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Abstract

Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. 

The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in 

cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and 

increases availability of glycolytic metabolites to support cell proliferation. This suggests that high 

pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the 

pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule 

PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule 

activators bind PKM2 at the subunit interaction interface, a site distinct from that of the 

endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of 

activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by 

tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of 

PKM2 can interfere with anabolic metabolism.

Cancer cells differ from many normal cells in the way they utilize extracellular nutrients, 

providing a strategy to interfere with tumor growth1,2. The increased cell proliferation that 

characterizes tumor growth imposes an enhanced need for biological building blocks to 

support production of new cells3. To provide for this increased biosynthetic demand, cancer 

cells exhibit higher uptake of nutrients such as glucose. In addition, the metabolic pathways 

of cancer cells are altered to allow production of macromolecules and withstand oxidative 

stress associated with tumorigenesis1,3-6.

Enhanced glucose uptake is a hallmark of several cancers and is exploited in the clinic as a 

diagnostic tool through PET imaging of the glucose analogue 18F-deoxyglucose (18FDG-

PET)7. Moreover, in contrast to most normal tissues where much of the glucose is oxidized 

through the TCA cycle in mitochondria, cancer cells preferentially convert glucose to 

lactate3. The fate of glucose inside cells is influenced by the enzymatic properties of the 

specific glycolytic gene products expressed. Expression of the M2 isoform of pyruvate 

kinase (PKM2) can contribute to the characteristic glucose metabolism of tumors and 

replacement of PKM2 with its splice variant PKM1 cannot efficiently support biosynthesis 

and tumor growth8. Thus, pyruvate kinase regulates a step in glucose metabolism that can be 

critical for controlling cell proliferation.

Pyruvate kinase catalyzes the last step of glycolysis, transferring the phosphate from 

phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP) to yield adenosine 

triphosphate (ATP) and pyruvate. In mammals, two genes encode a total of four pyruvate 

kinase isoforms. The Pkrl gene encodes the PKL and PKR isoforms, which are expressed in 

the liver and red blood cells respectively. Most tissues express either the PKM1 or PKM2 

isoform encoded by the Pkm gene. PKM1 is found in many normal differentiated tissues 
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whereas PKM2 is expressed in most proliferating cells including all cancer cell lines and 

tumors tested9. PKM1 and PKM2 are derived from alternative splicing of a Pkm gene 

transcript by mutual exclusion of a single conserved exon encoding 56 amino acids10-12. 

Despite very similar primary sequences, PKM1 and PKM2 have different catalytic and 

regulatory properties. PKM1 exhibits high constitutive enzymatic activity13. In contrast, 

PKM2 is less active, but can be allosterically activated by the upstream glycolytic 

metabolite fructose-1,6-bisphosphate (FBP)14. It has been hypothesized that FBP binding 

induces conformational changes that promote the association of the protein into 

homotetramers that comprise the most active form of the enzyme15,16.

Unlike other pyruvate kinase isoforms, PKM2 can interact with proteins harboring 

phosphorylated tyrosine residues leading to release of FBP which, in turn, reduces the 

activity of the enzyme17. Low PKM2 activity, in conjunction with increased glucose uptake, 

facilitates the flux of glucose carbons into anabolic pathways derived from 

glycolysis3,9,17,18. Also, PKM2, but not PKM1, can be inhibited by direct oxidation of 

cysteine 358 as an adaptive response to increased intracellular reactive oxygen species 

(ROS)19. Additionally, PKM2 expression in cancer cells is associated with enhanced 

phosphorylation of H11 on phosphoglycerate mutase 1 (PGAM1) by PEP20. This pathway 

provides an alternative route for pyruvate production while bypassing the generation of ATP 

via the pyruvate kinase step and thereby allows glycolysis to proceed at high rates21. 

Replacement of PKM2 with the constitutively active isoform PKM1 results in reduced 

lactate production, enhanced oxygen consumption, and a decrease in PGAM1 

phosphorylation8,20. Furthermore, there appears to be selection for PKM2 expression for 

growth in vivo. However, it is also possible that PKM2 expression reflects selection against 

high pyruvate kinase activity and therefore against expression of PKM1, raising the 

possibility that activation of PKM2 may impede cancer cell proliferation by interfering with 

regulatory mechanisms critical for proliferative metabolism.

Recently, we identified small molecules that selectively activate PKM2 over other pyruvate 

kinase isoforms in vitro22,23. Here we show that synthetic PKM2 activators can increase 

PKM2 activity in cells to levels that are comparable to PKM1 expression. PKM2 activators 

bind to a pocket at the PKM2 subunit interface and thereby enhance association of PKM2 

subunits into stable tetramers. Importantly, this mechanism of tetramer stabilization is 

refractory to inhibition by tyrosine-phosphorylated proteins and influences cell metabolism. 

Among the two classes of PKM2 activators described here, a member of the thieno[3,2-

b]pyrrole[3,2-d]pyridazinones class, TEPP-46, has pharmacokinetic properties amenable to 

experiments in mice. Expression of PKM1 or continuous dosing of mice with TEPP-46, 

decreases development of human cancer cell xenografts, suggesting that increased pyruvate 

kinase activity can impair tumorigenesis.

RESULTS

Increased pyruvate kinase activity impairs tumor growth

We have previously demonstrated that replacement of PKM2 with PKM1 impairs the ability 

of H1299 human non-small cell lung cancer cells to form xenograft tumors in mice8. This 

observation may reflect selection for PKM2 expression in tumors. However, because the 
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ability to decrease PKM2 activity correlates with increased cell proliferation17, it is also 

possible that high pyruvate kinase activity associated with the expression of the 

constitutively active PKM1 isoform can suppress tumor growth. To address whether PKM1 

expression alone affects tumor formation in vivo, we engineered H1299 cells to stably 

express Flag-tagged PKM1 in the presence of endogenous PKM2 (henceforth referred to as 

H1299-PKM1 cells). Expression of Flag-PKM1 did not affect endogenous PKM2 levels 

(Supplementary Results, Supplementary Fig. 1a), but resulted in a 35±17% increase in total 

cellular pyruvate kinase activity (Fig. 1a). Both PKM1 and PKM2 can associate into 

tetramers24,25. To determine if PKM1 can associate with endogenous PKM2 we used an 

anti-Flag antibody to immunoprecipitate Flag-PKM1. SDS-PAGE of the 

immunoprecipitated protein followed by silver staining revealed the presence of 

stoichiometric amounts of Flag-PKM1 and endogenous co-precipitating PKM2 

(Supplementary Fig. 1b). The identity of PKM2 was confirmed by mass spectrometry 

(Supplementary Fig. 1c). These data show that PKM1 can form heterocomplexes with 

endogenous PKM2, and that immunoprecipitation of exogenously expressed Flag-tagged 

pyruvate kinase can be used to assess formation of multimeric pyruvate kinase complexes in 

cells. Furthermore, these data suggest that expression of PKM1 in PKM2-expressing cells 

suffices to increase total pyruvate kinase activity.

To determine whether PKM1 expression with enhanced pyruvate kinase activity interferes 

with tumor growth, we compared the ability of H1299-PKM1 versus parental H1299 cells to 

form tumors in immunocompromised (nu/nu) mice. Tumors emerged in all sites where 

parental cells were injected after a median of 31.5 days (Fig. 1b). However, only 4 out of 10 

sites injected with H1299-PKM1 cells gave rise to tumors. Notably, tumors derived from 

H1299-PKM1 cells were significantly smaller (Fig. 1c), occurred later and had reduced 

expression of Flag-PKM1 relative to the injected H1299-PKM1 cells (Fig. 1d and 

Supplementary Fig. 2). Furthermore, pyruvate kinase activity in tumor lysates was 

consistently lower than that seen in parental H1299 cells (Fig. 1e). As the same numbers of 

parental or PKM1-expressing cells were injected to initiate tumors, the low pyruvate kinase 

activity in all tumors suggests that the small tumors derived from H1299-PKM1 cells arose 

from a subset of cells that lost PKM1 expression. These data support the notion that 

decreased pyruvate kinase activity is associated with tumor growth, and suggest that high 

pyruvate kinase activity can suppress formation of cancer cell xenograft tumors in mice.

Small molecules can specifically activate PKM2 in cells

A recent screen identified two structurally distinct classes of small-molecule PKM2 

activators22,33. A representative compound from each class was selected for further studies; 

the thieno[3,2-b]pyrrole[3,2-d]pyridazinone NCGC00186528 (TEPP-46; ML265, PubChem 

CID: 44246499) and the substituted N,N’-diarylsulfonamide NCGC00185916 (DASA-58; 

ML203, PubChem CID: 44543605) are both potent activators of recombinant PKM2 

(TEPP-46: AC90=470 nM, AC50=92 nM; DASA-58: AC90=680 nM, AC50=38 nM; Fig. 2a) 

and are soluble in aqueous solution22,33. Furthermore, TEPP-46 and DASA-58 are selective 

for PKM2 as they do not activate recombinant PKM1 in vitro (Fig. 2b). To investigate 

whether these compounds are able to activate PKM2 selectively in cells, we engineered 

A549 cells to express Flag-PKM1 or Flag-PKM2 with concomitant knockdown of 
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endogenous PKM2 (referred to as A549-PKM1/kd and A549-PKM2/kd, respectively) (Fig. 

2c). We treated these cells with 40 μM DASA-58 and assayed pyruvate kinase activity in the 

corresponding cell lysates. Consistent with our results in H1299 cells, lysates from DMSO-

treated A549-PKM1/kd cells had 233±27% more pyruvate kinase activity than A549-

PKM2/kd cells. We observed no increase in pyruvate kinase activity following treatment of 

A549-PKM1/kd cells with DASA-58; however DASA-58 treatment resulted in a 248 ±21% 

increase of pyruvate kinase activity in A549-PKM2/kd cell lysates. These data suggest that 

DASA-58 can selectively activate PKM2 in cells.

In a manner analogous to FBP, both TEPP-46 and DASA-58 decrease the Km of PKM2 for 

PEP with no effect on the Km for ADP22,33, suggesting that TEPP-46 and DASA-58 activate 

PKM2 by a mechanism similar to that of the endogenous activator FBP. To determine 

whether FBP could further activate PKM2 in activator-treated cells, we incubated A549 

cells with increasing concentrations (0-100 μM) of DASA-58 and assayed PKM2 activity in 

the corresponding lysates in the presence or absence of FBP. In the absence of FBP, 

DASA-58 activated PKM2 in a dose-dependent manner with an effective cellular half-

activation concentration (EC50) of 19.6 μM (Fig. 2d). However, in the presence of high 

physiological levels of FBP (200 μM), we observed no significant additional increase in 

activity as a result of activator treatment. These data are consistent with the in vitro kinetic 

analysis suggesting that DASA-58 enhances PKM2 activity by a mechanism similar to FBP.

PKM2 activators stabilize subunit interactions

The most active form of PKM2 is as a tetramer, and subunit association is thought to be 

promoted by FBP. To test this hypothesis, we separated bacterially expressed recombinant 

PKM2 into monomers and tetramers by size exclusion chromatography (Supplementary Fig. 

3a) and assayed the ability of FBP to increase PKM2 activity. PKM2 tetramers showed 

greater than 50-fold higher activity compared to PKM2 monomers (Supplementary Fig. 3b). 

Addition of FBP had minimal effects on PKM2 tetramer activity (consistent with bacterial 

FBP being trapped on the stable tetramers17), but FBP increased the activity of PKM2 

monomers by approximately 70% (Supplementary Fig. 3c). The relatively modest activation 

of the monomers likely reflects the slow kinetics of assembling tetramers from monomers 

under dilute conditions. To determine if FBP activation of monomers is accompanied by 

changes in PKM2 subunit composition, we performed sucrose gradient ultracentrifugation 

on purified recombinant PKM2. Under these conditions, the majority of PKM2 is found to 

dissociate into monomers (Fig. 3a). Exposure of PKM2 to FBP throughout the experiment 

results in a shift of the protein into a tetrameric configuration that is comparable to that seen 

with the constitutively active PKM1 isoform (Supplementary Fig. 3d). To investigate if 

small-molecule activators also promote pyruvate kinase subunit association into tetramers, 

we incubated purified PKM2 with TEPP-46 or DASA-58. We observed only a partial shift 

of PKM2 into tetramers with both activators alone (Supplementary Fig. 3d). As only a 

fraction of bacterially expressed PKM2 is bound to FBP (Supplementary Fig. 3a-c) we 

reasoned that the activators may only stabilize FBP-bound PKM2. Consistent with this 

hypothesis, transient incubation of PKM2 with FBP prior to addition of TEPP-46 resulted in 

the activator fully stabilizing the PKM2 tetramer. Overall, these data suggest that unlike 
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PKM2, PKM1 is a stable tetrameric enzyme, and both FBP and small-molecule activators 

increase PKM2 activity by promoting the tetrameric state.

To investigate whether PKM2 activators promote pyruvate kinase subunit association in 

cells, we generated A549 cells stably expressing Flag-PKM1 or Flag-PKM2 and treated 

them with DMSO or DASA-58. Following lysis and immunoprecipitation with Flag 

antibodies, we determined the relative amount of endogenous PKM2 that co-precipitated 

under the various conditions by western blot using an antibody that recognizes an epitope 

common to both pyruvate kinase isoforms. Flag-PKM1 immunoprecipitated equivalent 

amounts of endogenous PKM2 irrespective of activator treatment (Supplementary Fig. 3e). 

In contrast, DASA-58 treatment resulted in increased levels of endogenous PKM2 

immunoprecipating with Flag-PKM2 when compared with DMSO-treated cells or cells 

treated with an inactive analog of DASA-5823. Similar results were obtained with TEPP-46 

(Supplementary Fig. 3f). These data indicate that PKM2 activators can promote stable 

association of PKM2 subunits in cells.

Phosphotyrosine interaction with PKM2 downstream of growth factor signaling is critical 

for both cell proliferation and metabolic changes that promote anabolism17. Binding to 

phosphotyrosine decreases PKM2 activity by catalyzing release of FBP from the 

enzyme17,26. Pervanadate inhibits tyrosine phosphatases to acutely increase levels of 

tyrosine-phosphorylated proteins, and pervanadate treatment of cells results in inhibition of 

PKM2 but not inhibition of PKM1 activity17,20. To determine whether PKM2 activity 

inhibition caused by increased tyrosine phosphorylated proteins results in destabilization of 

PKM2 tetramers in cells, we treated cells with pervanadate and determined the 

stoichiometry of PKM2 subunit composition by size exclusion chromatography. In 

logarithmically growing A549 cells, approximately half of the PKM2 elutes as a tetramer 

while the other half dissociates to monomers during size exclusion chromatography (Fig. 

3b). Under these conditions we do not detect a significant population of dimeric PKM2. 

Pervanadate treatment caused disappearance of PKM2 tetramers and the entire PKM2 

population was detected as monomers in this assay. We then tested whether PKM2 

activators influence regulation of PKM2 tetramerization by tyrosine phosphorylated 

proteins. In logarithmically growing cells treated with TEPP-46 all PKM2 was found as a 

tetramer (Fig. 3b). Moreover, PKM2 tetramers were preserved even after treatment of cells 

with pervanadate (Fig. 3b). Similar results were obtained with H1299 cells (Supplementary 

Fig. 3g).

To test whether PKM2 activators also affect PKM2 activity when levels of tyrosine-

phosphorylated proteins are increased, we assayed PKM2 activity in lysates of cells treated 

with DMSO, TEPP-46 or DASA-58 followed by pervanadate treatment. Pre-treatment of 

cells with TEPP-46 or DASA-58 prevented pervanadate-induced inhibition of PKM2 

activity (Fig. 3c). It is plausible that activator binding renders PKM2 resistant to an 

inhibitory modification induced by pervanadate treatment. However, a phosphotyrosine-

containing peptide corresponding to the optimal PKM2 interaction motif17 can promote 

dissociation of PKM2 tetramers (Supplementary Fig. 3h), but does not inhibit the ability of 

TEPP-46 to activate recombinant PKM2 (Supplementary Fig. 3i). These results indicate that 
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activators render PKM2 tetramers resistant to dissociation induced by phosphotyrosine 

signaling.

Overall, these data argue that PKM2 activators enhance PKM2 activity by promoting the 

stable (active) tetrameric form of PKM2. However, similar to PKM1 but unlike the 

endogenous activator FBP, small-molecule PKM2 activators promote the active form of the 

enzyme even in the presence of increased phosphotyrosine levels that would otherwise 

lower PKM2 activity.

Structural analysis of PKM2 activator mode of binding

Based on these biochemical studies, it is possible that these agents activate PKM2 by 

binding at the same site as FBP but fail to be released following interaction with 

phosphotyrosine. Alternatively, PKM2 activators may stabilize the tetramer in another way. 

To explore these possibilities, purified recombinant PKM2 was crystallized in the presence 

of TEPP-46 or DASA-58. Our refined model shows that one tetrameric PKM2 contains two 

activators and four FBP molecules (Fig. 4a, Supplementary Table 1 and Supplementary Fig. 

4a). The four FBP molecules co-purified from the E. coli cells where PKM2 was produced 

and they were found to occupy all four of the FBP binding pockets of the PKM2 tetramer. In 

comparison, one activator was found in the interface (named A-A’) between the A domains 

of each dimer, approximately 35Å away from the FBP binding pocket (Fig. 4a and 

Supplementary Fig. 4a). The bound activator was completely buried within the A-A’ 

interface. The activator binding pocket was lined with equivalent sets of residues provided 

by each of the PKM2 molecules forming the A-A’ interface, where the activator was 

accommodated through polar and van der Waals interactions with pocket-lining residues 

(Fig. 4b and Supplementary Fig. 4b). Particularly in the case of TEPP-46, crystallographic 

evidence suggests that the binding orientation of the activator alternates based on a pseudo-

twofold axis that is co-linear with both the nitrogen-methyl carbon bond of the N-methyl 

pyrrole moiety of TEPP-46 and the pseudo-twofold axis of the A-A’ interface. The extra 

space in the pocket was filled with solvent molecules or ions, which also mediate hydrogen 

bonds between the activator and the pocket-lining residues (Fig. 4b). These data show that 

TEPP-46 and DASA-58 bind PKM2 through a binding pocket distinct from that of FBP and 

that they stabilize a tetrameric conformational state.

FBP is thought to contribute to tetramer formation by stabilizing the C-C’ interface. Given 

the distinct location of the activator binding pocket, we investigated whether activator 

binding results in stabilization of subunit interaction along the A-A’ interface. A recent 

study showed that acetylation of K305 results in decreased PKM2 subunit association as 

another way to inactivate the enzyme27. The ε-amino group of K305 interacts via a salt 

bridge with E384 in the neighboring subunit along the A-A’ interface (Supplementary Fig. 

4c). Acetylation may interfere with this interaction resulting in destabilization of the PKM2 

tetramer. We mutated K305 to Q to mimic acetylation. Flag-PKM2(K305Q) failed to co-

precipitate endogenous PKM2 (Fig. 4c). Given that the activator binds between two PKM2 

subunits at the A-A’ interface where K305 and E384 reside, we asked if PKM2 activator can 

rescue the interaction between Flag-PKM2(K305Q) and endogenous PKM2. Indeed, 

treatment of cells with DASA-58 restored the ability of Flag-PKM2(K305Q) to co-
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precipitate endogenous PKM2 (Fig. 4c). These data further support a model where PKM2 

activators function by binding at the A-A’ interface and stabilize the PKM2 tetramer, and 

suggest that the activators could circumvent in vivo mechanisms for inhibition of PKM2 

activity.

PKM2 activators alter metabolism in cultured cells

Overall, our results suggest that PKM2 activators will mimic the regulatory properties of 

constitutively active PKM1, thereby promoting high PKM2 activity regardless of the known 

mechanisms cells use to decrease pyruvate kinase activity. Therefore, we next examined the 

effects of activator treatment on cellular proliferation. Similar to results observed when 

PKM2 is replaced with PKM18, under standard tissue culture conditions PKM2 activators 

had no significant effects on cell proliferation when tested across several lines (Fig. 5a and 

Supplementary Fig. 5). In contrast, when we assayed proliferation under hypoxic conditions 

(1% O2), PKM2 activator treatment resulted in a decreased rate of cell proliferation 

compared to DMSO-treated cells (Fig. 5a). Similarly, expression of PKM1 in the presence 

of endogenous PKM2 had no effect on cell proliferation in standard tissue culture 

conditions, but inhibited cell proliferation under hypoxia to a similar degree as treatment 

with activators. These observations are consistent with previous data showing that 

replacement of PKM2 with PKM1 also impairs cell proliferation under low oxygen8.

To test our hypothesis that PKM2 activators mimic a metabolic state found in PKM1-

expressing cells, we interrogated the effects of activator treatment on cell metabolism. 

Replacement of PKM2 with PKM1 in cultured cells results in reduced lactate production 

and enhanced oxygen consumption8. Acute treatment of H1299 cells with DASA-58 also 

resulted in decreased lactate production (Fig. 5b). Unlike cells where PKM2 is replaced with 

PKM1, expression of PKM1 in the presence of endogenous PKM2 or activator treatment 

had no significant effect on oxygen consumption (Supplementary Fig. 6a). Furthermore, 

DASA-58 treatment did not affect glucose or glutamine consumption (Supplementary Fig. 

6b-c), indicating that changes in uptake of major nutrients are unlikely to underlie the 

observed metabolic phenotypes. Inhibition of PKM2 activity mediated by phosphotyrosine 

signaling results in more efficient incorporation of glucose carbons into lipids17. To 

determine if PKM2 activator treatment inhibits glucose carbon incorporation into lipids, 

cells were incubated with [6-14C]-glucose in the presence of DMSO or DASA-58, cellular 

lipids were extracted, and 14C-labelled lipids were quantified by scintillation counting. 

DASA-58 treatment resulted in a significant decrease in glucose-derived carbon 

incorporation into lipids (Fig. 5c). Similarly, we observed a decrease in glucose carbon 

incorporation into lipids in H1299-PKM1 cells (Fig. 5c). We also used gas chromatography-

mass spectrometry (GC-MS) to analyze metabolite extracts of cells incubated with 13C-

labeled glucose. DASA-58 treatment resulted in diminished incorporation of glucose 

carbons into acetyl-CoA used for de novo palmitate synthesis (Fig. 5d and Supplementary 

Fig. 6d) and a decrease in overall de novo lipogenesis (Fig. 5e). TEPP-46 also induced a 

decrease in the intracellular levels of acetyl-coA, lactate, ribose phosphate and serine (Fig. 

5f-h and Supplementary Fig. 6e). Ribose phosphate is a key intermediate for the 

biosynthesis of nucleotides via the pentose phosphate pathway, and serine, in addition to 

being incorporated directly into proteins can serve as a precursor for lipid head groups and 
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glycine as well as provide carbon to the folate pool. Notably, these changes, along with 

overall changes in other intracellular metabolite concentrations (Supplementary Fig. 6f), 

were evident only in parental cells and not PKM1-expressing cells, indicating that the 

effects of the activator on cellular metabolism are specific to PKM2. No significant 

differences in the concentrations of lactate, ribose phosphate or serine were observed 

between PKM1-expressing and parental cells, most likely reflecting that, unlike transient 

activation of PKM2 by small molecules, selection for PKM1 expression in cells may lead to 

adaptive changes in metabolite levels to compensate for the effects of chronic pyruvate 

kinase activity elevation. Regardless, these data indicate that small-molecule activation of 

PKM2 can alter glucose metabolism and can decrease the intracellular concentrations of 

intermediates required for biosynthesis.

Low PKM2 activity is also associated with increased phosphorylation of PGAM1 on the 

catalytic histidine residue (His11)20. To determine if activator treatment decreases PGAM1 

phosphorylation, we treated cells with DMSO or DASA-58, and analyzed the corresponding 

lysates by 2-D SDS-PAGE/isoelectric focusing to resolve PGAM1 species in cells20. Similar 

to PKM1-expressing cells20, we observed a decrease in PGAM1 phosphorylation as a result 

of activator treatment (Supplementary Fig. 7). Together, these data suggest that PKM2 

activators induce a metabolic state in cells comparable to, but distinct from, that seen with 

PKM1 expression.

PKM2 activator inhibits xenograft tumor growth

PKM1 expression impairs the ability of cancer cells to grow in vivo as xenografts. To 

determine whether PKM2 activators also impede xenograft tumor growth, we determined 

which compound was suitable for experiments in mice. Based on in vitro absorption, 

distribution, metabolism and excretion (ADME) profiling studies, we predicted that 

TEPP-46 would have superior in vivo drug exposure compared to other analogs. To 

determine appropriate repeated drug doses for the mouse experiments, we performed single-

dose pharmacokinetic and acute pharmacodynamic (PK-PD) studies with TEPP-46. 

Supplementary Fig. 8 shows mouse plasma drug concentration over time after a single 

intravenous, intraperitoneal or oral dose. TEPP-46 exhibits good oral bioavailability with 

relatively low clearance, long half-life, and good volume of distribution - parameters that 

predict for drug exposure in tumor tissues (Supplementary Table 2). Acute oral-dose of 

TEPP-46 at 150 mg/kg readily achieved maximal PKM2 activation measured in A549 

xenograft tumors (Supplementary Fig. 9a). To ensure that drug treatment could be carried 

out safely for a multi-day dosing regimen, we also performed a 5-day repeat-dose 

tolerability study in mice and showed that 50 mg/kg twice daily was well-tolerated with no 

sign of weight loss (Supplementary Fig. 9b).

Because 50 mg/kg twice daily oral dosing of TEPP-46 was well tolerated and led to 

reasonable plasma levels in mice, we tested whether this dose of TEPP-46 could promote 

PKM2 tetramerization in xenograft tumors. We treated mice bearing H1299 xenograft 

tumors with vehicle or TEPP-46 and analyzed tumor lysates by size exclusion 

chromatography. In xenografts from vehicle-treated mice, very little PKM2 was found as 

tetramers (Fig. 6a). In contrast, tumors exposed to TEPP-46 harbored exclusively tetrameric 
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PKM2. Metabolomic analysis revealed that, similar to the effects observed in cultured cells 

following treatment with TEPP-46, tumors derived from mice treated with TEPP-46 had 

lower concentrations of lactate, ribose phosphate and serine (Fig. 6b). We then tested 

whether these changes in PKM2 activity and tumor metabolism impact the ability of H1299 

cells to form xenografts. H1299 cells were injected into immunocompromised (nu/nu) mice 

and the animals were randomly divided into two cohorts, one treated with vehicle and the 

other treated with 50 mg/kg of TEPP-46, dosed twice daily for the duration of the 

experiment. No apparent toxicity was observed in any mice, despite over 7 weeks of 

continuous drug exposure based on blood counts and serum chemistries (Supplementary 

Table 3) as well as histological examination of blood, bone marrow, liver, kidney, heart and 

the gastrointestinal tract. Tumors in activator-treated mice emerged with a delayed latency 

compared to tumors in vehicle-treated mice (Fig. 6c). In addition, the tumors from activator-

treated mice were smaller than those arising in vehicle-treated animals (Fig. 6d). TEPP-46 

was detectable in tumors from activator-treated mice suggesting that cells in the tumor were 

exposed to the drug.

These data demonstrate that cancer cells in xenograft tumors are exposed to TEPP-46 after 

several weeks of oral dosing, and that this can mimic PKM1 expression to impair growth of 

H1299 cells as xenograft tumors.

DISCUSSION

Cancer cells harbor genetic changes that allow them to increase nutrient uptake and alter 

metabolism to support anabolic processes, and interfering with this metabolic program is a 

strategy for cancer therapy1,2. Altered glucose metabolism in cancer cells is mediated in part 

by expression of PKM2, which has unique regulatory properties. Unlike its splice variant 

PKM1, which is found in many normal tissues, PKM2 is allosterically activated by FBP and 

can interact with tyrosine-phosphorylated proteins to release FBP and decrease enzyme 

activity. Thus, growth factor signaling promotes decreased PKM2 activity and availability of 

glycolytic metabolites for anabolic pathways that branch from glycolysis. This suggests that 

activation of PKM2 might oppose the effects of growth signaling and interfere with anabolic 

glucose metabolism.

Consistent with this hypothesis, our data show that high pyruvate kinase activity caused by 

PKM1 expression or small-molecule PKM2 activation impedes the ability of cancer cells to 

form tumors in mice. PKM1 can associate with endogenous PKM2 and form 

heterocomplexes that are likely insensitive to FBP regulation and thus exhibit higher 

activity. Recent publications have described non-enzymatic functions for PKM228-30. While 

these non-classical PKM2 activities may also play a role in tumor formation, our data 

suggest that the ability to decrease enzyme activity is also an important property of the 

enzyme that may drive PKM2 selection in tumors. Furthermore, these experiments provide 

evidence that elevated pyruvate kinase activity can be incompatible with efficient tumor 

growth.

Small-molecule PKM2 activators can mimic the enzymatic properties of PKM1 in PKM2-

expressing cells and alter cell metabolism. Our studies focused on DASA-58 and TEPP-46, 
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which are representative of two classes of PKM2-activating compounds22,23. These small 

molecules induce changes in the kinetic properties of PKM2 that are identical to those 

induced by the endogenous PKM2 activator FBP, suggesting that PKM2 could adopt a 

PKM1-like state in cells when FBP is high and/or in the absence of phosphotyrosine 

signaling. Surprisingly, structural analyses of the activators bound to PKM2 tetramers 

revealed a binding pocket at the interface of subunit interaction that is distinct from the site 

of FBP binding. Furthermore, unlike FBP, which stabilizes the C-C’ interface of the active 

tetramer, the small-molecule activators stabilize the A-A’ interface. Interestingly, FBP was 

also observed in the crystals containing small-molecule activators, and activators stabilize 

PKM2 tetramers more effectively in the presence of FBP. This raises the possibility that 

FBP binding is still required for small-molecule activation and that stabilization of the A-A’ 

interface inhibits FBP release. Nevertheless, these compounds enhance PKM2 enzymatic 

activity in a manner that renders PKM2 resistant to inhibition by phosphotyrosine binding, 

and interaction with phosphotyrosine is the only mechanism described to release FBP from 

PKM2. No natural ligands have been identified that bind PKM2 in the same site as the 

PKM2 activators, but given that multiple activator classes bind in the same pocket, it is 

possible that this represents a previously unknown site of pyruvate kinase regulation.

Our findings are consistent with PMK2 existing in a monomer-tetramer equilibrium that can 

be altered by the presence of FBP, TEPP-46 or DASA-58. Although this study agrees with 

previous reports demonstrating that the fully associated tetrameric form of PKM2 is the 

active form of the enzyme, dimeric PKM2 was not a predominant form of the enzyme 

observed in our assays. Previous studies have described PKM2 dimers following isoelectric 

focusing chromatography9. It is possible that the methods we used to assess PKM2 

multimeric state favor complete tetramer dissociation to monomers. We suspect that much 

of the PKM2 in vivo exists in an equilibrium between loosely associated tetramers with low 

activity and tightly associated tetramers exhibiting high activity, and that this equilibrium is 

influenced by FBP levels and phosphotyrosine signaling or post-translational modifications 

that destabilize the loosely-associated (low activity) tetramer17,19,26,27.

PKM2 activators may impair tumor cell proliferation by interfering with anabolic 

metabolism. Activator treatment in vitro and in vivo results in decreased pools of ribose-

phosphate and serine, which are key precursors for nucleotide, lipid and amino acid 

metabolism. However, no change in metabolite pools were seen when pyruvate kinase 

activity was elevated by chronic PKM1 expression in vitro, suggesting that the metabolic 

states elicited by these two treatments may not be equivalent. It is possible that this response 

to PKM1 expression may reflect adaptive events that can more effectively compensate for 

increased pyruvate kinase activity in vitro. PKM2 activator treatment also reduced 

incorporation of glucose carbons into lactate and lipids, thus interfering with the increased 

lactate production used by many tumors to establish a redox balance compatible with high 

glycolytic rates3. Lipids are essential components of new cells and reduced lipid production 

has been shown to inhibit proliferation31. Interestingly, the effects of PKM2 activation on 

proliferation in cell culture are only evident under hypoxic conditions, suggesting that 

glucose-dependent anabolic pathways may only be important for proliferation under some 

conditions. Oxidation-induced inhibition of PKM2 under hypoxia may support NADPH 
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production via the oxidative branch of the pentose phosphate pathway to sustain antioxidant 

responses19. While the source of NADPH for biosynthetic processes, including lipid 

synthesis, remains a subject of active investigation, the ability of PKM2 to control cellular 

redox state may partly underlie the selective effects of PKM2 activation on proliferation 

under hypoxia.

While our data indicate that small-molecule activation of PKM2 can impede the 

proliferation of cancer cells in xenograft models, it remains to be determined whether such 

compounds will be similarly effective in autochthonous mouse tumor models or be 

efficacious as a cancer therapy in humans. PKM2 activators can also sensitize cells to 

oxidative stress-induced death raising the possibility that such compounds could enhance 

tumor killing in combination with drugs that increase cellular ROS6,19. Regardless, this 

study further supports the notion that pyruvate kinase acts as an important regulatory node in 

glycolysis to control glucose fate in cells and argues that high pyruvate kinase activity is not 

conducive to the anabolic metabolism necessary for tumor growth.

METHODS

All mouse studies were performed in accordance with institutional guidelines and approved 

by the MIT committee on animal care. Full experimental details are included in the 

Supplementary Methods.

Cell culture

293T and A549 cells were cultured in standard DMEM-based media, and H1299, T.T, 

SN12C, and SKMel28 cells were cultured in RPMI-based media. For all hypoxia 

experiments the media were supplemented with 20 mM HEPES. Cells expressing specific 

Flag-tagged isoforms of mouse pyruvate kinase M, or mutants thereof, in the absence of 

endogenous PKM2 were derived as described8. Cell doubling time was calculated by 

periodic measurement of cell mass accumulation over six days using crystal violet staining. 

Cell viability was assayed using CellTiter96® AQueous (Promega) or MTS (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) 

assay (Promega) according to the manufacturer’s instructions.

Western blot

Cell or tissue lysates were analyzed by SDS-PAGE and western blot using standard 

protocols and the following primary antibodies: anti-pyruvate kinase (Abcam, ab6191), anti-

PKM1 (Sigma, SAB4200094), anti-PKM2 (Cell Signaling, 4053), anti-FLAG (Sigma, 

F3165), and anti-actin (Abcam, ab1801). Where indicated Flag-agarose (Sigma-A2220) was 

used for immunoprecipitation of Flag-tagged proteins. Iso-electric focusing/SDS-PAGE 

two-dimensional Western blot analysis was performed as described previously20.

Xenograft experiments

H1299 cells with and without constitutive expression of mouse PKM1 were suspended in 

sterile PBS, and 5×106 cells were injected subcutaneously into nu/nu mice. Tumor growth 
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was monitored, mice sacrificed after the time indicated, and tumors were harvested for 

analysis.

PKM2 activity

Pyruvate kinase activity was measured as described previously32. Where indicated, 100 μM 

pervanadate was added 10 minutes prior to cell lysis. For the phosphotyrosine peptide 

experiments, the amino acid sequences of the peptides were: GGAVDDDYAQFANGG 

(M2tide) and GGAVDDDpYAQFANGG (P-M2tide)17.

Sucrose-gradient ultracentrifugation

Recombinant PKM2 was incubated with 500 nM TEPP-46, 1 μM DASA-58, or 100 μM 

FBP for 30 minutes on ice before layering on a 10-40% sucrose gradient. For conditions 

involving FBP, 100 μM FBP was included in the sucrose gradient except where indicated 

that PKM2 was transiently exposed to FBP. Gradients were spun at 55,000 rpm for 10 hours 

using a Beckman TLS-55 rotor and fractions analyzed by SDS-PAGE or Coomassie blue 

staining. Coomassie blue staining intensity was quantified using IR fluorescence.

Size exclusion chromatography

Recombinant protein or ~2 mg of cellular protein was separated on a HiPrep 16/60 

Sephacryl S-200 HR column (GE) in 50 mM sodium phosphate, 150 mM sodium chloride, 

pH 7.2. Fractions were analyzed by UV absorbance or SDS-PAGE and western blot as 

indicated.

Recombinant PKM2

Full-length human PKM2 was expressed as a His-tagged fusion protein in Escherichia coli 

strain BL21(DE3) and isolated by Ni-NTA affinity chromatography. For structural studies 

recombinant PKM2 was further purified by size exclusion chromatography. The final 

protein purity was confirmed by SDS-PAGE. Further details are in the Supplementary 

Methods.

Protein crystallization and structure determination

For co-crystallization, PKM2 was incubated overnight at room temperature in the presence 

of 5 mM activators (TEPP-46 or DASA-58) and crystallization trays were set up using the 

sitting-drop vapor diffusion method with droplets of protein solution (0.5 μl) and reservoir 

solution (0.5 μl). The best diffracting crystals were obtained from a reservoir solution 

containing 25% P3350, 0.2 M NH4OAc and 0.1 M Bis-Tris pH 6.5. Data collection was 

carried out at the Advanced Photon Source beamline 23ID-B. Data were reduced with 

HKL-200033 (DASA-58) or HKL-300034 (TEPP-46). Structures were solved by direct 

replacement with the isomorphous Protein Data Bank (PDB)35 entry 3GQY. Activator 

geometry restraints were obtained at the PRODRG36 server. Iterations of model rebuilding, 

refinement and geometry validation were performed with COOT37, REFMAC38 and 

MOLPROBITY39, respectively. Further details are in the Supplementary Methods.
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Protein identification by LC-MS/MS

Pyruvate kinase immunoprecipitates were separated by SDS-PAGE, the band corresponding 

to pyruvate kinase by molecular weight excised and subjected to in-gel trypsin digestion, 

then analyzed by reversed-phase microcapillary/tandem mass spectrometry (LC/MS/MS) 

analysis. MS/MS spectra were searched against the concatenated target and decoy (reversed) 

Swiss-Prot protein database using Sequest [Proteomics Browser Software (PBS), Thermo 

Fisher Scientific]. Peptides passing a false discovery rate (FDR) threshold of 1% were 

accepted. Additional details are in the Supplementary Methods.

Metabolism measurements

Glucose-dependent lipid synthesis was performed as described previously31. Lactate levels 

were measured using YSI 7100 Select Biochemistry Analyzer (YSI Incorporated). Oxygen 

consumption rates were measured using a polarographic oxygen electrode40. Where 

indicated metabolites and lipid synthesis were measured using GC-MS. For determination of 

[U-13C6]glucose enrichment in lipogenic AcCoA, A549 cells were cultured for 3 days in the 

presence of tracer and relevant metabolites were extracted using methanol and chloroform. 

Fatty acid methyl esters were generated from lipid biomass by dissolving dried chloroform 

fractions in 50 μl of Methyl-8 reagent (Pierce) and incubating at 60°C for 1 hour. GC/MS 

analysis was performed using an Agilent 6890 GC equipped with a 30m DB-35MS capillary 

column connected to an Agilent 5975B MS operating under electron impact (EI) ionization 

at 70 eV. Mass isotopomer distributions (MIDs) were determined by integrating palmitate 

ion fragments in the m/z range of 270 to 286. Computational estimation of AcCoA 

enrichment and fractional new palmitate synthesis was accomplished as previously 

described41. For metabolite measurement by LC-MS/MS42, cells or snap-frozen xenograft 

tumor tissue were extracted with 4:1 v/v MeOH/H2O equilibrated at -80 °C, and the extracts 

were dried under nitrogen gas. Samples were re-suspended in water and analyzed using a 

5500 QTRAP triple quadrupole mass spectrometer (AB/SCIEX) coupled to a Prominence 

UFLC system (Shimadzu) via selected reaction monitoring (SRM) of metabolites in both 

positive and negative ion mode. Peak areas from the total ion current (TIC) for each 

metabolite SRM transition were integrated using MultiQuant v2.0 software (AB/SCIEX). 

Integrated TIC areas corresponding to metabolite concentrations were imported into 

Metaboanalyst43 software for further analysis. Additional details for all metabolism 

measurements are provided in the Supplementary Methods.

ADME and PK/PD methods

Pharmacokinetic studies were performed in fasted male BALB/c mice. Following drug 

administration via the respective routes, plasma samples were collected at the indicated time 

points and TEPP-46 levels were analyzed by LC-MS/MS. Pharmacokinetics parameters 

(Cmax, Tmax, T½, AUC) were calculated using non-compartmental model with WinNonlin 

Ver 5.2 statistics software (Pharsight Corporation).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PKM1 expression in cancer cells impairs xenograft tumor growth
(a) H1299 human lung cancer cells were infected with a retrovirus to stably express Flag-

PKM1 (referred to as H1299-PKM1 cells in the text) or empty vector (Parental) and after 

selection, cells were lysed and pyruvate kinase activity in the lysates was assayed. (b) 

Tumor formation over time of parental or H1299-PKM1 cells generated as in (a) and 

injected subcutaneously at equal numbers in nu/nu mice [p value calculated by logrank 

(Mantel-Cox) test]. (c) Final tumor weights from the experiment in (b). Mean tumor weights 

± s.e.m. are shown and p value was calculated by unpaired Student’s t-test. (d) Expression 

of Flag-PKM1 and endogenous PKM2 in the cells used in (b) and (c) was determined by 

western blot with isoform-specific antibodies. Uncropped blots are shown in Supplementary 

Fig. 10. (e) Pyruvate kinase activity assays in lysates of the tumors shown in (d) (N=3, 1-

way ANOVA and Tukey’s post-test).
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Figure 2. TEPP-46 and DASA-58 isoform specificity in vitro and in cells
(a) Structures of the PKM2 activators TEPP-46 and DASA-58 used in this study (b) Purified 

recombinant human PKM1 or PKM2 expressed in bacteria were subjected to pyruvate 

kinase activity assays in the presence of increasing concentrations of TEPP-46 or DASA-58. 

(c) A549 cells were engineered to stably express Flag-PKM1 or Flag-PKM2 in the absence 

of endogenous PKM2 which was knocked down by shRNA. As the PKM1 and PKM2 

cDNAs correspond to the mouse orthologues, their expression was resistant to knockdown8. 

Expression of Flag-PKM1 and Flag-PKM2 was confirmed by western blot with isoform-

specific antibodies (right panel). These cell lines were then treated with 40 μM DASA-58 for 

3 hours and the respective lysates were assayed for pyruvate kinase activity (N=3, Student’s 

t-test). Similar results were observed in H1299 cells (not shown). Uncropped blots are 

shown in Supplementary Fig. 10. (d) A549 cells were treated with the indicated doses of 

DASA-58 for 3 hours, lysed and assayed for pyruvate kinase activity in the presence or 

absence of 200 μM FBP.
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Figure 3. Activators promote PKM2 tetramer formation and prevent inhibition by pTyr 
signaling
(a) Sucrose gradient ultracentrifugation profiles of purified recombinant PKM2 and effects 

of FBP and TEPP-46 on PKM2 subunit stoichiometry. Recombinant PKM2 was transiently 

exposed to FBP prior to addition of TEPP-46. After centrifugation, fractions were collected, 

analyzed by SDS-PAGE and stained with Coomassie Blue. Relative protein amounts were 

calculated by band densitometry on a LiCOR Odyssey infrared imaging system. (b) A549 

cells were treated with 100 μM pervanadate for 10 min. in the presence or absence of 

TEPP-46, lysed hypotonically, and were analyzed by size exclusion chromatography. 

Chromatographic fractions were then subjected to western blotting with a pyruvate kinase 

antibody to assess the stoichiometry of PKM2 subunit association under these conditions. 

Uncropped blots are shown in Supplementary Fig. 10. (c) Pyruvate kinase activity assays in 

A549 cells treated with pervanadate as in (b) in the presence of DMSO, 1 μM TEPP-46 or 1 

μM DASA-58 (N=3, p=0.0044 by 2-way ANOVA).
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Figure 4. Structural analysis of PKM2 activator mode of action
(a) Interaction between tetrameric PKM2 and TEPP-46. The four PKM2 monomers are 

represented in cartoon mode with different colors, respectively. The bound FBP and the 

activator molecules are colored black and red, respectively, and shown as space-filling 

models. The interfaces between two monomers are indicated by dotted lines. (b) Interaction 

between TEPP-46 and surrounding residues. The bound activator is colored yellow and 

represented by ball and stick model. The residues involved in the interaction from two 

monomers are labeled and colored green and cyan, respectively. Hydrogen bonds are 

indicated by blue dotted lines with distance (Å). (c) DASA-58 stabilizes the interaction of 

Flag-PKM2(K305Q) with endogenous PKM2. Flag-PKM2(K305Q) stably expressed in 

A549 cells was immunoprecipitated from corresponding lysates and the levels of co-

precipitating endogenous PKM2 were assessed by western blotting with a PKM2 antibody. 

Uncropped blots are shown in Supplementary Fig. 10.
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Figure 5. Metabolic effects of cell treatment with PKM2 activators
(a) Effects of TEPP-46, DASA-58 (both used at 30 μM), or PKM1 expression on the 

doubling time of H1299 cells under normoxia (21% O2) or hypoxia (1% O2). (b) Effects of 

DASA-58 on lactate production from glucose. Logarithmically growing H1299 cells were 

washed with Krebs buffer and incubated in Krebs buffer containing glucose in the presence 

of 50 μM DASA-58 (N=3, Student’s t-test). Produced lactate in the incubation medium was 

assayed after 20 min. as described in Methods. (c) Logarithmically growing H1299 cells 

(left), or parental H1299 and H1299-PKM1 cells (right) were incubated for 2 hours with 4 

μCi/ml [6-14C]-glucose in the presence of DMSO or 30 μM DASA-58, cellular lipids were 

extracted and lipid-incorporated 14C was quantified by scintillation counting. (d) 

Contribution of [U-13C6]glucose to the lipogenic AcCoA pool, and fractional new synthesis 

of palmitate (e) were determined by isotopomer spectral analysis in A549 cells treated with 

DMSO or 100 μM DASA-58. Error bars indicate 95% confidence intervals. (f-h) 

Intracellular concentrations of lactate, ribose phosphate and serine in parental H1299 or 

H1299-PKM1 cells treated with DMSO or 25 μM of TEPP-46 for 36 hours were determined 

by targeted LC-MS/MS.
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Figure 6. PKM2 activators impair xenograft growth
(a) Mice bearing H1299 xenograft tumors received bolus doses of TEPP-46 at 50 mg/kg 16 

hours and 4 hours before sacrifice. Tumors were dissected and PKM2 complex 

stoichiometry in tumor lysates was determined by size exclusion chromatography. 

Uncropped blots are shown in Supplementary Fig. 10. (b) Concentrations of lactate, ribose 

phosphate and serine in H1299 xenograft tumors from mice treated with vehicle or TEPP-46 

as in (a). (c) H1299 cells were injected subcutaneously into nu/nu mice which were 

subsequently randomly divided into two cohorts, one given vehicle and the other TEPP-46 

at 50 mg/kg twice-daily throughout the duration of the experiment. Injection sites were 

monitored for tumor emergence [p value calculated by logrank (Mantel-Cox) test]. After 52 

days, the tumors were dissected and final tumor weights were measured (d). Mean tumor 

weights ± s.e.m. are shown and p value was calculated by unpaired Student’s t-test.
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