is the probability that
a patient in situ at the beginning of the study is in colonization state k. We will further assume that
false negative tests occur with common probability φ, that there are no false positives, and that the
testing process is independent of the underlying colonization state of a patient. Transitions between
colonization states for individuals not currently within the system are assumed to follow a three-state
cyclical Markov process with transition rates κ , μ and ν out of the uncolonized, latent and colonized states,
respectively. We will discuss only briefly the steps required for variations of this model that we have also
implemented.

The gap terms can be calculated as

log h(e−, e) = [t(e) − t(e−)]
∑

i,j

ni,j,0(e
−)ni,j,2(e

−)λi,j + ni,j,1(e
−)ρ + ni,j,2(e

−)δ. (2)

The event specific term, g(e; θ), is calculated as follows for each type of event:

g(e; θ) = ni,j,2(e
−)λi,j if e is a colonization (3)

ρ if e is a progression (4)

δ if e is a decolonization (5)

φ if s(e) = 2 and e is a negative test (6)

(1 − φ) if s(e) = 2 and e is a positive test (7)
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σs(e) if e is an in situ event (8)

τ(t(e) − t(ed), s(ed), s(e)) if e is an admission (9)

1 otherwise. (10)

When e is a patient’s admission, ed is the discharge event for that patient’s most recent previous inpatient
episode, which may have been in the same facility or unit or in different ones. If this is the patient’s first
admission into the system, ed will be null and dealt with as described below. The function τ(t, u, v) is
the probability that a patient who is discharged from a unit in state u is in state v t days later when they
are readmitted or admitted to another unit. These are obtained from the assumption that the out of unit
process is the three-state cyclical Markov process with transition rate matrix

Q =
⎛
⎝−κ κ 0

0 −μ μ

ν 0 −ν

⎞
⎠ (11)

and are given in matrix form by the matrix exponent etQ, which can be calculated using the Caley–
Hamilton theorem as shown in the Appendix. For a patient’s first admission to the system, we use the
ergodic distribution given by

1

μν + νκ + κμ

(
μν νκ κμ

)
. (12)

This model was chosen as the simplest Markov process that reflects the same cyclical progression
modeled for inpatients. While acquisition and decolonization rates for outpatients might well be different
to those for inpatients, it would be reasonable to assume the same progression rate for both processes.
In enforcing this constraint, however, we would lose the independence between inpatient and outpatient
processes that we have if we condition on the augmented data, and, thus, complicate the parameter
updating procedures. So for purely pragmatic reasons we do not enforce this constraint.

2.4 Model variations

For frequency dependent models, λi,jni,j,2(e−) is replaced with λi,jni,j,2(e−)/ni,j(e−) in both (2) and (3).
For models with constant colonization it becomes simply λi,j.

For models that allow for transmission within facilities, as well as within units, additional terms and
parameters are required for the gap probabilities, and (3) also changes.

It is straightforward to allow progression, decolonization and test parameters to depend on the facility
or unit specific to the event, however, see the notes below on using such extensions. If the rate of testing
is allowed to depend on the colonization status of the patient, this must also be accounted for in the gap
term.

Using the two-state SIS model is straightforward: progression events are removed from the framework
and patients transition immediately from uncolonized to colonized on acquisition. Equation (2) becomes

log h(e−, e) = [t(e) − t(e−)]
∑

i,j

ni,j,0(e
−)ni,j,2(e

−)λi,j + ni,j,2(e
−)δ. (13)
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The out of unit process simplifies greatly to give

τ(t) = 1

ν + κ

(
ν κ

ν κ

)
− e−t(ν+κ)

ν + κ

(−κ κ

ν −ν

)
(14)

with the first matrix giving the importation probabilities for the first entry into the system. This two-state
process is different to that used by Cooper et al. (2008) who had the probability of being colonized at
readmission going to zero as the time out of the system increased, whereas here it tends to ν

κ+ν
. The SI

model is implemented by fixing decolonization rates, in and out of unit, at zero.

2.5 Parameter priors and MCMC updates

The likelihoodπ(D|θ) and parameter priorπ(θ) = π(λ, ρ, δ, φ, σ , κ , μ, ν) specify the parameter posterior
distribution given the augmented data. We can sample from this posterior using MCMC updates for both
the parameters given the augmented data, and the unobservable elements in the augmented data given
the parameter values and observed data.

For the parameters that are probabilities we have implemented Beta or Dirichlet priors as these are
conjugate with the appropriate elements of the likelihood making posterior sampling straightforward in
most cases. For rate parameters, we assume Gamma priors as these are again in many cases conjugate
with the likelihood and make posterior sampling with Gibbs updates easy.

Given the augmented data, the conditional distribution of several parameters are independent of the
other parameters, and because of conjugacy, updates can be generated by Gibbs sampling (Geman &
Geman, 1984) using simple counts of sufficient statistics. For instance, the in situ colonized probability
σ and the false-negative probability φ can be updated in this way. In other cases, Metropolis’s method is
employed (Metropolis et al., 1953) using symmetrical proposals following logit and log transformations,
respectively, for probability and rate parameters. For any given state of the augmented data, the calculations
required for Metropolis updates are very quick, so, to improve mixing we make 100, of these updates
after each augmented data update. The parameters of the out of unit colonization process, {κ , μ, ν}, are
always updated using Metropolis, as the form of the likelihood does not allow conjugacy.

2.6 RJMCMC updates for the augmented data

As with Cooper et al. (2008) and Thomas et al. (2015), we use stochastic integration to account for the
uncertainty in the augmented data set by making a round of updates that sample from the conditional
distribution of each patient’s underlying colonization states given the observed data, the current parameter
values, and the current history of all other patients. Thomas et al. (2015) parametrized their model in
such a way that the dimensionality of the augmented data was constant. Cooper et al. (2008) framed their
model so that the dimensionality changed depending on whether a patient experienced a colonization
or not and used RJMCMC (Green, 1995) to account for this. We note in passing that since their model
was in discrete time, RJMCMC was not strictly speaking necessary. As our model will allow for zero
or multiple colonization, progression and decolonization events in a patient episode, and is a continuous
time model, the dimensionality is truly variable and RJMCMC, which we employ, or an alternative such
as birth-death MCMC (Stephens, 2000), is necessary.

The complete history for a single-patient episode can be specified by the initial state x, the number
of times a change of state occurs y, and the sorted list of change times u = (u1, u2, . . . uy). Letting D−

represent the current state of the augmented data for all but the episode being updated, we can write
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the conditional posterior for this episode as π(x, y, u|D−, θ) which can be calculated efficiently from
the stored list of events. To implement an RJMCMC update, we first sample new values x′ and y′ such
that P(X = x) = γx for x = 0, 1, 2 and Y ∼ Poisson(α). Atypically for RJMCMC, this proposal does
not depend on the current state. The values of γ and α can be chosen arbitrarily to tune the mixing
performance of the sampler.

We then sample y′ sorted U(t(a), t(d)) random variables v1, . . . vy′ , where a and d are the admission
and discharge events for the episode. That is, we sample (v1, . . . vy′) from the probability density function

y′!
(t(d) − t(a))y′ t(a) < v1 < v2 < · · · < vy′ < t(d). (15)

Thus, (u1, . . . uy, v1 . . . vy′) forms the complete set of continuous variables, active and auxiliary, asso-
ciated with the current state. We transform this to the variables (u′

1, . . . u′
y′ , v′

1 . . . v′
y) required for the new

state by setting u′
i = vi, i = 1 . . . y′ and v′

j = uj, j = 1 . . . y, in effect simply switching the role of the
active and auxiliary variables. This transformation is clearly reversible and has Jacobian 1.

Hence, the proposed state x′, y′, u′ is accepted with probability

min

{
1,

π(x′, y′, u′|D−, θ)

π(x, y, u|D−, θ)

(
γx

γx′

) (
α

t(d) − t(a)

)y−y′}
(16)

To calculate the ratio of the probabilities of the incumbent and proposed states we note that when
π(x′, y′, u′|D−, θ) and π(x, y, u|D−, θ) are expanded using (1), with one exception, the terms for events
occurring outside the interval (t(a), t(d)) cancel. The exception to this occurs when there is a subsequent
inpatient episode for the patient whose episode is being updated. In this case the contribution from the
admission event for that episode also has to be adjusted. Thus, computation of this posterior density is
relatively efficient depending only the number of events that occur during the episode, and is independent
of the length of the study.

2.7 Model selection methods

We have implemented, and will compare below, three methods for model selection: cross validation,
the DIC and the WAIC. Here we let y denote the observed test result data, and X, the hidden variables
specifying the underlying patient colonization states.

To evaluate the cross validation predictive probability, we consider leaving out sets of test results
indexed by I , running the sampler using only y−I the remaining test data and predicting each omitted
test result yi from the simulated augmented data and parameters. That is, we evaluate the mean cross
validation predictive probability

CVPP = 1

n

∑
I

∑
i∈I

π(yi|y−I) (17)

= 1

n

∑
I

∑
i∈I

∫
X ,θ

π(yi|X, θ)π(X, θ |y−I)dXdθ (18)

≈ 1

n

∑
I

∑
i∈I

1

S

S∑
s=1

π(yi|Xs, θ s) (19)
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where Xs, θ s ∼ π(X, θ |y−I). In our analysis below we report LCVPP = −log(CVPP) so that, like the
DIC and WAIC, we prefer small values.

In its standard form the DIC is given by

DIC = −2 log π(y|θ̄ ) + 2pd (20)

where pd is a measure of the effective number of parameters

pd = −2
∫

θ

log [π(y|θ)]π(θ |y)dθ + 2 log π(y|θ̄ ) (21)

and θ̄ is a set of parameter estimates, typically posterior means in a Bayesian framework. Since the
augmented data are patient colonization histories rather than simple numerical quantities, their mean is
not well defined, and hence neither would −2 log (π(y|X̄, θ̄ )) the value of the deviance at their mean.
Thus, we are not simply able to consider the augmented data as parameters in evaluating the DIC. Celeux
et al. (2006) considered several variants of the DIC suitable for use with hidden variables. Of these, their
DIC6 defined as the mean of the DIC over the values of the hidden variables considered as data works
most easily in our situation, and is the one we have chosen:

DIC = −2
∫

X
log [π(y, X|θ̄ )]π(X|y)dX + 2pd (22)

pd = −2
∫

X

∫
θ

log [π(y, X|θ)]π(θ |y)π(X|θ , y)dXdθ + 2
∫

X
log [π(y, X|θ̄ )]π(X|y)dX (23)

= −2
∫

X ,θ
log [π(y, X|θ)]π(X, θ |y)dXdθ + 2

∫
X

log [π(y, X|θ̄ )]π(X|y)dX (24)

which can be evaluated by simulation as

∫
X,θ

log[π(y, X|θ)]π(X, θ |y) ≈ 1

S

S∑
s=1

log π(y, Xs|θ s) (25)

∫
X

log [π(y, X|θ̄ )]π(X|y) ≈ 1

S

S∑
s=1

log π(y, Xs|θ̄ ) (26)

with Xs, θ s ∼ π(X, θ |y).
The WAIC is based on the log posterior predictive probability and, again, a penalty term pW for the

effective number of parameters

WAIC = −2
∑

i

log
∫

X,θ
π(yi|X, θ)π(X, θ |y)dXdθ + 2pW (27)

with pW being obtained as

pw = 2
∑

i

log
∫

X,θ
π(yi|X , θ)π(X , θ |y)dXdθ − 2

∑
i

∫
X,θ

log [π(yi|X, θ)]π(X, θ |y)dXdθ . (28)
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or from the variance of the log posterior predictive probabilities

pw = 1

4

∑
i

V [−2 log π(yi|X , θ)] (29)

=
∑

i

{∫
X,θ

(log π(yi|X , θ))2π(X, θ)dXdθ −
[∫

X,θ
log (π(yi|X, θ))π(X, θ)dXdθ

]2
}

. (30)

We evaluate these by simulation using

∫
X,θ

π(yi|X , θ)π(X , θ)dXdθ ≈ 1

S

s∑
s=1

π(yi|Xs, θ s) (31)

∫
X ,θ

log [π(yi|X , θ)]π(X, θ)dXdθ ≈ 1

S

s∑
s=1

log π(yi|Xs, θ s) (32)

∫
X ,θ

[log π(yi|X , θ)]2π(X, θ)dXdθ ≈ 1

S

s∑
s=1

[log π(yi|Xs, θ s)]2 (33)

with again Xs, θ s ∼ π(X, θ |y) in each case.

2.8 Computational complexity

The computational structure of the MCMC updates made here is the same as that done by Thomas et al.
(2015), so, again, the computational time required is dominated by that needed to make a scan of updates
to the patient histories. When a patient history is updated it affects the states associated with all events
that take place during their inpatient stay which is roughly proportional to the number of other patients in
the unit at that time. Thus, in the worst case, which is when each unit is at capacity, a complete sweep of
updates to the patient histories and parameters can be done in time of O(NC) where N is the number of
patient episodes and C is the capacity of the unit. The storage requirement is simply the list of all events
which is of length O(N). The methods have been implemented in C++ programs that are available from
the corresponding author.

For cross validation, since running the sampler to re-estimate X and θ for each set I is computationally
demanding, we avoid leave one out cross validation and instead make 10 runs leaving out roughly 10%
of the test results each time with each test result randomly allocated to one decile. We typically make
an initial burn-in run of MCMC updates using all the test data to obtain initial parameter estimates.
Then each of the 10 deciles is omitted, another burn-in run is made to allow the parameter estimates and
augmented data to adjust, and then a further run is made under which the predictive probabilities are
estimated. These latter 2 steps are repeated for each decile.

The DIC needs two MCMC runs for evaluation. The first to obtain parameter estimates θ̄ . The second
to obtain the likelihoods of the simulated complete data under these parameters and their likelihoods
under the simulated parameter values.

For the WAIC, the augmented data are effectively considered as parameters and the integrals required,
using either version of pw, can be evaluated from the same run of MCMC simulations used to obtain
parameter posterior distributions, making this the most computationally attractive option.
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2.9 Identifiability and over parametrization

Our framework and programs enable a wide range of model extensions and are flexible enough to accom-
modate unit specific, facility specific or system wide parameters. Full exploitation of this, however, is of
questionable value as it can lead to serious over parametrization and the possibility of parameters becom-
ing unidentifiable. Even in situations where, given the augmented data, parameters can be independently
estimated, there may be identifiability issues when we integrate over the hidden variables. Evidence of
this was shown by Thomas et al. (2015) where negative correlation was seen between, for instance, esti-
mates of importation probabilities and in unit colonization rates with different imputations of the hidden
variables explaining the observed positive tests as due to either importation or colonization. While such
issues could be addressed by constraints imposed by strongly informative prior distributions, we would
advise against these extensions other than where strongly justified by the data. One such situation is
when qualitatively different tests are used for pathogen detection. For instance, MRSA surveillance tests
usually use nasal or dermal swabs while clinical tests may use blood.

3. Data analysis

We present an analysis of data including admission, discharge and transfer times for patients at a Veterans
Affairs (VA) acute care hospital. Transfers are handled in our analysis as a discharge and concurrent
admission to another unit. The data also include the times and results of MRSA surveillance tests which
were carried out on patients at admission, discharge and transfer, and cover all patients that were admitted
during a 1 year period beginning 1 January 2008. All data management and analysis was carried out
within the VA Informatics and Computing Infrastructure environment. The acute care facility was made
up of seven units which we order in decreasing total number of admissions: General Acute Medicine,
Telemetry, General Surgery, Medical ICU, Surgical ICU, Intermediate Medicine and Neurology. Table 1
gives a summary of patient movements into and between the seven units, and also the number of positive
and negative tests for each unit. The sequences of test results for each patient, up to their fifth test is
given in Table 2. Figure 1 gives the daily counts of patients in each unit throughout the study period and
also the proportion of current inpatients who had positive tests prior to that time.

In order to investigate appropriate modelling of this system, and potential differences in colonization
rates by unit, we fitted the parameters for 18 different models. We considered the SI, SIS and SEIS models
each with either a constant, a density dependent or a frequency dependent colonization rate. For each of
these combinations, we considered models with a common colonization rate for all units and with unit
specific colonization rates.

The MRSA tests were all nasal swabs surveillance tests and we have assumed the same false negative
probability for all tests throughout the facility. Similarly, we have assumed a common out of unit Markov
process for all units.

All binomial and multinomial parameters were assigned uniform or uniform Dirichlet priors, and all
rate parameters were assigned exponential unit rate priors.

In order to calculate parameter estimates and the WAIC, an MCMC run of 5000 iterations was
made for each model. The first 1000 iterations were discarded and a sample of parameter values was
collected from the remaining 4000. The parameters were estimated using the means of the sample. The
posterior predictive probabilities needed to calculate either version of the WAIC were also estimated
from these 4000 simulations. We then made a further run of 4000 simulations that were used to compute
the differences between deviances under the simulated parameter values and the overall mean parameter
values as required for the DIC. DIC and WAIC results are presented in Table 3. Two versions of the WAIC
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Table 1 Summary of unit admission and transfer histories

Unit 1 2 3 4 5 6 7 Total

Patients in situ 16 12 7 7 4 2 0 48
New admissions 875 945 784 276 279 1 61 3221

Readmissions from unit
Name Number

General Acute Medicine 1 274 178 132 136 62 93 8 883
Telemetry 2 304 193 74 102 60 23 9 765

General Surgery 3 137 81 117 38 108 145 1 627
Medical ICU 4 255 154 64 13 41 0 3 530
Surgical ICU 5 41 56 330 47 14 0 4 492

Intermediate Medicine 6 55 27 32 16 5 5 2 142
Neurology 7 6 6 7 2 9 10 6 46

Total admissions 1963 1652 1547 637 582 279 94 6754

Mean length of stay in days 3.32 2.46 2.80 3.47 3.39 4.09 3.03 3.04

Positive MRSA tests 369 173 158 93 46 33 10 882
Negative MRSA tests 3024 2525 2254 661 570 181 134 9349

Positives per patient day 0.057 0.043 0.036 0.042 0.023 0.029 0.035 0.043

are given: WAIC 1 uses (28) and WAIC 2 uses (30) to calculate pw. Table 4 gives the estimates for the
test false negative probability, the in situ status probabilities, and the state probabilities for the limiting
case of the out of unit process for each model. Table 5 gives the estimates for the in unit colonization
process rates.

For each model, a separate series of MCMC samples was generated in order to calculate the cross
validation score. In each case, an initial run of 500 simulations was made with all test data included.
One-tenth of the data was then omitted and 1000 more updates made. The first 500 were discarded and
the second 500 were used to obtain predictive probabilities for the omitted results. This was repeated for
each of the remaining 9 tenths. The log of the mean predictive probability is given in Table 3.

4. Discussion

Table 3 shows strong agreement between the LCVPP and the WAIC statistics. They both generally favour
SEIS over SIS over SI models with the mean ranks for these classes of models over variants being 4.1,
8.9 and 15.5 respectively using LCVPP and 5.3, 7.6 and 15.5 using WAIC. Overall, the rank correlation
between the two is 76%. Reassuringly, the 2 WAIC statistics give the models identical rankings, and
correlate almost perfectly, so at least in this context, either is equally applicable. In contrast to the
LCVPP and WAIC, the DIC favours SIS over SEIS over SI models with mean ranks 8.0, 5.8 and 14.7.
The rank correlation between it and the LCVPP is only 40% and with the WAIC is 42%.

That the constant rate models do so well is unexpected. The LCVPP ranks the SEIS unit specific
constant colonization rate as the best overall and ranks it best of the 3 models in each category. The
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Fig. 1. The left column gives plots of each unit’s inpatient count by day. The right column gives the percent of patients in the unit
who had had a positive test during the study period prior to that day.

WAIC ranks the SEIS facility wide constant colonization rate model as the best overall. This brings into
question somewhat the thinking behind the density and frequency dependent colonization assumptions.
These are intended to model colonization by direct contact between colonized and susceptible patients
when the number of potential interactions either grows linearly with the number of patients in the unit
or is constant. Transmission of bacteria between patients is believed to be mediated primarily by contact
involving healthcare workers and environmental surfaces rather than direct contact between patients,
indeed, in many settings, particularly ICUs, patients are not mobile, so direct patient contact is unlikely.
Thus, the environment can serve as a reservoir for acquisition after discharge or transfer of colonized
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Table 2 Summary of test result sequences. The sequences are for whole patient histories
regardless of the number of inpatient episodes and the times between them. For five or
more tests only the results of the first 5 are reported

patients. This likely depends on the cumulative recent history of colonized individuals in the unit, not
simply on the instantaneous total. In modelling terms, it seems that there should be some lag in the system
suggesting that moving average or other time series approaches should be investigated. A further factor
may be that the mass action principle is less demonstrable if the prevalence or density of carriage shows
little variation over time, and that distinguishing between frequency dependent and density dependent
models will be difficult unless there is substantial variation in occupancy. Figure 1 shows that for the
larger units, while there is substantial high frequency variation, occupancy numbers are generally stable,
as are prevalence of carriage. Units 5, 6 and 7 show more variability, and some evidence of discrete
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Table 3 Model choice statistics

Model LCVPP DIC WAIC 1 WAIC 2
Value Rank Value Rank Value Rank Value Rank

Single Cons 0.09048 13 267080 10 0.26611 13 0.28631 13
colonization Dens 0.10830 18 293194 15 0.28687 15 0.30653 15

Two rate Freq 0.09966 17 302150 17 0.29778 17 0.31758 17

states. Unit specific Cons 0.09095 14 273276 12 0.27298 14 0.29292 14
SI colonization Dens 0.09859 15 322853 18 0.31917 18 0.34012 18

rates Freq 0.09933 16 294968 16 0.28873 16 0.30839 16

Single Cons 0.08666 10 264882 2 0.23875 8 0.26129 8
colonization Dens 0.08665 8.5 265760 7 0.23617 3 0.25906 3

Two rate Freq 0.08694 11 265547 6 0.24002 11 0.26243 11

states. Unit specific Cons 0.08561 5 266260 8 0.23929 10 0.26176 10
SIS colonization Dens 0.08641 7 266456 9 0.23696 5 0.25973 5

rates Freq 0.08714 12 265073 3 0.23916 9 0.26168 9

Single Cons 0.08418 4 274359 13 0.23538 1 0.25835 1
colonization Dens 0.08630 6 265536 5 0.23663 4 0.25945 4

Three rate Freq 0.08665 8.5 263753 1 0.23755 7 0.26025 7

states. Unit specific Cons 0.08206 1 272803 11 0.23723 6 0.25990 6
SEIS colonization Dens 0.08390 2 265144 4 0.24148 12 0.26371 12

rates Freq 0.08416 3 274415 14 0.23576 2 0.25864 2

outbreaks, however, the low numbers here limit statistical power. We conclude that because of the rarity
of transmissions, distinguishing decisively between modes of transmission will require a larger study.

The LCVPP shows clear support for unit specific colonization rates, the top 3 models all being unit
specific SEIS. The LCVPP also generally favours unit specific rates within SI and SIS categories. This
is supported by a broad range of rate estimates across the units, as shown in Table 5. Neither the DIC
nor the WAIC, however, follow the same pattern. We also note that rate estimates correlate strongly and
negatively with the size of the unit. There are far fewer observations on which to base rate estimates in
the smaller units, and hence these have far larger posterior standard deviations. As these distributions
are asymmetric the larger variability seems to also pull up the posterior mean. This suggests that using
log normal priors, where the mean and variance can change independently, may be more appropriate
although this, being non-conjugate, complicates computation. Cooper et al. (2008) used the log normal
as did Khader et al. (2017) in an application of hierarchical modelling to compare colonization rates in a
multi-unit intervention trial. We also note that unit 7 draws most of its patients from outside the system,
thus, any positive tests observed there cannot be attributed to transfers from other units. Again, given
the scarcity of transmissions, larger samples will be needed to overcome the influence of the priors and
better evaluate evidence for different colonization rates in the units.

The parameter estimates given in Table 4 are remarkably stable and show no evidence of identifiability
issues. The largest effect is that the false-negative test probability is larger for the SI models. Since, under
these models, any negative test following a positive test must be a false negative, this is not surprising.
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Table 4 Test, in situ, and out of unit process parameter estimates. The estimates are the posterior means
of a sample of 4000 observations. Estimates of the standard deviation of the posterior parameter marginals
are given in italic text

Test false In situ Out of unit limiting
negative state probabilities state probabilities

Model probability 0 1 2 0 1 2

Single Cons 0.443 0.725 — 0.275 0.871 — 0.129
0.014 0.071 — 0.071 0.006 — 0.006

colonization Dens 0.480 0.712 — 0.288 0.849 — 0.151
0.013 0.073 — 0.073 0.007 — 0.007

Two rate Freq 0.500 0.710 — 0.290 0.842 — 0.158
0.013 0.074 — 0.074 0.007 — 0.007

states. Unit specific Cons 0.455 0.718 — 0.282 0.867 — 0.133
0.013 0.071 — 0.071 0.007 — 0.007

SI colonization Dens 0.534 0.678 — 0.322 0.829 — 0.171
0.013 0.077 — 0.077 0.008 — 0.008

rates Freq 0.484 0.709 — 0.291 0.847 — 0.153
0.013 0.072 — 0.072 0.007 — 0.007

Single Cons 0.390 0.754 — 0.246 0.880 — 0.120
0.015 0.072 — 0.072 0.006 — 0.006

colonization Dens 0.384 0.759 — 0.241 0.881 — 0.119
0.015 0.075 — 0.075 0.006 — 0.006

Two rate Freq 0.392 0.754 — 0.246 0.880 — 0.120
0.015 0.075 — 0.075 0.006 — 0.006

states. Unit specific Cons 0.391 0.769 — 0.231 0.880 — 0.120
0.015 0.073 — 0.073 0.006 — 0.006

SIS colonization Dens 0.386 0.756 — 0.244 0.881 — 0.119
0.015 0.073 — 0.073 0.006 — 0.006

rates Freq 0.390 0.759 — 0.241 0.881 — 0.119
0.015 0.072 — 0.072 0.007 — 0.007

Single Cons 0.383 0.754 0.062 0.184 0.879 0.003 0.118
0.015 0.072 0.055 0.080 0.006 0.001 0.006

colonization Dens 0.385 0.753 0.035 0.212 0.880 0.001 0.119
0.015 0.070 0.032 0.066 0.006 0.001 0.006

Three rate Freq 0.387 0.754 0.048 0.199 0.881 0.000 0.119
0.015 0.071 0.038 0.068 0.006 0.000 0.006

states. Unit specific Cons 0.387 0.760 0.051 0.190 0.880 0.001 0.119
0.015 0.066 0.048 0.069 0.006 0.001 0.006

SEIS colonization Dens 0.395 0.709 0.079 0.212 0.880 0.001 0.119
0.015 0.074 0.053 0.070 0.006 0.001 0.006

rates Freq 0.384 0.753 0.048 0.199 0.880 0.002 0.118
0.015 0.073 0.043 0.068 0.006 0.001 0.006
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Table 5 In unit colonization process parameter estimates. The estimates are the posterior means of a
sample of 4000 observations. Estimates of the standard deviation of the posterior parameter marginals
are given in italic text. All rates and standard deviations have been multiplied by 1000000

Prog- Decolo- Colonization rate by unit
Model ression nization All 1 2 3 4 5 6 7

Single Cons — — 60 — — — — — — —
— — 62 — — — — — — —

colonization Dens — — 29 — — — — — — —
— — 29 — — — — — — —

Two rate Freq — — 348 — — — — — — —
— — 353 — — — — — — —

states. Unit specific Cons — — — 30 41 33 78 81 159 553
— — — 78 112 88 216 226 422 1413

SI colonization Dens — — — 7 19 25 48 92 169 3619
— — — 18 55 62 141 265 489 9731

rates Freq — — — 132 305 305 443 735 1008 9129
— — — 366 806 775 1206 1709 2482 23717

Single Cons — 1391 59 — — — — — — —
— 826 60 — — — — — — —

colonization Dens — 1670 30 — — — — — — —
— 1071 30 — — — — — — —

Two rate Freq — 1028 379 — — — — — — —
— 942 376 — — — — — — —

states. Unit specific Cons — 1346 — 28 40 39 93 97 184 557
— 1006 — 69 104 110 229 241 476 1452

SIS colonization Dens — 923 — 7 31 33 63 118 174 8319
— 877 — 19 75 77 170 327 446 20066

rates Freq — 962 — 138 366 381 417 806 758 17374
— 855 — 368 920 979 1096 2020 1932 47784

Single Cons 719497 1614 56 — — — — — — —
302153 942 56 — — — — — — —

colonization Dens 317847 1119 30 — — — — — — —
218257 812 30 — — — — — — —

Three rate Freq 873119 594 390 — — — — — — —
790277 643 392 — — — — — — —

states. Unit specific Cons 1107499 792 — 29 42 37 82 78 181 679
695752 699 — 72 110 93 234 225 486 1645

SEIS colonization Dens 466430 565 — 7 29 26 64 138 159 7478
454764 565 — 20 75 70 164 377 423 20274

rates Freq 487941 495 — 150 426 315 432 740 778 18408
203982 512 — 371 1066 829 1316 2023 2174 49470
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While we have not made a formal analysis of Table 2, and note that for brevity we have curtailed the
sequence runs at 5, informal inspection reveals more sequences that follow the positive–negative pattern,
favouring decolonization, than follow the positive–negative–positive pattern that would more strongly
favour a higher false-negative rate. The average time spent in the latent state in SEIS models ranges from
around 0.9 days for the constant model to around 3.2 days for the density dependent model. Estimates
for the mean latent period for the outpatient process were broadly in line but showed more variability
ranging from 0.8 to 13.1 days. Given that no data is collected during outpatient periods, the increased
variability is not surprising. Although we consider the latency between colonization and detectability or
infectiousness, as opposed to the more usual latency between acquisition and clinical infection, we would
expect these to be of comparable magnitude and our estimates are consistent with what is known about
MRSA (Dancer et al., 2006). Nonetheless, we hesitate to interpret these estimates too directly. It may be
that any improvement in predictive power of the SEIS model over the SIS is less to do with the existence
of a latent state per se, and more to do with the slight lag it introduces into the system as discussed above.

The correlation of the LCVPP with the WAIC is far better than with the DIC, and given that the WAIC
can be calculated at the same time as the parameter posterior samples are generated, we see no reason to
pursue the DIC any further in this context. However, there is enough disagreement between LCVPP and
WAIC that, despite theoretical results of asymptotic equivalence and ease of computation, the additional
effort required for cross validation by decimation is indeed worthwhile, and the LCVPP statistic remains
the best basis for model selection. This may be a situation where fitted and predictive errors converge
slowly due to the discrete nature of our test result data having a strong effect on the imputation of the
augmented data.

The programs used in this work are available from the corresponding author. While they are written
to handle multiple facilities in a general way, adapting them for any specific sets of models would require
some C++ programming. We hope in future to provide a more accessible method of using them, perhaps
using the R statistical environment (R Core Team, 2015).
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Appendix A

The Caley–Hamilton theorem states that if Q is an n × n matrix and In is the n × n identity matrix, then
the characteristic polynomial of Q which is defined as

p(λ) = det(λIn − Q), (A.1)

where det denotes the determinant and λ is a scalar, solves the equation

p(Q) = 0. (A.2)

It is a consequence of the Caley–Hamilton theorem that given an n × n matrix Q, its characteristic
polynomial p, and an analytic function, f , we can write

f (x) = q(x)p(x) + r(x), (A.3)

where q is the quotient obtained by dividing f by p, and r is the remainder polynomial which is known
to have degree ≤ n. Thus,

f (Q) = r(Q) = a0In + a1Q + · · · + an−1Qn−1. (A.4)

Hence, provided we can evaluate the polynomial r, we will have an explicit formula for f (Q). But
because each eigenvalue λ of Q satisfies p(λ) = 0, then we also have p(λ) = r(λ). Consequently, for
each eigenvalue λi, i = 1, 2, . . . , n, we have

f (λi) = r(λi) = a0 + a1λi + · · · + an−1λ
n−1
i . (A.5)

So in order to determine r, we simply need to know the coefficients a0, . . . , an−1, which can be done by
solving a system of linear equations.

To compute the transition probabilities for the 3-state outpatient Markov process, we need to evaluate
f (Q) = etQ, where Q is the transition rate matrix of the process, and is given by (11). From (A.4), we
have

etQ = a0I3 + a1Q + a2Q2. (A.6)

Q has three eigenvalues, λ1 = 0, and the other two which are complex conjugate are given by

λ2,3 = −(κ + μ + ν) ± √
κ2 + μ2 + ν2 − 2κμ − 2κν − 2μν

2
. (A.7)

The coefficients in (6) solve the system of equations given in (5). In particular, the system of equations
necessary to obtain the coefficients to r is given by⎧⎨

⎩
1 = a0

eλ2t = a0 + a1λ2 + a2λ
2
2

eλ3t = a0 + a1λ3 + a2λ
2
3

(A.8)
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from which we can readily solve for a0, a1 and a2 to get a0 = 1,

a1 = λ2
2(e

λ3t − 1) − λ2
3(e

λ2t − 1)

(λ2 − λ3)λ2λ3
(A.9)

and

a2 = λ3(eλ2t − 1) − λ2(eλ3t − 1)

(λ2 − λ3)λ2λ3
(A.10)

Note that, although a1 and a2 are necessarily real, λ2 and λ3 are in general complex numbers and our
implementation of these computations use the standard complex variable type and functions of C++.
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