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Abstract

Herpes simplex virus type 1 (HSV‐1) is an important human pathogen with

neurotropism. Following lytic infection in mucosal or skin epithelium, life‐long
latency is established mainly in sensory neurons, which can periodically reac-

tivate by stress, leading to recurrent disease and virus transmission. During the

virus's productive infection, the tegument protein VP16, a component of HSV‐1
virion, is physically associated with two cellular factors, host cell factor‐1
(HCF‐1), and POU domain protein Oct‐1, to construct the VP16‐induced
complex, which is essential to stimulate immediate early (IE)‐gene transcrip-

tion as well as initiate the lytic programme. Apart from HCF‐1 and Oct‐1,
VP16 also associates with a series of other host factors, making a VP16‐
induced regulatory switch to either activate or inactivate virus gene tran-

scription. In addition, VP16 has effects on distinct signalling pathways via

binding to various host molecules that are essentially related to innate immune

responses, RNA polymerases, molecular chaperones, and virus infection‐induced
host shutoff. VP16 also functionally compensates for given host factors, such

as PPAR‐γ and ß‐catenin. In this review, we provide an overview of the

updated insights on the interplay between VP16 and the host factors that

coordinate virus infection.
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1 | INTRODUCTION

Herpes simplexvirus‐1 (HSV‐1) is anenvelopedDNAvirusbelonging to
Herpesviridae family.1 As an important human pathogen, it is respon-

sible for cold sores, with symptoms of painful blisters, ulcers or sores at

the site of infection, including the skin andmucosa.2–4 HSV‐1 infection
in tonsils and the adjacent lymph nodes may cause tonsillitis.5,6 In rare

cases, HSV‐1 infection leads to more severe complications, such as

keratitis and encephalitis, which may progress to blindness and death,

respectively.7,8 Of note, HSV‐1 infection is the leading cause of infec-
tious blindness in the USA.9 Approximately 3709 million individuals

(aged0–49years) ore67%of theworldpopulationsare infectedbyHSV‐
1, with highest prevalence in Africa, South‐East Asia and Western

Pacific, according to a worldwide estimation in 2012.10

HSV‐1 gene expression is divided into three distinct phases during
the lytic infection: immediate early (IE), early (E), and late (L).11–13 IE

proteins play critical roles in regulating the expression of both E and L

genes during infection.14 Following lytic infection in the epithelium,

HSV‐1 enters peripheral sensory neurons, such as trigeminal ganglia,
as well as the central nervous systems (CNS), where life‐long latency is
established, marked by the silencing of lytic gene transcription and

concomitant expression of the latency‐associated transcripts (LAT).15–
19 LAT is a noncoding RNA of multifunction involved in the regulation

of latency, as well as reactivation from latency in response to external

stimuli.15,16,20–22 During latency, the chromatized viral genome per-

sists as a multi‐copy episome with nucleosome structure in the nu-

cleus.23,24 Chromatin assembly and distinct histones modifications

orchestrate the transcriptional status of either lytic genes or LAT.25

The transcriptional activator VP16 is involved in the regulation of

both lytic infection and latency‐reactivation in neurons.26–28 VP16

promoters contain unique neuro‐specific sequences that are essential
for latency‐reactivation in neurons because they can be activated by
neuron‐associated factor(s) independent of both IE products, such as
ICP0 and ICP4, and viral DNA replication.29,30 So far, the neuron‐
associated factors have not been extensively addressed, while the

host factors affecting HSV‐1 lytic infection via association with either
VP16 or VP16‐induced complex has been extensively characterised. A
panel of cellular factors including HCF‐1, Oct‐1, RNA polymerase II,

TBPs, TAFs, HSP90, Lamin A/C, β‐catenin as well as chromatin modi-
fication enzymes such as LSD1 and JMJD2, have been identified as

interactors with VP16 directly or indirectly to regulate viral infection

through different mechanisms. In addition, these interactions are

potentially co‐regulated by viral proteins, such as ICP22, ICP0, and

vhs.31–34 Here the detailed mechanism focussing on the roles of these

interplays in lytic infection are summarised and discussed.

2 | VP16 INITIATES IE TRANSCRIPTION VIA VP16‐
HCF‐1‐OCT1 COMPLEX

Various kinds of cell cultures, such as epithelial cells, endothelial

cells, fibroblasts, and neuronal cells support HSV‐1 productive

infection.35–37 The viral gene expression is coordinated by both viral

and cellular transcriptional machinery.38 For example, the viral

tegument protein VP16, an L protein, is required to stimulate the

expression of IE genes.39 Upon infection, the viral tegument VP16

released into host cells binds to host cell factor‐1 (HCF‐1), and en-

ters nucleus, where they associate with POU domain protein Oct‐1,
as well as VP16‐responsive cis‐regulatory elements containing a

TAATGARAT (R is a purine) sequences found in the promoters of

HSV‐1 IE genes.40–46 The triplex VP16‐HCF‐1‐Oct, also termed as

VP16‐induced complex, is essential to initiate the lytic infection via

induction of IE‐gene transcription.47 Following this dogma, de novo

IE proteins stimulate the transcription of other viral genes such as E

genes encoding the DNA synthetic machinery. Both IE‐ and E‐gene
products are either directly or indirectly involved in the activation

of L gene transcription.12 For example, ICP0, an IE protein, binds to

the cellular protein RanBP10 to form a complex stimulating VP16

expression.48 Therefore, the L protein VP16 and IE protein ICP0

form a positive feedback loop to stimulate de novo expression of

individual proteins, providing a paradigm of inter‐stimulation be-

tween L and IE proteins.

It has been reported that HCF‐1 stabilises the association be-

tween VP16 and its essential co‐activator Oct‐1 in the HCF‐1‐Oct‐1‐
VP16 complex.49 A single serine to alanine substitution at position

375 in VP16 will disrupt the association with Oct‐1.50 Mutation of

HCF‐1 P134S leads to disruption of VP16‐induced complex, as well

as inhibition of VP16‐dependent transcription.42,44 These data

further underscore the importance of the formation of VP16‐induced
complex for VP16 to keep its biological functions. Recently, a report

showed that optineurin (OPTN), a conserved autophagy receptor,

selectively targeted VP16 to degradation by autophagy in neurons,51

providing a novel mechanism of cellular response to restrict HSV‐1
replication via degradation of VP16. Of course, the OPTN‐
mediated degradation of VP16 may involve the VP16‐induced com-

plex. Whether similar events also occurred during virus latency or

latency‐reactivation cycles are interesting questions that will no

doubt be determined in future studies.

HSV‐1 VP16 protein is approximately 65 kDa in size containing

490 amino acids.52 As a transcriptional activator, VP16 contains a

transcriptional activation‐related domain located within the carboxy‐
terminal (approximately the last 81 amino acids),52,53 and a central

conserved core characterised by alignment of VP16 protein from the

five herpesviruses including HSV‐1, VZV (varicella zoster virus),

GHV‐1 (gallus herpesvirus 1), EHV‐1 (equine herpesvirus 1) and

BoHV‐1 (bovine herpesvirus type 1).49 The conserved core is

important for directing the assembly of the VP16‐induced complex as
well as subsequent binding to and activation of the IE promoters.49

By using proteomic analysis, a series of VP16‐associated proteins

have been identified in HSV‐1‐infected cell cultures (at 3 hpi), such as
MED1, MED4, MED6, MED10, MED12, MED13, MED14, MED15,

MED16, MED17, MED18, MED20, MED22, MED23, MED24,

MED25,MED26, MED27, MED30, MED31, CCNC, O‐glycosyl trans-
ferase (OGT), two vesicle‐associated proteins (VAPA and VAPB),

three 14‐3‐3 proteins (YWHAB, YWHAQ, and YWHAZ), and a het-

erogeneous ribonucleoprotein, hnRNP3A.43 Of note, a report
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published by an independent lab shows that OGT associates with

HCF‐1,54 which is in agreement with the finding that OGT associates
with VP16. However, the effects of these identified molecules on

either VP16 or VP16‐induced complex remain to be elucidated.

Based on the crystal structure of VP16, the conserved core re-

gion forms a seat‐like structure, where the amino acid sequences

required for recognition of specific DNA‐sequence and virion as-

sembly are in high order. However, the amino acid sequences in as-

sociation with HCF and Oct‐1 are disordered.55 These characters

essentially support the conformational changes of VP16 during as-

sembly of VP16‐induced complex, which ensure the specific recog-

nition of target DNA sequence (TAATGARAT) stringently, and

concomitantly maintain the flexibility of its biological activity.47 This

literature described above indicate that VP16 associates with various

host factors, which may partially modify the structure of either VP16

or VP16‐induced complex, a mechanism to regulate VP16 tran-

scriptional activity, which is important for the virus's productive

infection.

3 | VP16 REGULATES IE TRANSCRIPTION VIA
INTERACTIONS WITH RNA POLYMERASE II‐
ASSOCIATED FACTORS

Transcription in eukaryotes is conducted mainly by three RNA

polymerases (Pol) including RNA polymerase I (Pol I), Pol II and Pol

III.56 Pol II, is a complex protein molecule containing 12 subunits

(RPB1‐12) in human. It catalyses synthesis of the precursors of

mRNA and most of small nuclear RNA (snRNA), as well as micro-

RNA.57,58 In eukaryotes, Pol II‐mediated transcription cycles can be

divided into four distinct stages: recruitment, initiation, elongation,

and termination.59 During HSV‐1 infection, the Pol II transcription

system is hijacked and adapted, where it recruits Pol II to the viral

genome and alters both loading and positioning of Pol II on the host

genes, which are in favour of virus gene transcription,60 while

expression of host proteins are concomitantly affected.

VP16 can enhance pol II‐mediated gene transcription via asso-

ciation with specific host factors, such as the transcription factor II D

(TFIID), a multiprotein complex containing TATA binding protein

(TBP) and at least eight TBP‐associated factors (TAFs).61,62 For

example, it has been reported that the transactivation domain (TAD)

of VP16 binds to dTAFII40, a subunit of TFIID.50 In addition to TFIID,

literature has indicated that VP16 also interacts with general tran-

scription factors, such as TFIIB,63 and TFIIH subunit p62.64,65

Together with these associated transcription factors, VP16 stimulate

the assembly of Pol II preinitiation complex,66,67 which is essential to

initiate transcription (Figure 1a). Whether VP16 also interacts with

subunits of the other TFII is an interesting question that deserves

further studies in the future.

In addition to the transcription factor II, VP16 also affects Pol II

holoenzyme via association with components of the mediator com-

plex, such as the mediator coactivator subunit ARC92/ACID1.68,69

VP16 is not the only viral protein that has influence on the function

of Pol II. Other identified viral proteins include ICP27, ICP8, and

ICP22‐ all of which have been shown to regulate viral transcription

through association with either Pol II or Pol II holoenzyme. For

example, both ICP27 and ICP8 are associated with the Pol II holo-

enzyme,70 and ICP22 mediates the association between the FACT

complex (comprised of SSRP1 and Spt16) and the transcription

elongation factors SPT5 and SPT6 with viral genomes,71 which are

important for E and L gene transcription. Taken together, these

studies show that the association of VP16 along with the other viral

proteins including ICP27, ICP8, and ICP22, with components of

either Pol II or activator of Pol II is essential for viral transcription.

It should be noted that a large number of activators or coac-

tivators are physically associated with individual subunits of Pol II

and have been shown to illicit biological activity of Pol II. So it is

possible that there are components of Pol II or Pol II‐associated
factors that have not yet been identified that are either associated

with or recruited by VP16 and are essential for viral transcription. To

date, it remains unclear what the interactions between VP16 and

components of Pol I and III are or whether they are important for the

virus infection.

The viral protein VP22 contains an internal VP16 interaction

domain that mediates association with the TAD of VP16.72–74 This

association leads to relocalization of VP16 to the cytoplasm in

infected cells,75 a possible mechanism to regulate VP16 biological

functions. Surprisingly, it has been reported that ICP22 has inhibitory

effects on IE transcription by decreasing the phosphorylation of Pol

II, and blocking the transcription elongation processes.76,77 The

positive transcription elongation factor b (P‐TEFb) regulates PolII‐
mediated gene transcription in eukaryotes. It has been reported

that P‐TEFb binds to both ICP22 and VP16, forming a complex,

F I GUR E 1 The known host factors affecting HSV‐1 infection by
interacting with VP16 with distinct mechanisms. (a) VP16‐
associated factors regulate HSV‐1 productive infection via having
effects on the activity of RNA polymerase and IE promoters, host

shutoff, and IFN‐mediated antiviral signalings (b) The host factors
that regulate HSV‐1 productive infection via affecting stabilisation
and localization of VP16, as well as assembly of VP16‐induced
complex
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where ICP22 blocks the recruitment of P‐TEFb to the IE promoters

while VP16 reverses the blocking effects.77 Obviously, VP16 acts in

concert with ICP22 to recruit p‐TEFb to the IE promoters, which has
contradictory effects on the transcription elongation associated

factors in IE promotors (Figure 1a). Since the lytic gene transcription

is shut down during latency but are activated during latency‐
reactivation, where VP16 play an important role during these pro-

cesses,30 we speculate that the interplays between VP16 and com-

ponents of Pol II are concomitantly changed, an important question

remain to be addressed in the future.

4 | VP16 EPIGENETICALLY REGULATES IE
PROMOTERS TO MAKING THEM ACCESSIBLE TO
POL II

There is an intrinsic epigenetic mechanism to silence the invading

DNA for eukaryotic cells. Following HSV‐1 lytic infection, the

incoming naked viral genome is rapidly compacted into repressive

heterochromatin by association with heterochromatic histones, such

as histone 3 (H3) lysine 9‐trimethylation (H3K9me3), and

H3K27me3.78–80 Consequently, both Pol II and the associated tran-

scription factors cannot fully access to the promoters of lytic genes

within heterochromatin, which lead to epigenetic silencing. However,

the heterochromatin is unstable that can be progressively converted

into transcription active euchromatin, as demonstrated by dynami-

cally changing markers of heterochromatin into euchromatin, which

consequently facilitates transcription of lytic genes.81

It has been reported that both VP16 and ICP0 are implicated in

the conversion of viral genome from heterochromatin to euchro-

matin with distinct mechanisms.31,82 ICP0 is able to sequentially

remove H3K9me3 and H3K27me3, a possible reason to reverse the

host epigenetic silencing machinery.38 VP16 can recruit chromatin

modification enzymes, including the histone demethylases LSD1 and

the family of JMJD2 proteins to the heterochromatin, which ulti-

mately leads to demethylation of various histones.83–85 In addition, a

panel of chromatin‐modifying coactivators, such as histone acetyl-

transferases including CBP/p300, ATP‐dependent chromatin‐
remodelling complex SWI/SNF including BRM and BRG1 (BRM‐
related gene‐1),86,87 as well as TBPs (TATA‐binding proteins), are

recruited to IE gene promoters by VP16, a mechanism to regulate IE

expression.66 Collectively, VP16 plays critical roles in epigenetic

activation of IE promoters via recruitment of both chromatin modi-

fication enzymes and chromatin‐modifying coactivators (Figure 1a).

5 | VP16 AND VHS ASSOCIATION REGULATES
VIRUS REPLICATION AND HOST SHUTOFF

The virion host shutoff (vhs) protein encoded by HSV‐1 gene UL41, is
an mRNA‐specific endonuclease that is able to trigger rapid host

shutoff via disruption of preexisting polyribosomes, and degradation

of host mRNA on.88–90 In addition, vhs also induces nuclear retention

of cellular mRNA, a possible mechanism of HSV‐1‐induced host

shutoff.91 Though vhs is functionally associated with host shutoff, it is

also essential to facilitate the expression of specific viral pro-

teins.92,93 For example, along with virus regulatory protein ICP27,

vhs enhances the translation of virus true‐late mRNAs, with cell type‐
dependent manners.32,94,95 In addition, VP22, VP16 and vhs forms a

trimeric complex to disrupt the RNase activity of vhs,96 a possible

mechanism to inhibit vhs‐mediated host shutoff. Of note, translation
of vhs requires VP22 but not the VP22‐VP16 complex, even though

the complex is in favour of cytoplasmic localization of vhs mRNA.97

Interestingly, it has been reported that the VP22‐VP16 complex

enhances the rescue of vhs‐induced nuclear retention of late tran-

scripts.91 These novel findings confer VP16‐VP22 a novel biological

function to regulate HSV‐1‐induced host shutoff (Figure 1a).

Like VP16, vhs is also incorporated into the virions and becomes

a viral tegument protein.44,92,98 Vhs can bind to VP16 via the residues

238–344, which is not located at the TAD of VP16.98,99 Once inside

the host cells, VP16 and vhs works collaboratively to facilitate virus

replication through distinct approaches. VP16 activates transcription

of IE genes, while vhs induces host shutoff to generate an environ-

ment suit for virus replication.99 In addition, vhs may promote the

incorporation of VP16 into virions via association with VP16, making

it unable to recognise and subsequently associate with TAATGARAT

consensus sequence in IE promoters.98 So, vhs may affect virus IE

transcription via interaction with VP16 through distinct mechanisms.

In summary, vhs facilitates IE transcription at early stages while it

inhibits IE expression by blocking association of VP16 to IE pro-

moters, and promoting incorporation of VP16 into virions at late

stages. Since vhs could bind to VP16, whether it dynamically asso-

ciates with VP16‐induced complex and thereby is enriched on the

viral IE promoters to regulate HSV‐1 lytic infection, latency, as well as
latency‐reactivation cycles is an interesting question.

6 | VP16 AFFECTS THE INNATE IMMUNE
RESPONSE‐RELATED SIGNAL PATHWAYS

Ribonucleic acid (RNA) helicases, such as retinoic acid‐inducible gene I
(RIG‐I) and melanoma differentiation‐associated gene 5 (MDA‐5), are
able to recognise RNAof invading pathogens leading to the production

of type I interferons (IFNs).100 It has been established that theMDA5/

MAVS‐dependent pathway also is responsible for surveillance of

invading HSV‐1 in human primary macrophages.101 Upon recognition,
RIG‐I interacts with MAVS leading to stimulation of type I IFN pro-

duction via phosphorylation and activation of both IRF‐3 and IRF‐7
through IKKε and TBK1.102 The secreted IFNs through either auto-

crine or paracrine can bind to the cognitive receptors, and activate

JAK/STATpathway. This leads to formationof the IFN‐stimulated gene
factor 3 (ISGF3) transcription complex, which drives the expression of

antiviral genes, such as protein kinase R (PKR), andMx GTPases (103).

To survive in an infected host, HSV‐1 has evolved strategies to

subvert the host immune responses. For example, ICP0 disrupts IRF‐
3 signalling to decrease IFN‐β production.104 Mechanistically, ICP0
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recruits activated IRF‐3 and CBP/p300 coactivator to nuclear

structures leading to the inactivation and degradation of IRF‐3, which
ultimately reduces transcription of IFN‐β.105 Like ICP0, VP16 is

involved in the inhibition of IFN‐β production through association

with IRF‐3 and inhibition of IRF‐3 phosphorylation, which blocks the

formation of IRF‐3‐CBP‐DNA complex in the context of virus infec-

tion.103 Moreover, literature has indicated that VP16 blocks the

downstream signalling pathways of IFN‐stimulated genes (ISGs)

stimulated by IFN‐β,103 therefore VP16 not only inhibits production

of IFNs but also disable of ISGs.

In addition to regulating lipid metabolism, peroxisomes have

been found to be involved in immune defenses due to the fact that

peroxisomal MAVS stimulate production of ISGs independent of type

I IFNs.106–108 Interestingly, it has been reported that during HSV‐1
productive infection, VP16 blocks peroxisomal MAVS‐mediated
production of ISGs to evade the cellular defenses.109,110 Taken

these reports together, VP16 plays a role in blocking production of

both IFNs and ISGs (Figure 1a).

7 | VP16 INTERACTS WITH CELLULAR
MOLECULAR CHAPERONES TO FACILITATE VIRUS
REPLICATION

Heat‐shock protein 90 (HSP90), a cellular molecular chaperone, plays
critical roles in HSV‐1 infection. HSP90 specific inhibitors, such as

AT533, significantly decrease HSV‐1 replication.111 HSP90 contains

four major isoforms including HSP90α, HSP90β, tumour necrosis fac-
tor receptor‐associated protein 1, and glucose‐regulated protein 94

(GRP94).112 It has been reported that HSP90α associates with VP16,
and stabilises VP16 expression by inhibition of macroautophagy‐
mediated protein degradation, which facilitates the transactivation

of HSV‐1 IE genes.113 Recently, it has been reported that HSV‐1 pro-
ductive infection increases the abundance of a cellular lncRNA,

MAMDC2 antisense 1 (MAMDC2‐AS1), which binds to HSP90α to

facilitate the nuclear transport of VP16,114 providing new evidence

that the cellular lncRNA is involved in the regulation of VP16 function

via in collaboration with HSP90α (Figure 1b). However, whether

HSP90/MAMDC2‐AS1 associates with VP16 in the VP16‐HCF‐1‐
Oct1 complex is unknown at this time.

8 | LAMIN A/C PROMOTES NUCLEAR
ACCUMULATION OF VP16

Lamin A/C are components of Lamina, which is a mesh‐like layer of

intermediate filaments attached to the inner membrane of the nu-

clear envelope.115 Lamina facilitates the shuttle of molecules into and

out of the nucleus. Nuclear localization of VP16 is essential to initiate

IE transcription, which is important for HSV‐1 productive infection.

Now, several host factors have been revealed to promote VP16 nu-

cleus localization through distinct mechanisms. For example, the host

factor HCF‐1 binds to VP16, and stabilises the VP16‐HCF‐1‐Oct‐1

triplex and promotes nuclear accumulation of VP16.116,117 Nuclear

lamina provides a site for assembly of the VP16‐HCF‐1‐Oct‐1 com-

plex, and subsequent association with IE promoters.118,119 Lamin A/C

facilitates VP16 nucleus localization by promoting the formation of

the VP16‐induced complex. In addition, Lamin A/C‐rich micro-

domains are associated with euchromatin and active genes,120 which

are indispensable for the formation of virus replication centres, and

the initiation of IE and E gene transcription.121 These data suggest

that laminA/C is involved in the regulation of VP16 nuclear locali-

zation and VP16‐mediated transcription of viral genes.

9 | HSV‐1 VP16 INTERACTS WITH THE
MINERALOCORTICOID RECEPTOR NR3C2 FOR
VIRUS REPLICATION

The mineralocorticoid receptor (MR), also referred to as the aldo-

sterone receptor, is an intracellular steroid hormone receptor,

belonging to the nuclear receptor superfamily of proteins.122–124 MR

is widely expressed in diverse cell types, including neurons and

epithelial cells.122 Recently, it has been reported that MR, NR3C2

(nuclear receptor subfamily 3 group C member 2), possess anti‐viral
activity against HSV‐1 replication in cell cultures,125 and HSV‐1
infection increases MR expression depending on VP16 protein

expression because MR, VP16, and Oct‐1 forms a complex which

binds to MR promoter to stimulate MR transcription.125 It is

reasonable that during the productive infection, de novo VP16 may

partially increase MR expression, a potential cellular feedback to limit

virus replication. These reports provide evidence that VP16 also

regulates transcription of cellular genes.

It has been reported that CD40 L exhibits antiviral properties

against HSV‐1 replication in vivo.126 Further studies indicate that the
activation of CD40 by the cognitive ligand CD40 L delays of the

nucleus translocation of VP16, a possible mechanism to inhibit HSV‐1
replication.127 Peroxisome proliferator‐activated receptor‐γ (PPAR‐
γ) is a ligand‐activated nuclear receptor that regulates the tran-

scription of various genes. PPAR‐γ plays an essential role in adipo-

genesis and glucose homoeostasis.128 Studies have indicated that the

activation of CD40 by CD40 L leads to increased transcription of

PPAR‐γ gene in macrophages,129 and the TAD of VP16 is able to

stimulate the PPAR‐γ signalling pathway.130 Of note, it has been

reported that inhibition of MR leads to increased protein levels of

PPAR‐γ,131 which supports the findings that MR has antiviral ef-

fects.125 Taken these studies together, it is highly possible that VP16

is initiating crosstalk between MR and CD40/PPAR‐γ.

10 | VP16 TRANSACTIVATION DOMAINS (TAD)
HAVE THE CAPACITY TO STIMULATE VARIOUS
CELLULAR FACTORS

The TAD of VP16 has been widely used to characterise transcrip-

tional activators in eukaryotes.66 The TAD of VP16 can be fused to a
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DNA‐binding domain (DBD) of another protein in order to increase

expression of a desired target gene. For example, a mutant PPAR‐γ
(VP‐PPAR‐γ) protein, constructed by genetic fusing the VP16 TAD to

wild‐type PPAR‐γ, is constitutively active. Overexpressed VP‐PPAR‐γ
results in ligand‐independent activation of PPAR‐γ and subsequent

induction of the PPAR‐γ target genes,130 suggesting that the fusion of
the VP16 TAD to wild‐type PPAR‐γ confers VP‐PPAR‐γ the capacity
to induce sustained expression of PPAR‐γ target genes.

The transcription factor C/EBPα (CCAATenhancer binding protein
α) acts in concert with GABP (GA‐binding protein) to regulate the

promoter of myeloid‐specific FCAR (Fc receptor for IgA).132 Shimo-

kawa et. al generated a chimaeric protein with the truncated DNA

binding domain (DBD) of C/EBPα fused to the TAD of HSV‐1 VP16. In
concert with GABP, the fused protein was able to increase the tran-

scriptional activity of FCAR promoter of up to 35‐fold,133 providing
evidence that VP16 TAD has a strong capacity to stimulate the gene

transcription of the heterogeneous target genes. Therefore, it is a

promising strategy to genetically fuse the TAD of VP16 to a given

transcriptional regulators, in order to generate a hybrid active mole-

cule, keeping sustained activation of the target genes.

However, TAD of VP16 does not always enhance the biological

functions of the fused protein. For example, it has been shown that

the C terminus of β‐catenin can be functionally replaced by the VP16
TAD because a plasmid containing β‐catenin gene with C‐terminus
substituted by HSV‐1 VP16 TAD demonstrated transcriptional ac-

tivity similar to that of intact β‐catenin.134 Taken these reports

together, TAD of VP16 alters the activity of a fused transcriptional

factor via the target protein‐dependent manners. Interestingly, VP16
protein is able to increase β‐catenin dependent transcription and β‐
catenin steady state protein levels.11 Whether VP16 protein can in-

crease the protein levels of PPAR‐γ and C/EBPα, and activate PPAR‐
γ‐ and C/EBPα‐dependent transcription remains to be investigated.

11 | CONCLUSIONS AND DISCUSSIONS

HSV‐1 undergoes lytic infection, latency and latency‐reactivate cy-

cles, with VP16 extensively involved in these processes. VP16 plays

important roles in the regulation of HSV‐1 infection or pathogenesis.

Even though a large number of host factors have been identified in

the virus lytic infection, these indicated that still there are undis-

covered factors which are essential to understand the virus patho-

genesis. Moreover, VP16 is critical for the onset of both lytic infection

and latency‐reactivation. Whether these identified host factors are

involved in the onset of latency‐reactivation is an interesting question
that needs to be addressed in the future. Considering the importance

of VP16 on the virus infection both in vivo and in vitro, further

characterisation of the host factors that interacts with VP16 will

benefit our understanding of the virus pathogenesis.
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