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In the title compound, C18H26N2
2+
�2Cl�, the complete dication

is generated by crystallographic inversion symmetry; both N

atoms are protonated and engaged in strong and highly

directional N—H� � �Cl hydrogen bonds. Additional weak C—

H� � �Cl contacts promote the formation of a tape along ca.

[110]. The crystal structure can be described by the parallel

packing of these tapes. The crystal studied was a non-

merohedral twin with twin law [�1 0 0, 0�1 0,�0.887 0.179 1]

and the final BASF parameter refining to 0.026 (2) .

Related literature

For metallic complexes of 4,40-di-tert-butyl-2,20-dipyridyl, see:

Momeni et al. (2010); Li et al. (2005). For related organic

crystals from our research groups, see: Amarante, Figueiredo

et al. (2009); Amarante, Gonçalves & Almeida Paz (2009);

Amarante, Paz et al. (2009); Batsanov et al. (2007); Coelho et

al. (2007); Herrmann et al. (1990); Paz & Klinowski (2003); Paz

et al. (2002). For graph-set notation, see: Grell et al. (1999). For

a description of the Cambridge Structural Database, see:

Allen (2002). For the refinement, see: Cooper et al. (2002).

Experimental

Crystal data

C18H26N2
2+
�2Cl�

Mr = 341.31
Triclinic, P1

a = 5.9017 (8) Å
b = 6.1949 (8) Å
c = 13.0758 (17) Å

� = 89.633 (8)�

� = 79.049 (7)�

� = 75.915 (7)�

V = 454.84 (10) Å3

Z = 1

Mo K� radiation
� = 0.36 mm�1

T = 150 K
0.12 � 0.03 � 0.03 mm

Data collection

Bruker X8 KappaCCD APEXII
diffractometer

Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
Tmin = 0.959, Tmax = 0.989

14551 measured reflections
2054 independent reflections
1654 reflections with I > 2�(I)
Rint = 0.074

Refinement

R[F 2 > 2�(F 2)] = 0.083
wR(F 2) = 0.188
S = 1.25
2054 reflections
107 parameters
1 restraint

H atoms treated by a mixture of
independent and constrained
refinement

��max = 0.72 e Å�3

��min = �0.39 e Å�3

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

N1—H1� � �Cl1 0.95 (1) 2.05 (2) 2.967 (4) 162 (5)
C1—H1A� � �Cl1i 0.95 2.70 3.479 (3) 140
C4—H4A� � �Cl1ii 0.95 2.61 3.543 (9) 166

Symmetry codes: (i) �x� 1;�y;�zþ 2; (ii) �x;�yþ 1;�zþ 2.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-

Plus (Bruker, 2005); data reduction: SAINT-Plus; program(s) used to

solve structure: SHELXTL (Sheldrick, 2008); program(s) used to

refine structure: SHELXTL; molecular graphics: DIAMOND

(Brandenburg, 2009); software used to prepare material for publi-

cation: SHELXTL.
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4,4'-Di-tert-butyl-2,2'-dipyridinium dichloride

T. R. Amarante, I. S. Gonçalves and F. A. Almeida Paz

Comment

4,4'-Di-tert-butyl-2,2'-dipyridyl is a versatile N,N'-chelating organic ligand derived from the widely employed 2,2'-bipyrid-
ine molecule by the inclusion of two bulky t-butyl substituent groups at the 4 and 4' positions. A search in the Cambridge
Structural Database (CSD, Version 5.32, November 2010 with three updates) (Allen, 2002) reveals that this molecule forms
relatively stable complexes with a large range of metallic cations, including lanthanides, actinides and, mainly, d-block
cations. Surprisingly, not many crystallographic reports are known in which 4,4'-di-tert-butyl-2,2'-dipyridyl is chelated to

either s- or p-block cations: there is a single report in the literature of an organometallic complex with Na+ by Li et al.

(2005), and another very recent with Sn4+ by Momeni et al. (2010). Concerning organic crystals, besides the crystal structure
of 4,4'-di-tert-butyl-2,2'-dipyridyl which was recently reported by our group (Amarante & Figueiredo et al., 2009), there
is a single crystallographic determination in which this molecule co-crystallizes with hexafluorobenzene (Batsanov et al.,
2007). As a continuation of our on-going interest in organic crystals based on pyridine derivatives (Amarante & Gonçalves
et al., 2009; Coelho et al., 2007; Paz & Klinowski, 2003; Paz et al., 2002), here we wish to report the crystal structure of
the title compound (I) at 150 K, which is an organic salt with chloride anions. Noteworthy, a search in the literature reveals
the existence of only one other salt of protonated 4,4'-di-tert-butyl-2,2'-dipyridyl moieties, being reported by Herrmann et
al. (1990) and using perrhenate as the charge-balancing anion.

The asymmetric unit of the title compound is composed of half of a 4,4'-di-tert-butyl-2,2'-dipyridinium cation (the mo-
lecule has its geometrical centre located over an inversion center) and by a single chloride anion strongly hydrogen bonded

to the neighbouring N+—H group as depicted in Figure 1. As a consequence, the 4,4'-di-tert-butyl-2,2'-dipyridinium cation
adopts a typical trans conformation around the central C—C bond, very much similar to that observed by us in the crystal
structure of the molecule itself (Amarante & Figueiredo et al., 2009) and also by Batsanov et al. (2007) in the co-crystal
with hexafluorobenzene. This conformation permits a significant reduction of the overall steric repulsion due to the large
tert-butyl substituent groups.

Each diprotonated organic cation is engaged in a strong and highly directional N+—H···Cl- hydrogen bonding interaction
with the charge-balancing anions (Table 1 and Figures 1 and 2). These intermolecular connections are further strengthened
by the presence of a number of weak C—H···Cl contacts as depicted in Figure 2 (see geometrical details in Table 2), leading

to the formation of a supramolecular hydrogen-bonded tape composed of alternating R1
2(7) and R2

4(10) graph set motifs

(Grell et al., 1999). The crystal structure of the title compound is obtained by the close packing of these supramolecular
tapes as shown in Figure 3.

http://dx.doi.org/10.1107/S1600536811025529
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Amarante,%20T.R.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Gon%26ccedil;alves,%20I.S.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Almeida%20Paz,%20F.A.
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Experimental

Irregular, poorly-formed crystals of the title compound were isolated as a minor secondary product during the preparation of
the oxodiperoxo complex MoO(O2)2(tbbpy) (where tbbpy stands for 4,4'-di-tert-butyl-2,2'-dipyridyl) previously reported

by our group (Amarante & Paz et al., 2009).

Refinement

Hydrogen atoms bound to carbon have been placed at their idealized positions and were included in the final structural model
in riding-motion approximation with C—H distances of 0.95 Å (aromatic C—H) and 0.98 Å (terminal —CH3 groups). The

hydrogen atom bound to the nitrogen atom was directly located from difference Fourier maps and was included in the final
structural model with the N—H distance restrained to 0.95 Å. The isotropic displacement parameters for these hydrogen
atoms were fixed at 1.2 (for the former family of hydrogen atoms) or 1.5×Ueq (for the two latter families) of the respective

parent atoms.

The final structural refinement was performed by using the twin law [-1 0 0, 0 - 1 0, -0.887 0.179 1] (Cooper et al., 2002)
with the final BASF parameter refining to 0.026 (2).

Figures

Fig. 1. Schematic representation of the molecular units composing the crystal structure of the
title compound. Non-hydrogen atoms are represented as displacement ellipsoids drawn at the
70% probability level. Hydrogen atoms are depicted as small spheres with arbitrary radii. The
atomic labeling for all non-hydrogen atoms composing the asymmetric unit is provided.

Fig. 2. Interconnection of adjacent chloride anions and protonated organic molecules via
N—H···Cl and C—H···Cl contacts (green and brown dashed lines, respectively) leading to the
formation of a one-dimensional supramolecular tape. For geometrical details on the represen-
ted supramolecular contacts see Tables 1 and 2.

Fig. 3. Crystal packing of the title compound viewed in perspective along the [100] direction
of the unit cell. N—H···Cl and C—H···Cl intermolecular interactions are represented as green
and brown dashed lines, respectively.

4,4'-Di-tert-butyl-2,2'-dipyridinium dichloride

Crystal data

C18H26N2
2+·2Cl− Z = 1

Mr = 341.31 F(000) = 182

Triclinic, P1 Dx = 1.246 Mg m−3

Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
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a = 5.9017 (8) Å Cell parameters from 3784 reflections
b = 6.1949 (8) Å θ = 3.2–28.8°
c = 13.0758 (17) Å µ = 0.36 mm−1

α = 89.633 (8)° T = 150 K
β = 79.049 (7)° Block, colourless
γ = 75.915 (7)° 0.12 × 0.03 × 0.03 mm

V = 454.84 (10) Å3

Data collection

Bruker X8 KappaCCD APEXII
diffractometer 2054 independent reflections

Radiation source: fine-focus sealed tube 1654 reflections with I > 2σ(I)
graphite Rint = 0.074

ω and φ scans θmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998) h = −7→7

Tmin = 0.959, Tmax = 0.989 k = −8→8
14551 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct
methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

R[F2 > 2σ(F2)] = 0.083
Hydrogen site location: inferred from neighbouring
sites

wR(F2) = 0.188
H atoms treated by a mixture of independent and
constrained refinement

S = 1.25
w = 1/[σ2(Fo

2) + (0.P)2 + 2.3813P]
where P = (Fo

2 + 2Fc
2)/3

2054 reflections (Δ/σ)max < 0.001

107 parameters Δρmax = 0.72 e Å−3

1 restraint Δρmin = −0.39 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-
rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention-

al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 −0.5222 (2) 0.2342 (2) 1.16162 (10) 0.0234 (3)
N1 −0.1611 (7) 0.2931 (6) 0.9791 (3) 0.0167 (8)
H1 −0.253 (8) 0.281 (9) 1.046 (2) 0.025*
C1 −0.1874 (8) 0.1531 (8) 0.9071 (4) 0.0189 (10)
H1A −0.2924 0.0589 0.9262 0.023*
C2 −0.0648 (8) 0.1433 (8) 0.8057 (4) 0.0195 (10)
H2A −0.0832 0.0419 0.7555 0.023*
C3 0.0868 (8) 0.2843 (7) 0.7777 (4) 0.0164 (9)
C4 0.1157 (8) 0.4233 (8) 0.8556 (4) 0.0196 (10)
H4A 0.2225 0.5166 0.8387 0.024*
C5 −0.0083 (8) 0.4275 (7) 0.9569 (3) 0.0150 (9)
C6 0.2115 (9) 0.3004 (8) 0.6655 (4) 0.0186 (10)
C7 0.1739 (10) 0.1275 (9) 0.5916 (4) 0.0295 (12)
H7A 0.2402 −0.0225 0.6134 0.044*
H7B 0.2543 0.1459 0.5204 0.044*
H7C 0.0031 0.1484 0.5935 0.044*
C8 0.4802 (10) 0.2668 (10) 0.6597 (4) 0.0303 (12)
H8A 0.5076 0.3804 0.7045 0.045*
H8B 0.5581 0.2801 0.5876 0.045*
H8C 0.5466 0.1185 0.6834 0.045*
C9 0.1040 (12) 0.5355 (9) 0.6314 (4) 0.0358 (14)
H9A −0.0690 0.5593 0.6396 0.054*
H9B 0.1730 0.5500 0.5581 0.054*
H9C 0.1396 0.6468 0.6746 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0211 (6) 0.0222 (6) 0.0284 (6) −0.0127 (4) 0.0011 (5) −0.0006 (4)
N1 0.0168 (19) 0.0172 (18) 0.020 (2) −0.0089 (15) −0.0062 (15) 0.0031 (15)
C1 0.018 (2) 0.016 (2) 0.027 (2) −0.0082 (18) −0.0080 (19) 0.0013 (18)
C2 0.019 (2) 0.014 (2) 0.026 (3) −0.0034 (18) −0.0075 (19) −0.0018 (18)
C3 0.014 (2) 0.014 (2) 0.020 (2) −0.0001 (17) −0.0051 (18) −0.0012 (17)
C4 0.016 (2) 0.022 (2) 0.024 (2) −0.0095 (19) −0.0028 (19) 0.0025 (19)
C5 0.012 (2) 0.015 (2) 0.021 (2) −0.0048 (17) −0.0073 (17) 0.0014 (18)
C6 0.023 (2) 0.017 (2) 0.017 (2) −0.0079 (19) −0.0023 (19) 0.0010 (17)
C7 0.034 (3) 0.032 (3) 0.021 (3) −0.012 (2) 0.002 (2) −0.009 (2)
C8 0.023 (3) 0.040 (3) 0.028 (3) −0.013 (2) 0.000 (2) −0.002 (2)
C9 0.052 (4) 0.025 (3) 0.022 (3) 0.001 (3) −0.001 (3) 0.005 (2)

Geometric parameters (Å, °)

N1—C1 1.340 (6) C6—C7 1.530 (7)
N1—C5 1.361 (5) C6—C8 1.536 (7)
N1—H1 0.952 (10) C6—C9 1.541 (7)
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C1—C2 1.378 (7) C7—H7A 0.9800
C1—H1A 0.9500 C7—H7B 0.9800
C2—C3 1.396 (6) C7—H7C 0.9800
C2—H2A 0.9500 C8—H8A 0.9800
C3—C4 1.399 (6) C8—H8B 0.9800
C3—C6 1.526 (6) C8—H8C 0.9800
C4—C5 1.383 (6) C9—H9A 0.9800
C4—H4A 0.9500 C9—H9B 0.9800

C5—C5i 1.478 (9) C9—H9C 0.9800

C1—N1—C5 122.0 (4) C3—C6—C9 106.8 (4)
C1—N1—H1 113 (3) C7—C6—C9 109.1 (4)
C5—N1—H1 125 (3) C8—C6—C9 109.9 (4)
N1—C1—C2 121.2 (4) C6—C7—H7A 109.5
N1—C1—H1A 119.4 C6—C7—H7B 109.5
C2—C1—H1A 119.4 H7A—C7—H7B 109.5
C1—C2—C3 119.1 (4) C6—C7—H7C 109.5
C1—C2—H2A 120.4 H7A—C7—H7C 109.5
C3—C2—H2A 120.4 H7B—C7—H7C 109.5
C2—C3—C4 118.1 (4) C6—C8—H8A 109.5
C2—C3—C6 122.7 (4) C6—C8—H8B 109.5
C4—C3—C6 119.1 (4) H8A—C8—H8B 109.5
C5—C4—C3 121.2 (4) C6—C8—H8C 109.5
C5—C4—H4A 119.4 H8A—C8—H8C 109.5
C3—C4—H4A 119.4 H8B—C8—H8C 109.5
N1—C5—C4 118.3 (4) C6—C9—H9A 109.5

N1—C5—C5i 117.1 (5) C6—C9—H9B 109.5

C4—C5—C5i 124.6 (5) H9A—C9—H9B 109.5
C3—C6—C7 112.4 (4) C6—C9—H9C 109.5
C3—C6—C8 110.2 (4) H9A—C9—H9C 109.5
C7—C6—C8 108.5 (4) H9B—C9—H9C 109.5

C5—N1—C1—C2 −1.8 (7) C3—C4—C5—N1 −0.3 (7)
N1—C1—C2—C3 −0.9 (7) C3—C4—C5—C5i −178.7 (5)
C1—C2—C3—C4 2.8 (7) C2—C3—C6—C7 −6.6 (6)
C1—C2—C3—C6 −174.2 (4) C4—C3—C6—C7 176.5 (4)
C2—C3—C4—C5 −2.2 (7) C2—C3—C6—C8 −127.7 (5)
C6—C3—C4—C5 174.9 (4) C4—C3—C6—C8 55.4 (6)
C1—N1—C5—C4 2.4 (6) C2—C3—C6—C9 113.0 (5)

C1—N1—C5—C5i −179.1 (5) C4—C3—C6—C9 −64.0 (6)
Symmetry codes: (i) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1 0.95 (1) 2.05 (2) 2.967 (4) 162 (5)

C1—H1A···Cl1ii 0.95 2.70 3.479 (3) 140

C4—H4A···Cl1i 0.95 2.61 3.543 (9) 166
Symmetry codes: (ii) −x−1, −y, −z+2; (i) −x, −y+1, −z+2.



supplementary materials

sup-6

Fig. 1
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Fig. 2
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Fig. 3


