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1  |  INTRODUC TION

Hearing loss is a major global health problem. Data for 2015 indi-
cate that almost half a billion people worldwide suffer from disabling 
hearing loss, constituting the fourth leading cause of global disabil-
ity.1 Moreover, hearing loss has been identified as a major risk factor 
for the development of dementia,2 and is strongly associated with 
psychological disorders such as depression,3 social isolation in the 
elderly,4 and adversely impacts socioeconomic status.5 In young 
children, hearing loss retards language acquisition and is associated 
with developmental delays,6 impaired academic performance, and 
employment in adulthood.7 Despite the significant impact of hearing 
loss on all segments of the population, there are currently no ap-
proved pharmacological treatments. Devices are available for hear-
ing augmentation, although they have significant drawbacks. For 
patients with mild to moderate hearing loss, hearing aids can be ben-
eficial when simple amplification of sound is required, although they 
are poorly effective for the perception of sounds in the presence of 

background noise (“speech-in-noise”; SIN8,9), and are associated with 
significant stigmas that result in low usage rates and adoption de-
lays.10,11 Cochlear implantation in patients with severe-to-profound 
hearing loss is of benefit but requires expensive and invasive surgery, 
and can provide only rudimentary sound perception. Consequently, 
the development of effective drug therapies that can halt hearing 
loss, prevent it or restore high-quality hearing comprehension would 
have a major impact on human health, and can truly be regarded as 
one of the “final frontiers” of pharmacology.

The past two decades have seen a remarkable increase in hear-
ing research and a vast improvement in our understanding of the 
cellular and molecular mechanisms that contribute to different 
forms of hearing loss. This growing body of evidence has generated 
numerous ideas for therapies that are being assessed in new and 
improved preclinical hearing loss models, with several therapies al-
ready progressing into human clinical trials (Table 1; Figure 1). In this 
review, we will summarize the exciting data that have been gener-
ated concerning forms of hearing loss with high unmet clinical need: 
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age- and noise-induced hearing loss resulting from cochlear hair cell 
degeneration and cochlear synaptopathy as well as chemotherapy-
induced hearing loss.

2  |  INNER E AR ANATOMY AND DISE A SE 
MECHANISMS

The basic anatomy of the auditory sensory organ of the inner ear 
(the organ of Corti) is depicted in Figure  2A. External sound is 
transduced by the tympanic membrane and the middle ear ossi-
cles to the oval window to produce motion of the inner ear fluids 
that fill the cochlea (the perilymph and endolymph). Consequently, 
cochlear hair cells (HCs) in the organ of Corti detect the fluid mo-
tion via their stereocilia, the deflection of which opens mecha-
noelectrical transduction (MET) channels, allowing an influx of 

potassium from the potassium-rich endolymph, depolarizing the 
HCs to induce release of the neurotransmitter glutamate at their 
ribbon synapses. Activation of the AMPA and NMDA receptor 
sub-types on the afferent terminals of the bipolar type I spiral 
ganglion neurons (SGNs) produces depolarization and generation 
of action potentials that carry the noise-evoked information to the 
auditory regions of the central nervous system (CNS) where sound 
is perceived.

The organ of Corti is a highly organized structure that contains 
two types of HCs, outer hair cells (OHCs) and inner hair cells (IHCs), 
arranged along a tonotopic axis on the basilar membrane that en-
ables the fine discrimination of the range of audible frequencies. In 
placental mammals, the OHCs are arranged in three rows, and have 
motile properties which, in response to stimulation, amplify vibra-
tion of the basilar membrane; the single row of IHCs function as the 
primary “sound receptors” and are responsible for transducing the 
amplified basilar membrane vibration signal to the SGNs. Both types 
of HCs are also contacted by different efferent neurons that pro-
vide feedback loops from the CNS to the cochlea. Various types of 
support cells are also present in the organ of Corti, and play a role in 
maintaining HC function, the precise ionic environment, and other 
structural and homeostatic functions. Importantly, all of these cell 
types are susceptible to different kinds of external insult and the 
aging process, and damage to these cells can result in various de-
grees of hearing loss.

3  |  OTIC DRUG DELIVERY

The recent renaissance in hearing biology is tremendously encour-
aging; however, a fundamental barrier to the development of hearing 
loss therapeutics has been the lack of an effective means of deliv-
ering drugs to the cochlea. Similar to the blood–brain barrier that 
protects the CNS, the blood–labyrinth barrier protects the cochlear 
and vestibular apparatus from blood-born agents, resulting in limited 
and highly variable drug exposure in the inner ear following systemic 
administration.12

This has provided the necessary impetus for the development 
of local delivery techniques to achieve effective drug levels in the 
cochlear fluids and tissues with the added advantage of low or un-
detectable drug exposure in systemic circulation (Figure  2B). This 
strategy has many of the benefits that are apparent with local drug 
delivery to another sensory organ, the eye, where intravitreal deliv-
ery has revolutionized the treatment of retinal disorders.13 However, 
unlike the eye which is readily accessible for direct injection, the co-
chlea is encased within the dense temporal bone which poses an 
issue for direct access. A convenient solution is to inject drugs into 
the middle ear through the tympanic membrane, accessed via the 
external ear, and referred to as an intratympanic injection, a rou-
tine procedure which is easily performed in an ENT’s office requiring 
only local topical numbing of the ear drum. Within the middle ear sits 
the round window (covered by a semi-permeable membrane) which 
allows direct diffusion of drug into the perilymph and endolymph of 

F I G U R E  1 Chemical structures of small molecules in clinical 
development for hearing loss.

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId%3D75
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId%3D75
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the cochlea. In addition, formulations of drugs have been specifically 
developed to ensure placement and stable retention of the injected 
material directly targeted to the round window niche itself.

For instance, the thermoreversible polymer, poloxamer, is a 
particularly effective and elegant means to provide sustained drug 
exposure to the cochlea. Under certain conditions, Poloxamer 407 
(P407) is liquid at room temperature and can be injected easily using 
a syringe; at body temperature, it then rapidly transitions to a gel 
that is mucoadhesive and thus can hold drugs it contains in contact 
with the round window membrane for several days. With intratym-
panic injection of P407, preclinical studies have shown that thera-
peutic drug levels can be detected in the perilymph and cochlear 
tissue for weeks to months after a single injection.12 This has proved 
to be a versatile means of minimally invasive, sustained delivery that 
is amenable to small molecule drugs, biologics, RNA/DNA-based 
molecules, and viral vectors, and whose benefits have now been 
demonstrated in clinical studies involving thousands of patients.14–16 
Additional delivery technologies that make use of other types of hy-
drogels, nanoparticles, magnetic beads, and oils have also been in-
vestigated.17 For example, a lipid formulation of the NMDA receptor 
antagonist gacyclidine has demonstrated sustained cochlear expo-
sure following intratympanic administration and initial clinical proof-
of-concept for the treatment of tinnitus.16

Local administration to the inner ear provides the opportunity to 
target therapies to the site of the hearing loss pathologies and avoid 
unwanted side effects that could result from body-wide drug expo-
sure following systemic administration. There are several examples, 
among the current clinical candidates, for hearing loss (Table  1).  
γ-Secretase inhibitors, that are under investigation for their ability to 
regenerate cochlear hair cells through Notch inhibition (see below), 
were previously studied as potential therapeutics for Alzheimer's 

disease. When given systemically, serious side effects were ob-
served, including cognitive decline, gastrointestinal problems, and 
increased incidence of skin cancers and infections.18,19 Notch in-
hibition was suspected to play a role in at least some of these un-
wanted effects.20 Valproic acid, which is also being investigated for 
cochlear hair cell regeneration (see below), has a black box warning 
on its label for hepatotoxicity, pancreatitis, and fetal abnormalities 
(www.depak​ote.com), and in general, histone deacetylase (HDAC) 
inhibitors used in cancer therapy have significant side effects.21 
Consequently, local delivery to the inner ear can circumvent the 
toxicity and tolerability issues caused by systemic drug administra-
tion and this has facilitated drug repurposing for hearing loss.

The advent of minimally invasive local drug administration to the 
inner ear has the potential to revolutionize not only the treatment of 
hearing loss, but also the associated unmet medical needs of tinnitus 
and balance disorders, in the same way that intravitreal administra-
tion of anti-VEGF therapies has revolutionized the treatment of ret-
inal disorders of the eye.

4  |  HE ARING LOSS MECHANISMS AND 
THER APEUTIC STR ATEGIES

Hearing loss can result from several types of insult that affect multi-
ple cochlear cell types. Here, we will focus on the primary patholo-
gies that have been considered for clinical intervention and the 
corresponding therapeutic strategies that have been considered for 
clinical intervention. For noise and age-related hearing loss, insults 
to the HCs (in particular OHCs) have been a major focus; however, 
a growing body of evidence now points toward degeneration of the 
neuronal components of the cochlea as a key factor, and one that 

F I G U R E  2 Auditory structures and cochlear anatomy. (A) Sound transmission within the cochlea occurs when fluid movement causes 
deflection of the basilar membrane upon which the mechanosensory inner and outer hair cells (IHCs and OHCs, respectively) sit. This 
produces deflections of the hair cell stereocilia to open spring-gated ion channels at their tips resulting in depolarization of the hair cells 
and neurotransmitter release onto the spiral ganglion neurons (SGNs) sending signals through the VIII cranial nerve to the brain. (B) 
Intratympanic (IT) injection is a non-invasive localized delivery strategy which targets the inner ear by injecting through the tympanic 
membrane to deliver drug to the surface of the permeable round window membrane (RWM) enabling drug to diffuse or move via active 
transport mechanisms into the cochlea to reach the sensory cells of the auditory periphery.

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId%3D914
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId%3D7009
http://www.depakote.com
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId%3D848
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may underlie the SIN deficits that are the primary complaint of hear-
ing loss sufferers. Chemotherapeutic agents are known to damage 
multiple cochlear cell types, and several approaches are being inves-
tigated to prevent cisplatin-induced hearing loss.

4.1  |  Hair Cell Regeneration

Loss of mechanosensory HCs of the cochlea is common in moder-
ate to severe hearing loss in humans.22 This HC loss is believed to 
be a primary source of audiometric threshold elevation in presbycu-
sis, noise-induced hearing loss, sudden sensorineural hearing loss, 
and ototoxicity (reviewed by23). In mammals, auditory HC loss due 
to either a chemical or noise-induced insult is permanent and HCs 
never recover spontaneously. However, since the discovery in the 
1980s that birds can regenerate lost HCs via the proliferation and 
transdifferentiation of supporting cells into new HCs,24–26 regenera-
tion has been a key focus of research aimed at hearing restoration. 
The gene Atoh1 was shown to be necessary and sufficient for HC 
formation during development and many subsequent studies have 
identified the potential of virally mediated Atoh1 gene delivery to 
cochlear support cells as a means of HC regeneration.27 Given the 
early therapeutic potential of Atoh1, an adenovirus 5-mediated 
Atoh1 gene therapy (CGF166) was evaluated in the first clinical trial 
for severe hearing loss (see Table 1). Rather than an intratympanic 
injection, this virally mediated gene delivery strategy necessitated 
direct intracochlear injection via a cochleostomy. While this trial 
failed to show a significant impact on hearing outcomes, such as im-
provement in pure tone averages or other measures, it helped reveal 
some of the challenges of surgical drug delivery to the cochlea.28 
Importantly, this study also represented the first ever clinical at-
tempt at virally mediated gene delivery to the human cochlea as well 
as the first clinical trial aimed at cochlear HC regeneration.

Currently, most research into mammalian HC regeneration places 
a heavy emphasis on several key signaling pathways upstream of 
Atoh1 that have been shown to be critical for HC development and 
regeneration in fish and birds. Some of these pathways and genes 
include Wnt/β-catenin, Notch, P27kip1, Gfi, MYC, Hippo/YAP, and 
most recently, epigenetic regulation by histone deacetylase (HDAC) 
inhibitors and others29–32 (Figure 3). Small molecule inhibitors of the 
enzyme γ-secretase, originally developed for Alzheimer's disease, 
have been repurposed as potential hearing loss therapeutics due to 
their ability to modulate Notch signaling, a critical pathway in HC 
development and non-mammalian regeneration.30 Similarly, other 
small molecules or siRNA-based approaches to Notch pathway mod-
ulation are being investigated as potential therapeutics to restore 
HC numbers.33 However, given some of the challenges of directly 
accessing the cochlea via surgical approaches, many strategies now 
being considered for clinical HC restoration involve intratympanic 
delivery of drugs to the middle ear.

The first clinical trial utilizing an intratympanic approach for 
HC regeneration, involving the γ-secretase inhibitor LY3056480 
(AUD1001), completed a Phase 1/2a study in 2019, and was shown 

to be safe and well tolerated in patients with adult onset mild to 
moderate sensorineural hearing loss, with some indication of ben-
efit in SIN hearing tests (www.audio​nther​apeut​ics.com). However, 
the mechanism of this potential improvement in hearing is currently 
unknown. In rodents, the utility of the Notch pathway to induce HC 
transdifferentiation is limited, as this pathway appears to shut down 
during postnatal stages, as early as P6 in mice,34 suggesting it may 
have limited applicability in treating patients. However, another pos-
sible therapeutic role for the Notch pathway is in neuronal resto-
ration/protection, as it is known to function in neural development 
and degeneration.35 PIPE-505 is another small molecule γ-secretase 
inhibitor in development which aims to capitalize on this potential 
dual function of Notch inhibition. A Phase I/IIa trial of PIPE-505 was 
recently completed (June 2021) in 28 human subjects with hearing 
loss with the goal of inducing both HC regeneration and synaptic re-
pair through the Netrin/DCC pathway36; results from this trial were 
still pending at the time of this review.

Growing evidence in the auditory field suggests that HC regen-
eration may require combinations of multiple key compounds or 
pathway targets. Some of the most efficacious proof-of-concept lab-
oratory approaches to date using chimeric mouse models and viral 
vectors have involved the combination of 2–5 different pathway 

F I G U R E  3 Key mechanisms in hair cell regeneration. Hair cell 
regeneration occurs by one of two complimentary mechanisms: 
direct transdifferentiation, in which a support cell directly converts 
into a new hair cell, and mitotic proliferation, in which support cells 
divide producing two daughter cells, one or more of which can then 
differentiate into a new hair cell. Some of the key pathways and 
genes known to play a role in either proliferation or differentiation 
of HCs during regeneration and which have been targets of 
therapeutic strategies include Wnt/β-catenin signaling, the Notch 
signaling pathway, P27kip1, Gfi, MYC, and most recently epigenetic 
regulation by HDAC inhibitors and others.

https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId%3D964
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targets.37 One of these key regenerative pathways is Wnt/β-catenin 
signaling which is currently under clinical evaluation as a combination 
product. Small molecule GSK3-β inhibitors act to enhance β-catenin 
signaling and have been shown to promote regeneration in birds and 
fish as well as in ex-vivo mammalian models (reviewed by29). FX-322 
is a combination of the well-known GSK3 inhibitor CHIR99021 and 
valproic acid, which has been suggested to have HDAC inhibitory 
properties potentially impacting the Notch pathway.38

In its first Phase 1/2 clinical trial, intratympanic FX-322 showed 
variable improvement in word recognition scores in a quiet back-
ground for a small subset of subjects (5 of 15 patients) with mild 
to moderately severe hearing loss, and potential improvement in 
hearing thresholds at a single frequency (8 kHz) in a limited num-
ber of patients when administered as a single dose.39 However, 
a follow-on Phase 2a study, which evaluated single and multiple 
doses of FX-322 in an attempt to overcome the short duration of 
cochlear exposure to the drug combination,39 failed to show any 
improvement in similar audiologic endpoints. A concurrent open-
label single-administration FX-322 study in patients with mild to 
moderately severe hearing loss showed an improvement in word 
recognition scores in a subset of patients although a study in age-
related hearing loss showed no evidence of benefit. A further 
trial is ongoing in subjects with severe hearing loss, and a phase 
2b study in patients with noise and sudden sensorineural hearing 
loss was recently initiated (frequencytx.com). While these multi-
component strategies remain of interest, their clinical translation 
to date remains equivocal, and they also face significant formula-
tion and regulatory hurdles for drug approval.

Several more recently identified pathways of regenerative inter-
est include the Lin28/Let7 axis,40,41 and modulation of the Hippo/
YAP pathway via LATS inhibitors.42,43 These pathways are expected 
to either promote stemness in support cells, enabling them to po-
tentially transdifferentiate into HCs,40 or promote supporting cell 
proliferation by relaxing the mechanical restraints that limit cellu-
lar movements,44 respectively. However, the efficacy of these ap-
proaches in preclinical animal models remains to be determined.

While cochlear HC regeneration has been a key focus of auditory 
research, the sensory epithelia that comprise the vestibular balance 
organs may be more amenable to HC regeneration.45 The supporting 
cells of the utricle have been shown to have some limited endoge-
nous capacity for regeneration, greater than that of the cochlea,46,47 
and many strategies that have failed to induce new cochlear HCs 
were able to promote some vestibular HC regeneration, such as 
small molecule LATS modulators.42,48 Gene therapy approaches 
are currently being employed to target the vestibular epithelia for 
patients with bilateral vestibulopathy (www.decib​eltx.com). These 
early discovery phase programs purportedly involve an Atoh1-AAV 
approach, or a combination of Atoh1 with a “reprogramming factor.” 
The true clinical value of regenerative strategies aimed at vestibular 
targets remains unknown considering the central compensation that 
is known to occur in the vestibular system.

While understanding the multiple pathways that are required to 
elicit significant HC regeneration is a fascinating research endeavor, it 

also presents a major challenge for drug development. Alternatively, 
strategies focused on the repair or functional restoration of dam-
aged rather than missing HCs may be a fruitful avenue for future 
research. In addition, there is emerging evidence (reviewed below) 
that damage to the neuronal elements of the cochlea plays a signif-
icant role in the SIN deficits that are a cardinal complaint of those 
with hearing difficulties. This has challenged the traditional focus on 
HC dysfunction as the primary cause of hearing loss and is providing 
new and potentially more facile treatment possibilities.

4.2  |  Cochlear Synaptopathy

The ribbon synapses that connect IHCs and SGN afferent fibers are 
vulnerable to ototoxic agents, noise trauma, and aging (Figure 4A). 
This was first shown in animal models where a noise insult that 
produced no permanent change in auditory threshold resulted in a 
preferential and permanent loss of a sub-population of IHC afferent 
synapses, those that give rise to the so-called high threshold, low 
spontaneous activity fibers.49,50

A preferential loss of IHC afferent synapses is a consequence of 
the sudden and excessive release of glutamate from the presynaptic 
ribbons of HCs during loud noise producing an excitotoxic process 
caused by overactivation of AMPA and NMDA receptors present 
on afferent nerve terminals.51,52 Preferential vulnerability of ribbon 
synapses has also been revealed in human subjects through post-
mortem analysis in temporal bone specimens, where during aging 
the loss of type I afferent fibers and IHC synapses markedly pre-
cedes the loss of the IHCs themselves.53,54 A similar analysis was 
extended to noise-exposed human cochleae and revealed substan-
tial loss of both OHCs and auditory nerve fibers with a correlation 
analysis indicating that the loss of neuronal afferents contributes to 
poor word discrimination.55

Damage to ribbon synapses was originally recognized as "hid-
den hearing loss," an impairment of hearing quality that occurs de-
spite relatively normal audiometric hearing thresholds. Growing 
evidence in the field suggest this loss of neuronal connectivity as 
a basis for SIN difficulties, characterized by an inability to hear 
meaningful sounds such as a conversation, in the presence of 
background noise.49,50 In this respect, SIN difficulties represent 
a “real-world” situation and a common experience of hearing loss 
sufferers that is not remedied by hearing aids that simply amplify 
sound. Indeed, SIN tests have been characterized as a “stress test” 
for the auditory system, providing a more relevant indication of 
the difficulty a subject with hearing loss has with understanding 
speech, in contrast to word recognition in quiet that represents an 
optimal listening condition.56 Consequently, the ability of a thera-
peutic to improve SIN deficits is highly relevant for the day-to-day 
experience of those suffering from hearing loss.

SIN difficulties with normal hearing thresholds (hidden hear-
ing loss) may affect up to 3% of the adult population in the United 
States.57 Given the more recent appreciation that peripheral affer-
ents and their synapses are lost across a wide range of frequencies 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId%3D2030
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId%3D8014
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId%3D1515
http://www.decibeltx.com
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in subjects that have OHC loss due to noise exposure and aging,55 
we can now extend the contribution of these neuronal deficits to 
include SIN deficits that occur in moderate to severe hearing loss, a 
substantially larger group.

Consequently, the reconnection of afferent fibers to IHCs has 
the potential to provide benefit to a broad population of hearing loss 
sufferers. The fact that in both animal and human studies, the SGN 
cell bodies and central axons appear to be resistant to noise and the 
aging process49 indicates that reconnection of the peripheral termi-
nals should result in restoration of a full range of listening experi-
ences, since the intricate connections between the peripheral and 
central auditory system that were established during development 
remain in place.

A recent study has provided persuasive evidence that cochlear 
synaptopathy leads to the equivalent of SIN difficulties in rats.58 
While the evidence that cochlear synaptopathy occurs in human 
subjects seems well established based on human post-mortem stud-
ies,53,54 whether this directly leads to hearing problems in humans, 
such as SIN difficulties, has been more difficult to discern.59 In animal 
studies, loss of IHC afferent synapses caused by noise trauma results 
in a reduction in the amplitude of the wave I component of the au-
ditory brainstem response (ABR), a measurement that reflects activ-
ity at these synapses and in the cochlear nerve, and shows a strong 
correlation with the loss of IHC ribbon synapses.49,50 Consequently, 
changes in the ABR wave I in human subjects have been intensively 
investigated, typically in younger populations with a history of noise 

F I G U R E  4 Cochlear synaptopathy and therapeutic approaches for restoring ribbon synapses using neurotrophic modulators. (A) Ribbon 
synapses that connect IHCs (turquoise) with SGN afferent fibers are vulnerable to ototoxic agents, noise trauma, and aging. Specifically, 
the high-threshold modiolar fibers (yellow) are most susceptible to these insults and show early degeneration and retraction from the IHCs 
resulting in speech-in-noise hearing difficulty. (B) Binding and homodimerization of Trk receptors (TrkB or C) with their neurotrophic ligands 
(BDNF, or NT-3, respectively) results in downstream activation of the AKT, CAMK, and ERK signaling pathways which play important roles in 
cell survival, synaptic plasticity, axonal/dendritic growth, and neural differentiation during development and repair, making them key targets 
for therapeutic intervention.
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exposure, but with mixed results.59–61 Interpretation of wave I ABR 
amplitude changes in older populations that have threshold eleva-
tions is compromised by OHC loss. However, based on the most re-
cent human postmortem study55 showing more substantial afferent 
fiber decrements along with OHC loss with age, it is possible that 
this is precisely where the effects of cochlear synaptopathy would 
be most evident, and so would not be revealed by wave I ABR am-
plitude measurements. Overall, it is reasonable to expect that a loss 
of IHC afferent synapses due to noise trauma or aging underpins 
SIN difficulties. Ultimately, interventional studies with therapeutics 
aimed at restoring these synapses and their function may provide 
the most compelling evidence for this hypothesis.

Neurotrophins and their receptors are a primary focus of ther-
apeutic approaches to restore the cochlear afferents and ribbon 
synapses (Figure 4B). Neurotrophins are a family of soluble growth 
factors that are key to neuronal development, neuronal selection 
and survival, maintenance of neuronal phenotype and synapses, 
and neuronal function.62–64 Two neurotrophic factors, brain-derived 
neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are critical 
for the establishment of type I afferent synapses during develop-
ment, and genetic deletion of the neurotrophins or their receptors 
(TrkB and TrkC, respectively) disrupts SGNs and their afferent 
connections. During development, BDNF and NT-3 appear to play 
complementary roles in establishing the tonotopic gradient in the 
cochlea and both have been shown to protect SGNs against ototoxic 
insults.65

In animal models of cochlear synaptopathy, local administration 
of BDNF or NT-3 to the cochlea has been shown to restore ribbon 
synapses and their function.66–68 In addition to the endogenous 
neurotrophins, other molecules that act as agonists for TrkB or TrkC 
receptors have been evaluated for their ability to restore IHC rib-
bon synapses. These include monoclonal antibodies that selectively 
activate TrkB or TrkC, engineered chimeric neurotrophins with dual 
agonist activity for both TrkB and TrkC, and small molecule receptor 
agonists.69–71

Other factors with neurotrophic activity, such as insulin-derived 
growth factor-1 (IGF-1) and glial-derived growth factor (GDNF), 72,73 
have also been considered as potential therapeutics for cochlear 
synaptopathy, as well as compounds that interact with the Netrin/
DCC pathway, that plays a role in axon guidance.36

From a pharmacological perspective, biologics that act as TrkB 
and TrkC agonists are potent molecules that produce neurotrophic 
effects often in the sub-nanomolar range and are therefore well-
suited to local administration at the round window membrane. In 
addition to effects that result from an initial activation of cell surface 
Trk receptors, there is substantial evidence that receptor signaling 
continues after internalization of the neurotrophin-Trk complex in 
the so-called “signaling endosome,” that travels to the nuclei of neu-
rons and can promote changes in gene regulation that mediate long-
term neurotrophic effects.74,75 Recent and future studies in this area 
may shed more light on whether the pharmacodynamic effects of 
neurotrophins in the cochlea will outlast their presence in cochlear 
fluids and the extracellular matrix.

OTO-413 is a formulation of BDNF in P407 for intratympanic 
administration onto the round window membrane that provides 
extended exposure of BDNF to the cochlea.68,76,77 In a phase 1/2a 
clinical trial in subjects with SIN difficulties, OTO-413 demonstrated 
clinically meaningful improvements in multiple SIN tests at both 8 
and 12  weeks following a single intratympanic administration and 
had a favorable safety profile.78 The improvements occurred in 
subjects with relatively normal hearing thresholds as well as those 
with moderate-to-severe hearing loss. These promising early-stage 
clinical data warrant further investigation in a larger number of sub-
jects with hearing loss, and additional clinical work is now underway 
(www.otono​my.com).

The advent of cochlear synaptopathy as an important contrib-
utor to hearing deficits, particularly those that center on the most 
common complaint involving difficulty hearing in a noisy environ-
ment, is challenging traditional notions of hearing loss mechanisms 
and potential treatments that have focused solely on HCs. Indeed, 
recent studies have aimed at restoring cochlear neuronal connec-
tions rather than HC regeneration, and the preliminary data showing 
improvements in SIN difficulties with an intratympanically admin-
istered neurotrophin holds promise for alleviation of this cardinal 
complaint of the hearing impaired.

4.3  |  Cisplatin-induced Hearing Loss

Cisplatin is a potent chemotherapeutic agent that is widely used 
to treat a variety of cancers in adults and children. Each year, in 
the United States alone, approximately 500,000 patients receive 
platinum-based chemotherapy. However, the administration of cis-
platin is commonly associated with severe adverse effects including 
nephrotoxicity, peripheral neuropathy, and ototoxicity. Cisplatin-
induced hearing loss (CIHL) has a high prevalence ranging from 20 to 
80% in children undergoing cisplatin treatment79 and manifests as 
sensorineural hearing loss and tinnitus, with the hearing loss being 
progressive, bilateral, and irreversible.80 Children are at greater risk 
of developing hearing loss than adults, with dire consequences for 
speech development and social integration. Cisplatin ototoxicity re-
sults from high doses and/or multiple treatment cycle regimens that 
lead to significant and lasting platinum accumulation in the cochlea. 
Recently, studies of mouse and human temporal bones revealed that 
platinum remains in the cochlea for months to years following treat-
ment, and could explain the delayed progression of cisplatin-induced 
hearing loss observed clinically.81

Since there are no approved treatments for CIHL prevention to 
date, management of the ototoxicity risk, when considered, primar-
ily relies on dose adjustment or discontinuation of cisplatin therapy, 
with a potential significant negative impact on cancer progression.82 
Therapeutic approaches aimed at preventing cisplatin-induced oto-
toxicity need first to preserve the antitumor activity of the chemo-
therapy, or at the very least minimize interference. Consequently, 
different approaches have been considered depending on the route 
of administration. Systemic administration by oral or intravenous 
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routes faces significant challenges in reaching therapeutic drug lev-
els in the inner ear, while minimizing systemic drug exposure to the 
neoplastic tissues targeted by cisplatin chemotherapy. An alternate 
and more effective approach would be local delivery to the ear. As 
described above, delivering a therapeutic agent via intratympanic in-
jection into the middle ear can ensure that adequate exposure of otic 
tissues is achieved, while systemic levels are negligible.12

The ototoxicity of cisplatin encompasses a number of cellular 
tissues in the cochlea (Figure  5A). In particular, sensory HCs are 
severely affected with a more pronounced susceptibility of OHCs 
versus IHCs.83 Evidence of damage to the SGNs and degeneration 
of the stria vascularis has also been noted.83 Cellular uptake of cis-
platin by passive diffusion and active transport mechanisms (such as 
copper transporter CTR1, organic cation transporter OCT284) leads 
to oxidative stress (via generation of reactive oxygen species and de-
pletion of the antioxidant defense system), inflammatory responses, 
and eventually apoptosis and cell death.79 These underlying mech-
anisms of cisplatin's ototoxicity have been the subject of efforts to 
develop effective otoprotective therapies (Figure 5B).

Recent studies point to the role of the MET channel as an uptake 
mechanism for cisplatin entry into HCs. MET channel blockers such 
as ORC-1366185 and berbamine86  have been shown in preclinical 
models to protect against cisplatin-induced hearing loss. Another 
approach has been to use agents that specifically sequester cispla-
tin through covalent binding. Interestingly, most of these molecules, 
namely D-methionine, N-acetyl cysteine (NAC) and sodium thiosul-
fate (STS), also exhibit antioxidant properties. D-methionine87,88 and 
NAC have shown promise based on preclinical studies conducted in 
animal models of CIHL. To date, however, clinical translation of these 
beneficial effects into patients undergoing cisplatin chemotherapy 
is limited, and the demonstration of significant otoprotection has 

remained elusive,89 possibly due to dose limitation constraints. In 
contrast, clinical trials conducted with intravenously administered 
STS (Pedmark™) have demonstrated protection against CIHL in 
pediatric patients with localized, non-metastatic solid tumors.90 
However, in a patient population with metastatic tumors, mortal-
ity in the STS-treated group was greater, probably due to the sys-
temically delivered STS directly interfering with the anti-tumor 
properties of cisplatin.91 Given these results, intravenous STS ad-
ministration must follow a very specific dosing protocol where it 
is administered between 4 and 6  h following cisplatin infusion, to 
maximize hearing preservation, while limiting any abrogation of the 
benefits of cisplatin for tumor shrinkage and may only be suitable for 
use in non-metastatic disease. Such approaches highlight the limita-
tions of therapeutic agents that antagonize cisplatin function when 
given systemically.

Nevertheless, a new drug application (NDA) for Pedmark™ has 
been submitted to the FDA and is expected to be reviewed in late 
2021 (www.fenne​cphar​ma.com). Additional systemically adminis-
tered agents are being evaluated clinically on the basis of their an-
tioxidant/anti-inflammatory properties (ebselen)92 or anti-immune 
properties (R-azasetron).93 Recently, a reduction in the incidence 
and severity of cisplatin-induced hearing loss in adults with head and 
neck cancer was shown to be associated with the use of atorvastatin, 
an HMG-CoA reductase inhibitor with reported anti-inflammatory 
and antioxidant properties.94 On the basis of these encouraging find-
ings, a Phase 3 interventional study is being initiated (ClinicalTrials.
gov Identifier: NCT04915183) (Table 1).

More promising approaches focus on the direct delivery of 
a therapeutic agent to the otic compartment via intratympanic 
administration. As mentioned above, local administration has the 
advantage of maximizing delivery of the therapeutic agent to the 

F I G U R E  5 Cellular targets and therapeutic strategies for cisplatin-induced ototoxicity in the cochlea. (A) Within the cochlea, platinum-
based chemotherapeutic agents can induce damage or cell death within cells of the stria vascularis (bright blue), the inner (dark blue), and 
outer hair cells (turquoise), as well as the spiral ganglion neurons (yellow) that innervate the hair cells, damage to any of which can contribute 
to hearing loss. (B) Many strategies have been evaluated to mitigate this ototoxic hearing loss, some of the mechanisms reported in the 
literature which have shown promise include channel blockers to prevent cisplatin from entering vulnerable cell types, anti-inflammatory 
agents, antioxidants, anti-apoptotic agents, and cisplatin binding/scavenging compounds.
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otic compartment while minimizing systemic exposure that could 
compromise the anti-tumor effects of cisplatin. For instance, an 
otic formulation of STS (DB-020) is currently being evaluated for 
hearing preservation in adult patients undergoing chemother-
apy.95 Recently, a novel class of molecules has emerged that has 
optimized cisplatin binding properties in addition to antioxidant 
benefits. A lead compound was formulated into OTO-510 for sus-
tained release after intratympanic administration, which demon-
strated significant protection in preclinical models of CIHL.96–98 
These local delivery approaches are attractive since they pre-
clude any interference with the chemotherapeutic benefits of 
cisplatin.

As treatment regimens for chemotherapeutics have been op-
timized and improved to provide greater survival benefits for can-
cer patients, the need to provide protection from ototoxicity has 
become increasingly relevant, particularly in pediatric and young 
adult populations that can most benefit from healthy hearing. This 
was highlighted in a 2018 conference on childhood cancer hearing 
loss as part of the FDAs Patient-focused Drug Development initia-
tive (https://www.flips​nack.com/child​rensc​ause/pfdd-final​-repor​
t-_-5-17-2019/full-view.html). The experimental therapies described 
above could pave the way for new strategies to combat this consid-
erable unmet need.

5  |  CONCLUSIONS

According to the World Health Organization, 466 million people suf-
fer with disabling hearing loss worldwide, a number that could grow 
to 900  million by 2050 (https://www.who.int/deafn​ess/estim​ates/
en/). The renaissance in cochlear biology that has occurred over 
the past two decades, combined with innovations in drug delivery 
to the inner ear, provides an opportunity to address this growing 
unmet clinical need. The current efforts reviewed here provide 
hope that effective pharmacological treatments are on the way 
to ameliorate hearing loss due to cochlear malfunction caused by 
noise, aging, and ototoxicity. There are also pharmacological de-
velopments in the associated areas of balance disorders99 and ini-
tial proof-of-concept data in tinnitus.16 Local gene therapy for the 
inner ear is also under investigation as a means to restore hearing 
function in monogenetic hearing disorders.100 With the promise of 
hearing loss therapies now on the horizon, it seems likely that the 
next decade will yield meaningful inroads into this “final frontier” 
of pharmacology and provide much needed relief for those suffer-
ing from hearing loss.
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