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THE BIGGER PICTURE Machine learning (ML) touches every area of science, and medicine especially is well
poised to benefit themost. Hospital and nonhospital settings generate unprecedented amounts of data that if
used correctly can unlock advances in new diagnostics and contribute to preventive medicine. The estab-
lished paradigm of ML (supervised) requires the collection of input data (such as vitals or imaging) coupled
with annotations from experts (such as indications of arrhythmia). New self-supervisedmodels promise to do
without annotations by using clever transformations of the input data only and achieve remarkable perfor-
mance in an array of clinical tasks. This perspective gives a brief overview of the fundamental methodologies
that enable these advances and discusses further challenges and opportunities.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY

Medicine is undergoing an unprecedented digital transformation, as massive amounts of health data are be-
ing produced, gathered, and curated, ranging from in-hospital (e.g., intensive care unit [ICU]) to person-
generated data (wearables). Annotating all these data for training purposes in order to feed to deep learning
models for pattern recognition is impractical. Here, we discuss some exciting recent results of self-super-
vised learning (SSL) applications to high-resolution health signals. These examples leverage unlabeled
data to learn meaningful representations that can generalize to situations where the ground truth is inade-
quate or simply infeasible to collect due to the high burden or associated costs. The most prominent bottle-
neck of deep learning today is access to labeled, carefully curated datasets, and self-supervision on health
signals opens up new possibilities to eliminate data silos through general-purpose models that can transfer
to low-resource environments and tasks.
INTRODUCTION

Underutilized medical data and the label gap
Medical data have the power to transform lives. Advances in the

ways in which we collect, process, interpret, and use these data

can be used to save lives and transform our society. Although the

overwhelming majority of current medical research now focuses

on clinical data (labs, imaging, vitals, etc.), the average person

visits a doctor only around five times a year. Further, recent ad-

vances in wearable sensing and mobile computing, alongside

their widespread and growing adoption, have created new path-

ways for the collection of health and well-being data outside of

the laboratory and hospital settings, in a longitudinal fashion.

These devices can be used to ‘‘fill the gaps’’ that are often found

in traditional clinical data, opening up new research and com-
This is an open access article und
mercial directions for large-scale lifestyle monitoring and

providing sources of truth in nondisease scenarios. For example,

millions of people worldwide use such devices to track their

physical activity and sleep,1 with increasingly more sophisti-

cated predictive capabilities and a wider range of sensors

used to monitor these human behaviors and activities.

Concurrent to this self-monitoring revolution, seemingly dispa-

rate forces such as mature open-source scientific software li-

braries, easier data crowdsourcing and labeling, and the repur-

posing of specialized hardware (graphics cards) have enabled

dramatic improvements in predictive modeling. Many machine

learning (ML) tasks have achieved impressive performance,

ranging from object recognition in images to outperforming ex-

perts in breast cancer screening. The common denominator in

all these cases has been the curationof high-quality large datasets
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that allow models to exploit latent patterns and subsequently

generalize in real-world scenarios. However, especially in medi-

cine, where erroneous predictions can have grave consequences,

the roll-out and adoption of such systems have been met with

resistance, mostly citing algorithm interpretability reasons.

Similar to how social networks learn our online behaviors,

wearable and mobile devices monitor our activities in the real

world. By tracking our sleep, steps, and eating and working

habits, they create a holistic understanding of the most impor-

tant components of our everyday health, until now only possible

through subjective surveys. Although we recognize the value of

such datasets, advances in ML for health and mobile sensing

have not kept up with other areas. For example, over the last

decade devices such as Fitbit or the iPhone have been collecting

multi-modal sensor data at an unprecedented temporal resolu-

tion. However, effectively leveraging these datasets has pre-

sented many challenges, leading to these data being frequently

overlooked for scientific and medical research.2 Central to this

problem is obtaining quality annotations and ground truth, which

can be costly, burdensome, and at times, even impossible, given

the granularity of these data. In this article, we discuss the poten-

tial of self-supervised methods toward bridging the label gap in

biomedical data.

BREAKING AWAY FROM LABELS

Supervised learning: Reaching its limits
Deep supervised learning requires a decent amount of labels and

samples in order to achieve good performance. (Arguing about

the optimal dataset/label size is definitely a very empirical prob-

lem at this moment and that is why we do not quote exact

numbers here, since it depends on the complexity of the given

problem and the model. There is evidence that accuracy pla-

teaus faster with supervised models compared to self-super-

vised ones, and the gains are mostly in the low-data regime.3)

These manual labels—in the best scenario—are easier to obtain

through crowdsourcing (cf. Imagenet), but in some cases, it is

virtually impossible. For example, annotating wearable sensor

timeseries for human activity recognition tasks a posteriori is

not feasible without a video recording. On the other hand, given

the fact that the amount of unlabeled data (e.g., all the images on

the internet or the entire Fitbit user base) is considerably more

heterogeneous and representative than some limited datasets,

ongoing research and interest in this area have grown signifi-

cantly. However, unsupervised learning is hard and, until

recently, was less efficient than supervised learning. The first

promising unsupervised studies in the area of health signals em-

ployed the successful paradigm of word2vec and reported

results on a par with supervised models.4 However, the static

vectors produced with these methods have limitations against

context-specific representations.5

Self-supervised learning: The quest for the best data
representation
A simple yet exciting emerging idea is to obtain labels ‘‘for free’’

from the input data (x) through various transformations and, then,

use conventional supervised objectives to predict them (ySSL).

The representations obtained this way would be meaningful for

downstream tasks with limited labeled data and linear classifiers
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(see Figure 1). This has been coined self-supervised (or predic-

tive) learning (SSL) due to learning the supervision directly from

the data. (The terminology surrounding unsupervised and SSL

is a bit blurry. Unsupervised learning is used for a wide range

of models, ranging from autoencoders6 and Boltzmann ma-

chines7 to principal component and cluster analysis. SSL can

be seen as a subset of unsupervised learning, where supervisory

signals are learned directly from the data.8 However, the two

terms are sometimes used interchangeably.) Even before this

term was coined, researchers used to handcraft pretext tasks,

which exploited unlabeled data. The most common tasks

involved predicting distorted versions of the spatial characteris-

tics of image data by means of rescaling, rotating, patching,

shuffling, colorizing, and inpainting missing parts.

However, one could argue that devising these increasingly

complex pre-training tasks resembles traditional feature engi-

neering that neural networks promised to automate. Therefore,

more generic recent methods have switched their focus from in-

venting single data transformations to comparing such views in

the latent space and, therefore, offering elegant methods of im-

plicit clustering between pseudo-positive and negative samples.

Notably, SimCLR9 achieved—for the first time—performance on

a par with supervised models, by proposing a two-network

training method for visual representations, which maximizes

agreement between differently transformed views of the same

sample via a contrastive cosine similarity loss in the latent space.

More recently, BYOL claimed better results even without the

negative pairs in its training objective through a similar two-

network approach.10 This sounds surprisingly similar to another

family of models: generative adversarial networks (GANs), where

the objective draws from game-theoretic principles, and two net-

works contest with each other in a game to generate more real-

istic data (see Figure 1). A useful taxonomy is introduced in,11

where SSLmodels are grouped into three categories: generative

(e.g., autoencoders), contrastive (e.g., SimCLR), and generative-

contrastive (e.g., GANs or adversarial autoencoders). The main

difference across these categories is the objective, ranging

from reconstruction and contrastive losses to distributional di-

vergences. We expect to see more overlap between generative,

adversarial, and contrastive training in the future.12

These methods have shown promise that can indeed gener-

alize to other data beyond images; however, data augmentations

or objectives might need to be adapted when moving to a

different type of input data.13,14 Furthermore, approaches such

as the arrow of time15 exploit the temporal—rather than

spatial—information of the data, by either artificially reverting

the input sequences so as to distinguish between the correct

and the reverse order (see Figure 1), or just predicting the future.

We believe that models that anticipate and forecast the future

are more robust and generalizable (for example, across hospi-

tals).16 This seems to be particularly effective in language tasks

as well, where models such as GPT-35 outperform every other

method by just slicing the data in such a way so as to predict

the next word.

Transfer learning: The art of fine-tuning
Transfer learning is the natural application of SSL. The term

transfer describes a set of methods toward preserving and reus-

ing previously acquired information, applied possibly to a slightly
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Figure 1. Self-supervised learning for health signals
Here, we illustrate the case of ECG signals and the prominent methods, which leverage unlabeled data with self-supervised learning.
(A) Contrastive training maximizes the agreement between the original and the distorted view (flipped, rotated, or other augmentations).

(legend continued on next page)
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different domain. This stored information can further accelerate

the training of a downstream task with usually limited training

data. Modern transfer learning uses pre-trained networks as

fixed feature extractors in a) linear downstream models, where

a logistic regression classifier is trained to classify a new dataset

based on the self-supervised embeddings, or b) further fine-tun-

ing the model in a downstream task. This has shown remarkable

results in vision and language domains, where the learned

embeddings can be directly applied to smaller datasets.5,9

SELF-SUPERVISION FOR HEALTH SIGNALS

We will now present some recent results of self-supervised

models applied to biomedical signal data (for a comprehensive

view of this topic, the reader may be interested in Chowdhury

and colleagues’ review on SSL on medicine).17

Learning generalized physiological representations
While everyone can download off-the-shelf pre-trained models

to further customize vision or language tasks, this is not the

case for health signals. To this end, we recently developed

Step2Heart,18 a self-supervised model that exploits the multi-

modal data of modern wearables to learn meaningful represen-

tations, which generalize to several outcomes with transfer

learning. The model maps activity data to future heart rate (HR)

responses (implicitly applying the arrow of time principle) and

can be used as a feature extractor for wearable data. For pre-

training, we used a joint quantile loss function that accounts

for the long tails of HR data, while downstream, we aggregated

the window-level features to user-level ones and showcased

the value captured by the learned embeddings through strong

performance at inferring physiologically meaningful variables,

ranging from anthropometrics to fitness, outperforming unimo-

dal autoencoders and common biomarkers. For instance, the

embeddings achieved an area under curve (AUC) of 0.68 for

cardio-fitness prediction and an AUC of 0.80 for physical activity

energy expenditure. Obtaining these outcomes in large popula-

tions can be valuable for downstream health-related inferences

that would normally be costly and burdensome (for example, a

fitness test requires expensive laboratory treadmill equipment

and respiration instruments). Additionally, low fitness is a stron-

ger predictor of mortality than diabetes, hypertension, and

smoking.19 Overall, this is one of the first multi-modal self-super-

visedmodels for behavioral and physiological data, with implica-

tions for large-scale health and lifestyle monitoring (open source

code and pre-trained models are available on https://github.

com/sdimi/Step2heart).

Improving human activity recognition
A staple task inmobile health is that of human activity recognition

(distinguishing between walking, sitting, running, etc., through

activity sensors). This task is fundamental for the development

of higher-level health monitoring applications. With SelfHAR,20

we recently showed that large unlabeled mobile accelerometer
(B) Generative models such as GANs involve two networks that contest with eac
(C) Time-aware models try to guess whether the signal follows the arrow of time
(D) Masked models hide part of the signal and challenge the model to predict the o
downstream transfer learning tasks with linear models (blue box). Self-supervisio

4 Patterns 3, February 11, 2022
datasets can be leveraged to complement small, labeled ones.

Our approach combines teacher-student self-training, which

distills the knowledge of unlabeled and labeled datasets, while

allowing for data augmentation, and multi-task self-supervision,

which learns robust signal-level representations by predicting

distorted versions of the input. SelfHAR achieved up to a 12% in-

crease in performance (F1 score) using the same number of

model parameters, by using up to 10 times fewer labeled data

compared to supervised approaches. This work showed how

to effectively distill, filter, and use unlabeled data orders of

magnitude larger than supervised datasets. In a subsequent

study, we studied the impact of the combinations of timeseries

transformations in SimCLR models for activity recognition.13

Subject-aware biosignal representations
Commonly, datasets with a small number of subjects, such as

electroencephalograms (EEG), manifest high intersubject vari-

ability. Therefore, Cheng et al. proposed a self-supervisedmodel

with an adversarial subject identifier to minimize subject-specific

content.12 They developed domain-inspired augmentations

such as frequency-based perturbations to augment the signal,

because the power in certain EEG frequency bands has been

shown to be highly correlated with different brain activities.

Through that, they found that temporal specific transformations

(cutout and delay) are the most effective ones. Last, they inves-

tigated two scenarios: (1) using subject-specific distributions to

compute the contrastive loss and (2) promoting subject invari-

ance through adversarial training, finding that promoting subject

invariance increases classification performance when training

with a small number of subjects.

Data-efficient cardiac arrhythmia classification
Electrocardiogram (ECG) data are ubiquitous in healthcare set-

tings and are increasingly common in personal devices such

as the Apple Watch. Kiyasseh et al.14 proposed CLOCS, which

leverages temporal and spatial invariances of ECG leads based

on the two key observations: adjacent ECG segments of shorter

duration will continue to share context, and recordings from

different leads (at the same time) will reflect the same cardiac

function and, thus, share context. A new idea was to define a

positive pair as a representation of transformed instances that

belong to the same patient. By doing so, themodel implicitly per-

sonalizes the learned representations to each patient. Driven by

this, they designed a new contrastive objective that outper-

formed supervised and generic self-supervised methods (in

terms of AUC) such as BYOL, most notably, with only 25% of

labelled training data.

Improving patient monitoring
Yèche et al. took the idea of inducing priors on contrastive losses

a step forward.21 They design an objective that preserves the

time dependency of the representations of the timeseries seg-

ments and outperforms unsupervised and supervised methods

in predicting intensive care unit (ICU) decompensation, length
h other in a game to generate more realistic data.
.
riginal one. The representations learned from these methods can be reused on
n is more label efficient in low-data regimes (top right graph).3

https://github.com/sdimi/Step2heart
https://github.com/sdimi/Step2heart
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of stay, and sepsis onset (on the MIMIC dataset). The versatility

of this approach is twofold: when fully unsupervised, it is

competitive to supervised models, and when used in a super-

vised manner, it outperforms contrastive methods. Tonekaboni

et al. independently arrived to a similar formulation by ensuring

that in the encoding space, the distribution of signals from within

a neighborhood is distinguishable from the distribution of non-

neighboring signals.22 Their models surpassed competitors

such as the triplet loss and contrastive predictive coding in pre-

dicting diverse outcomes, ranging from atrial fibrillation to human

activity recognition, assessedwith clusteringmetrics such as the

silhouette score and classification metrics such as the area un-

der the precision-recall curve. They also showed better cluster-

ability over other contrastive losses. Both studies highlighted the

generality of such models, which can be reused in multiple

downstream tasks.

FURTHER IMPLICATIONS

Impact on physician workload
Apart from improving accuracy, self-supervision has the poten-

tial to lower physicians’ workload. Most healthcare systems

are overstretched, staff suffer from burnout, and predictive clin-

ical tools could serve to relieve some pressure, especially in

increasingly aged populations. These patients require more in-

vestigations—such as imaging or ECGs—hence adding to the

overload of clinicians. Thus, employing clinical domain experts

to label large datasets whilst working in understaffed depart-

ments is an expensive and unrealistic expectation that contrib-

utes to the bottleneck for the adoption of ML. Radiologists

were the first to acknowledge this vicious cycle, which is likely

to propagate to other medical specialties. Therefore, it is of para-

mount importance to develop efficient models that require min-

imal—or zero—annotations and physician burden. Self-super-

vised models and the automation of time-consuming tasks are

a feasible solution toward more efficient medicine, potentially

enabling more scalable patient screening, preventing delays in

time-sensitive diagnoses, clinical management decisions, and

hence, improving prognoses.

As a result, investing resources only on supervised models will

slow down the adoption of ML in clinical settings and will dispro-

portionally benefit high-income countries. Instead, label-efficient

models pre-trained on large populations could generalize to

global settings, which is of special relevance now that hospitals

resume their elective operations whilst still fighting the COVID-19

pandemic.

Limitations
Self-supervised models tend to achieve remarkable transfer re-

sults with a fraction of labeled data. However, training these

models can be computationally prohibiting, since it has been

empirically shown that they require more data and more training

iterations.5 Additionally, SSL is a multi-step process, involving a

first step of generating augmentations, then training the pretext

model, and last, fine-tuning to the target dataset, which makes

the entire pipeline more complicated than simple end-to-end su-

pervised models. Additionally, tracking progress in the area of

health signals is not trivial, since there are many different tasks,

modalities, baselines, and evaluation metrics. For instance, in
some papers, the sign when measuring the gap between SSL

and supervised models is positive and, in some, negative, which

seems to point to benchmark dependencies.

Conclusion and future outlook
We demonstrated the potential of models that learn meaningful

representations directly from unstructured data and presented

some recent results in the area of biomedical signals. The under-

lying challenge here is to find the best representation for biomed-

ical signals, which range from generic ones, such as in BYOL,10

to ones based on medical intuition and physiology.18,22 Given

that we have strong statistical priors about the nature of these

signals, we are particularly excited by the prospect presented

by the latter. Zooming out, Andrew Ng has recently expressed

some alarm that there is a considerable gap between proof-of-

concept models and actual real-life deployments, due to differ-

ences in sensors, protocols, or data collection methods: ‘‘In

contrast, any human [doctor] can walk down the street to the

other hospital and do just fine’’ (https://www.fastcompany.

com/90630654/stanford-ai-experts-healthcare). Sequential trans-

fer learning, as seen, for example, in Step2Heart18 or in

numerous recent works,10 is probably the first step to validating

that learned representations can generalize across different

tasks while being label-efficient. The next steps should focus

on demonstrating how these models can perform equally well

in changing environments (e.g., different hospitals, populations,

or devices). Some exciting new approaches toward this direction

include disentangled autoencoders and meta-learning for

domain generalization. In short, access to high-quality labeled

datasets is the main bottleneck of transferring ML advances to

critical fields such as healthcare, and SSL appears to be a

feasible solution.
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