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Abstract
Antimicrobial resistance (AMR) represents a critical obstacle to public health worldwide, due to the high incidence of strains 
resistant to available antibiotic therapies. In recent years, there has been a significant increase in the prevalence of resistant 
epidemic strains, associated with this, public health authorities have been alarmed about a possible scenario of uncontrolled 
dissemination of these microorganisms and the difficulty in interrupting their transmission, as nosocomial pathogens with 
resistance profiles previously considered sporadic. They become frequent bacteria in the community. In addition, therapy for 
infections caused by these pathogens is based on broad-spectrum antibiotic therapy, which favors an increase in the tolerance 
of remaining bacterial cells and is commonly associated with a poor prognosis. In this review, we present the current status of 
epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), MDR 
Mycobacterium tuberculosis, extended-spectrum β-lactamase-producing Enterobacterales (ESBL), Klebsiella pneumoniae 
carbapenemase (KPC), and—New Delhi Metallo-beta-lactamase-producing Pseudomonas aeruginosa (NDM).

Introduction

About 90 years ago, one of the greatest medical advances 
in therapeutics was described, revolutionizing antimicrobial 
therapy. The discovery of penicillin by Alexander Fleming 
in 1928 promoted innovation in the management of infected 
patients. However, upon exposure to penicillin, the antimi-
crobial resistance (AMR) of bacteria was accelerated [1].

Between the 1980s and 1990s, the first outbreaks were 
caused by resistant bacterial clone strains that spread 
through hospitals in Europe, Latin America, and the United 
States reported [2]. The increase in the international flow of 
people and the food trade has also directly contributed to the 

spread and global expansion of clones of various pathogens 
in a hospital environment and different communities [3].

Since then, outbreaks of bacterial infections are evolv-
ing into complex phenomena, involving multiple species, 
and facilitated by natural selection or the ability to acquire 
resistance through horizontal gene transfer by mobile genetic 
elements. These genetic alterations are responsible for the 
higher incidence of resistance, through the establishment 
of regulatory mechanisms that ensure bacterial survival 
against different concentrations of the antimicrobial agent 
and other bacteria, favoring the multiplication, colonization, 
and advancement of the infectious process [3].

Over the decades, clinically important bacteria began to 
show resistance to more than one drug, even showing resist-
ance to several classes of antimicrobials. The main micro-
organisms causing infections in the hospital environment 
are Escherichia coli, Klebsiella pneumoniae, Enterococcus 
spp., Staphylococcus aureus, Staphylococcus epidermidis, 
Mycobacterium tuberculosis, Pseudomonas aeruginosa, Aci-
netobacter baumannii, Salmonella spp., and Burkholderia 
spp. [4]. Figure 1 shows the place and year of the appear-
ance of the first strains of methicillin-resistant Staphylococ-
cus aureus (MRSA), vancomycin-resistant Staphylococcus 
aureus (VRSA), Vancomycin-resistant Enterococcus (VRE), 
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Mycobacterium tuberculosis MDR, extended-spectrum 
β-lactamase-producing Enterobacterales (ESBL), Kleb-
siella pneumoniae carbapenemase (KPC), and New Delhi 
Metallo-beta-lactamase-producing Pseudomonas aerugi-
nosa (NDM).

The description of the multidrug-resistant (MDR) pro-
file between Gram-negative and Gram-positive bacteria 
worldwide resulted in a scenario of uncertainty in the 
medical-scientific community [5]. Due to the variety of 
pathogens present in this group, a subclassification has 
been proposed in recent years for epidemiological pur-
poses, including pathogens recognized as extensively 
drug-resistant (XDR), susceptible to only two or fewer 
categories between tested antimicrobials, and resistant to 

all tested antimicrobials (PDR), which pose a global threat 
to public health [6]. Thus, a bacterium present in the PDR 
subgroup is also classified as XDR and the XDR subgroup 
is also included in the MDR group (Fig. 2).

Resistance to almost all classes of antibiotics has been 
reported, including aminoglycosides, cephalosporins, 
fluoroquinolones, β-lactams, and more recently colistin, 
an antimicrobial considered one of the last therapeutic 
options in the treatment of infections caused by MDR or 
XDR Gram-negative bacilli [7]. This scenario, which was 
previously limited to some regions of the country, started 
to gain a global proportion, crossing borders, affecting a 
greater number of people, leaving the world population in 
a state of alert [8].

Fig. 1  First report of resistant bacterial strains

Fig. 2  Schematic representa-
tion of the subclassification of 
strength profiles
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About 90% of infections caused by MDR pathogens 
are based on empirical antibiotic treatment, associated 
with a prolonged hospital stay, generating a higher cost 
compared to infections caused by their antimicrobial-
susceptible counterparts. Annually, the cost of treatment 
using MDR bacteria treatment (direct or indirectly) is 
estimated at US$ 45 billion and in Brazil could reach 
US$ 36 million annually, corresponding to 20% of federal 
expenditure on health [9].

The “post-antibiotic era” once such a distant idea may 
soon become a 21st-century reality. According to the 
WHO and the United Nations, AMR is configured as the 
critical issue of global public health. In which multisec-
toral and coordinated efforts are necessary, as no action 
today can result in no therapeutic option tomorrow [10]. 
Associated with this, the current situation that humanity 
has been going through, due to the pandemic caused by 
COVID-19, raises concerns about other possible epidem-
ics/pandemics. It is estimated that the annual mortality 
rate related to resistance will reach 10 million by 2050. 
And the indiscriminate and excessive prescription of anti-
biotics in patients with COVID-19, in the face of possible 
co-infection or secondary bacterial infection, is expected 
to negatively impact this rate, accelerating this trend [11].

Thus, this review aims to describe some of the main 
epidemic pathogens, their resistance mechanisms, their 
therapeutic options and their current epidemic panorama, 
as a tool to assess the immediate challenges, and other 
possible epidemics/pandemics that may occur.

Antibiotic‑Resistant Strains

Methicillin‑ and Vancomycin‑Resistant 
Staphylococcus aureus (MRSA and VRSA)

Since its first report and after the introduction of β-lactams 
into clinical practice, Staphylococcus aureus remains one 
of the main global causes of nosocomial infections, which 
demonstrates its versatility in different epidemiological con-
texts [12].

In 1960 MRSA strains were detected in the United King-
dom and since then several strains have been spreading 
around the world. MRSA is associated with more compli-
cated clinical outcomes when compared to that observed 
in methicillin-sensitive S. aureus (MSSA), as it can cause 
infective endocarditis and osteomyelitis, which can lead to 
sepsis and septic shock [13].

Although it has been considered a nosocomial pathogen 
(HA-MRSA) for years in the United States in the 1990s, 
MRSA infections were reported in the community (CA-
MRSA), and in the early 2000s, MRSA strains were also 
identified associated with exposure to livestock (LA-MRSA) 
[14].

Vancomycin is one of the antimicrobials used for the 
treatment of MRSA; however, its administration has been 
limited due to the presence of vancomycin-intermediate 
Staphylococcus aureus (VISA) and vancomycin-resistant 
Staphylococcus aureus (VRSA) (Fig. 3). The first report of 
VISA in the literature is dated 1996, from a patient hospi-
talized in Japan. Later, VRSA was described in 2002 in the 
United States, in 2013 in Europe, and since then it has been 

Fig. 3  Timeline related to the introduction and emergence of antimicrobial resistance in Gram-positive bacteria
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expanding exponentially, making antibacterial therapy more 
difficult [15, 16].

Infections caused by VRSA have high morbidity and mor-
tality and are usually associated with co-infection between 
vancomycin-resistant Enterococci (VRE) and MRSA. It gen-
erally affects intensive care unit patients who are hospital-
ized for a long period and who have associated comorbidi-
ties, such as diabetes and gangrenous wounds [17].

Currently, MRSA and VRSA are the main Gram-positive 
pathogens involved in severe nosocomial infections with 
high rates of morbidity and mortality, resulting in a sub-
stantial economic burden, estimated at US$ 450 million in 
the last decade [15].

According to data from the Centers for Disease Control 
and Prevention (CDC), MRSA was responsible for 119.000 
infections, and 20.000 deaths in 2019 in the US [14]. The 
epidemiological factors that contributed to the spread of 
some clones are still not well known. However, its high 
pathogenicity can be attributed to its genetic repertoire and 
diversity of virulence factors, which enabled its adaptation 
to different hostile environments [15].

Resistance Mechanism

Methicillin resistance occurs through the acquisition of 
the staphylococcal cassette mec (SCCmec) which encodes 
penicillin-binding protein 2a (PBP2a), a transpeptidase with 
low affinity for β-lactams responsible for inactivating the 
pharmacological activity of penicillin [17]. This is due to 
the acquisition of the mecA gene, responsible for encoding 
PBP2a. The regulation of methicillin resistance and the pro-
duction of PBP2a are carried out by mecR1 and the repres-
sor gene mecL [18].

A variant of mecA, called mecC, which encodes mem-
brane proteins known as  PBP2aLGA, was identified from 
milk isolates from herds in England in 2007 and carcasses 
in 2011 and 2012 in Belgium and France [19]. However, it 
was not only identified in animal products but also humans, 
as it showed compatibility with an isolate of 1975 from 
Denmark, thus suggesting that although it was later identi-
fied, it has probably been causing infections for more than 
40 years [20]. In 2018, in Germany, a new variant of the mec 
gene, mecB, was reported, but the mechanism of resistance 
encoded has not yet been elucidated [18].

Resistance Rate

Regarding the prevalence rate, countries such as Swit-
zerland, Canada, and the USA have an average of 18.6% 
of colonization by MRSA, Brazil has 35%, the UK 36%, 
and Africa and Portugal the rates of infections caused by 

MRSA are 49% [21, 22]. A similar panorama is seen in the 
Asian continent, where infection rates caused by MRSA 
are above 50% in countries such as Japan, China, Taiwan, 
and Singapore [23].

Based on the SCC elements, MRSA can be subdi-
vided into 11 different types, but the types I-V are the 
main strains commonly isolated from patients. Infections 
by MRSA type I, II, and III are usually caused by HA-
MRSA, whereas in CA-MRSA infections, types IV and V 
are involved [24, 25]. In China, the most identified type 
is SCCmec IV, found in 14.1% of MRSA isolates [26], 
whereas in Japan 68.4% is type IV, and 73.3% is type II 
[25].

In India, the most prevalent MRSA is SCCmec type III, 
corresponding to 58% of the isolates [20]. In Brazil, 65.4% 
of MRSA are type II, 37% type I, and 15.4% type IV [27, 
28], and in the United States 29.9% are type II and 30.9% 
are type IV [29].

MRSA and VRSA Therapeutic Options

Therapeutic choices for MRSA infections take into 
account several factors, such as the resistance profile, risk 
factors, associated comorbidities, and response to previ-
ously used antibiotics. Thus, for most cases, vancomycin 
and daptomycin are the first choices; however, considering 
the VISA and VRSA strains, vancomycin has been little 
recommended [30].

Daptomycin, for example, is contraindicated for second-
ary infections of pneumonia, since pulmonary surfactants 
inactivate it, in addition, vancomycin has difficulty in pen-
etrating the lung tissue, so clindamycin and linezolid are 
recommended for this clinical condition if the strain is sus-
ceptible [31]. Ceftaroline, in turn, is recommended for the 
treatment of uncomplicated infections located in sites such 
as the skin and skin structures, so for complicated cases, 
the recommendations are to use quinupristin/dalfopristin. 
As for cases of patients with valve prostheses, although 
there are no completed studies that condition their use, the 
use of the combination of gentamicin or rifampicin with 
daptomycin has been recommended [32].

Since identifications of VISA and VRSA strains are 
increasing, and taking into account that these causes sig-
nificant public health impacts, the guidelines established 
by the Infectious Diseases Society of America (IDSA) 
indicate that other choices should be considered, such as 
combining daptomycin with another antibiotic, such as 
gentamicin, rifampicin, linezolid, or trimethoprim-sul-
famethoxazole for VRSA [33]. For intermediate vancomy-
cin resistance, combination or single use of quinupristin-
dalfopristin, trimethoprim-sulfamethoxazole, linezolid, or 
telavancin is recommended [34].
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Vancomycin‑Resistant Enterococcus (VRE)

Enterococcus spp. are Gram-positive opportunistic microor-
ganisms present in the human gastrointestinal tract, responsi-
ble for causing urinary tract infection, bacteremia, infective 
endocarditis, wound infections, neonatal sepsis, and men-
ingitis [35]. Among Enterococcus spp., E. faecium and E. 
faecalis are the third leading cause of healthcare-associated 
infections, after S. aureus and P. aeruginosa, with consid-
erable potential for healthcare-acquired outbreaks [35]. Its 
clinical relevance is due to its low intrinsic susceptibility 
to a wide range of antimicrobials such as aminoglycosides, 
lincosamides, streptogramins, sulfonamides, cephalospor-
ins, and mainly due to the resistance to vancomycin, which 
causes great difficulties in clinical anti-infective therapy 
[36].

Vancomycin-resistant enterococcus (VRE) was first 
detected in the late 1980s in the UK and shortly after in 
France and USA [37]. Vancomycin-resistant occurs mainly 
in E. faecium (VREfm) isolates and they are associated with 
high mortality rates, especially in hospitalized individuals 
and longer hospital stays [37]. Since then, its reports have 
increased alarmingly, posing a threat to global public health, 
such that in some regions of the USA and Australia, about 
50% or more of all blood culture isolates are VREfm [38]. 
In view of this, the World Health Organization (WHO) in 
2017 classified VRE as a high-priority pathogen in its global 
list of antibiotic-resistant bacteria for which the discovery of 
new and effective therapeutic options is urgent.

Resistance Mechanism

Vancomycin-resistance in Enterococcus spp. involves a 
genetic change at the locus that harbors different vancomycin 
resistance genes (Van) [39]. These genes encode enzymes 
necessary for peptidoglycan synthesis, where instead of hav-
ing D-Alanine-D-Alanine (D-Ala-D-Ala) in their terminal 
portion, they will have D-Alanine-D-Lactate (D- Ala-D-Lac) 
(A, B, D) and D-Ala-D-Serine (C, E, G) [40]. This alteration 
generates a reduction in the binding affinity of vancomycin 
to its target site (peptidoglycan), preventing its action [38].

There are six resistance phenotypes in Enterococcus 
(VanA, VanB, VanC, VanD, VanE, VanG), with vanA 
being the most prevalent type worldwide [41]. Most VRE 
outbreaks in human populations are attributed to the VanA 
and VanB resistance phenotypes, also already identified in 
animals and environmental samples [40]. Both are cited 
mainly in E. faecalis and E. faecium isolates, but the ability 
to transfer vanA genes to S. aureus and other Gram-positive 
organisms has already been proven in the laboratory [42] 
and VanB has already been identified in Streptococcus bovis 
[43].

The VanA phenotype, mediated by the vanA gene, con-
fers a high degree of resistance to vancomycin and teico-
planin [41]. Whereas VanB (vanB gene) confers resistance 
to vancomycin but susceptibility to teicoplanin [43]. The 
VanC phenotype (vanC gene) has been described in E. 
casseliflavus and E. gallinarum and demonstrates a low 
or moderate level of vancomycin resistance and teicopla-
nin susceptibility [44]. Less common phenotypes include 
VanD, with moderate resistance to vancomycin and teico-
planin, and VanE and VanG, which have a low level of 
resistance to vancomycin alone [39, 43].

Resistance Rate

VRE was described more than 30 years ago and has since 
attracted special attention due to its increasing global prev-
alence. In the US and Europe, Enterococci spp. represent 
the main pathogens responsible for HAIs [38]. Despite its 
global distribution, its isolation rate is highest in North 
America. In the US, a CDC estimates about 100,000 cases 
of infection and VRE, leading to an average of 650 deaths 
per year, particularly in critically ill patients [44].

From 2009 to 2010, 35.5% of clinical strains were 
VREs according to the National Healthcare Safety Net-
work (NHSN) [45]. Between 2011 and 2014, the same 
body reported that about 82% of E. faecium isolates from 
bloodstream infections in the US were vancomycin-resist-
ant [46]. These results confirmed the concern raised by the 
CDC about threats to public health, which led to the inclu-
sion of this microorganism among the pathogens known as 
ESKAPE (E. faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aer-
uginosa, and Enterobacter spp.), for which new effective 
therapies are urgent [47].

While colonization of hospitalized patients with VRE 
in the US was detected shortly after the first report of 
VRE, in Europe colonization rates only began to increase 
from the year 2000 onwards, and to this day VRE is much 
less prevalent than in the American continent [41, 45]. In 
Europe, VREs are very heterogeneously distributed, and 
only 4% VRE prevalence was reported by the European 
Antimicrobial Resistance Surveillance System [45]. Scan-
dinavian countries such as the Netherlands, Luxembourg, 
and Belgium have less than 5% of their clinical isolates 
of Enterococcus spp. are VREs, while in Ireland, Latvia, 
Lithuania, and Romania, more than 30% of E. faecium are 
vancomycin-resistant [47]. Increasing numbers of VRE 
infections have already been reported in Switzerland, 
Australia, and Canada. And also in Asia, they have been 
reported in several countries such as Korea, Taiwan, India, 
and Nepal [43].
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VRE Therapeutic Options

Due to its extensive intrinsic resistance to a variety of classes 
of antibiotics, Enterococcus ssp. has a certain advantage 
over other bacteria of the intestinal microbiota, which favors 
their dissemination in the most varied environments [47]. 
Treatment options for VREfm infections, especially vanA, 
are limited and antibiotics such as linezolid, daptomycin, 
tigecycline [38]. However, with the emergence and spread of 
VREs, reports of resistance have increased for the last-line 
agents used, such as linezolid and daptomycin. For infec-
tions caused by VREfm with a VanB and VanC phenotype, 
despite the emergence of resistance having been reported, 
teicoplanin remains a therapeutic option [38]. Tezidolide is 
another FDA-approved option for skin infections caused by 
E. faecali alone. A viable option for the treatment of VRE 
urinary tract infections is doxycycline and chloramphenicol, 
both of which act by inhibiting protein synthesis [45]. In 
the case of invasive E. faecalis infections, ampicillin and 
ceftriaxone combination therapy has been used successfully, 
as well as ampicillin plus gentamicin in the treatment of 
endocarditis. Another combination has been Quinupristine/
Dalfopristine versus VREfm [47].

MDR Mycobacterium Tuberculosis

Mycobacterium tuberculosis is one of the microorganisms 
responsible for tuberculosis (TB) being an infectious disease 
that affects humans since ancient times. With the discovery 
of streptomycin in 1943, there was a revolution in treatment, 
leading to a significant reduction in the incidence of TB 
worldwide. With the expansion of the use of rifampicin, 
resistant M. tuberculosis strains emerged in 1980, making 
TB once again considered a public health concern [48, 49]. 
By showing simultaneous resistance to rifampicin and isoni-
azid, M. tuberculosis strains were defined as MDR, causing 
difficulties in TB control, especially in developing countries 
[48].

According to the WHO [50], in 2018, 10 million people 
were infected with TB in the world, being 5.7 million men, 
3.2 million women, and 1.1 million children. Regarding the 
mortality rate, a total of 1.5 million people died from tuber-
culosis in 2018, is considered one of the 10 leading causes 
of death worldwide, as well as the leading cause of a single 
infectious agent, with a high rate of mortality above HIV/
AIDS [50, 51].

Resistance Mechanism

The resistance mechanism of M. tuberculosis appears to be 
related to chromosomal mutation. Resistance-causing fac-
tors that affect the mutation rate are cellular mechanisms 
such as incompatible repair inefficiency, microsatellites, 

inappropriate translations, and error-prone DNA polymer-
ases in addition to external factors that include lack of rapid 
diagnosis, inadequate prescription of anti-TB drugs, expres-
sion of environmental, genetic, and immunological determi-
nants of the host, and exposure to smoke and/or pollution. 
Low patient adherence to TB treatment, as well as the high 
costs of achieving a complete cure for the disease, are the 
main factors contributing to drug resistance [51].

In about 96% of rifampicin-resistant M. tuberculosis 
strains were identified mutations in the 81 bp "hot spot" 
region, covering the 507–533 codons of the rpoB gene. 
While isoniazid resistance is related to mutations in several 
genes, such as katG, inhA, ahpC, kasA, and NDH. Mutations 
in the embB, rpsA, pncA, rpsL, and rrs genes have been iden-
tified as responsible for the resistance of M. tuberculosis to 
ethambutol, pyrazinamide, and streptomycin [51, 52].

Resistance Rate

Regarding the incidence rates of rifampicin-resistant TB 
cases in 2018, 484.000 cases were estimated, including 
about 378.000 cases of MDR TB and 214.000 deaths [53]. 
The highest levels of TB MDR are in the countries of East-
ern Europe and Asia, with more than half of the global TB 
MDR load located in India (27%), China (14%), and Russia 
(9%). Regarding the drugs that this bacterium has already 
shown resistance to, in addition to rifampicin, they include 
ofloxacin, levofloxacin, and moxifloxacin in 20.8% of cases 
[54, 55].

About 3.4% of cases of resistance occur in patients who 
have never been treated for TB, while 18% of cases are from 
patients who have been previously treated, with the high-
est proportion of cases occurring in countries of the former 
Soviet Union [55]. In 2018, register a disease rate of 45 
cases/100.000 inhabitants, with a TB-related mortality rate 
of 2.3 deaths/100.000 inhabitants [56].

MDR TB Treatment

The current WHO-recommended TB treatment is based on 
a 2-month program of isoniazid, rifampicin, pyrazinamide, 
and ethambutol, followed by 4 months of isoniazid and 
rifampicin [57]. Despite having a great bactericidal activity, 
some strains have developed resistance to some antibiotics 
of this therapeutic program. MDR TB strains are resistant 
to both rifampicin and isoniazid. Therefore, new classes of 
drugs have been evaluated for inclusion in the therapeutic 
regimen of MDR TB, as in the case of amoxicillin/clavula-
nate, carbapenem with clavulanic acid, clofazimine, fluoro-
quinolones, macrolides, among others [57].

According to Nahid et  al. [58], some drugs that are 
strongly recommended include bedaquiline, moxifloxa-
cin, and levofloxacin. Linezolid, clofazimine, cycloserine, 



Panorama of Bacterial Infections Caused by Epidemic Resistant Strains  

1 3

Page 7 of 14 175

amikacin, streptomycin, ethambutol, pyrazinamide, carbap-
enems with clavulanic acid, and delamanid may also be indi-
cated. For short-term treatment (9 to 12 months) for MDR 
TB, the WHO recommends the use of kanamycin, as well as 
other drugs with documented resistance such as isoniazid, 
ethionamide, and pyrazinamide.

The Emergence of β‑Lactamases

β-Lactamases represent a group of enzymes present in some 
bacterial species, responsible for hydrolyzing and inac-
tivating the β-lactam ring of antibiotics. The detection of 
β-lactamases in bacteria dates to the beginning of the '40 s, 
among them the extended-spectrum β-lactamases (ESBL) 
and carbapenemases stand out. Infections caused by bacte-
ria that contain these enzymes are considered an emerging 
public health problem [59].

Despite being present in both Gram-positive and Gram-
negative bacteria, β-lactamases correspond to one of the 
main mechanisms of resistance to β-lactams in Gram-nega-
tive bacteria (Fig. 4) [59].

Extended‑Spectrum β‑Lactamase‑Producing 
Enterobacterales (ESBL)

The first report of ESBL-producing Enterobacterales 
appeared in 1940, described by the production of cephalo-
sporinase AmpC by Escherichia coli, and later in Europe, 

in 1983, in Klebsiella pneumoniae isolates, after the intro-
duction of tigecycline in clinic experiments [1, 60]. Since 
then, ESBL-producing strains are currently reported on 
almost every continent [46]. According to the CDC, ESBLs 
are responsible for causing about 26,000 cases of HAI, and 
about 1700 deaths per year [60].

The nosocomial outbreak of Klebsiella pneumoniae iso-
lates producing extended-spectrum of β-lactamases took 
place between 1980 and 1990, from genetic mutations in 
classical β-lactamases (TEM-1, TEM-2, and SHV-1), which 
later developed spread around the world. Nosocomial infec-
tions attributed to these microorganisms are associated with 
a high rate of morbidity and mortality. In 2017, in the United 
States alone, infections caused by ESBL strains were respon-
sible for 9100 deaths [61].

ESBL-producing strains are described as a group of bac-
teria resistant to most antibiotics commonly used as a last 
line of treatment. In such cases, the remaining treatment 
option is carbapenems. Due to their broad spectrum of bac-
tericidal action and their stability against most β-lactamases, 
carbapenems have been one of the drugs of choice in the 
therapy of MDR pathogens, until the appearance and spread 
of carbapenemase-producing strains [62].

Resistance Mechanism

ESBL consists of three groups of enzymes: TEM (Temo-
rina Escherichia coli mutant), SHV (Sulfhydryl variant), 
and CTX-M (Cefotaximase-Munich), which are propagated 

Fig. 4  Timeline related to the introduction and emergence of antimicrobial resistance in Gram-negative bacteria
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by clonal expansion and dissemination of resistance genes 
(blaCTX-M, blaSHV, blaTEM, and its variations) via plasmids, 
soon spreading rapidly and causing outbreaks [59, 63].

TEM-type ESBLs are derived from TEM-1 and TEM-2 
(non-ESBL), and found mostly in E. coli and K. pneumo-
niae, and can also be found in other bacteria of the Entero-
bacterales family and other Gram-negative bacteria. They 
have more than 130 types and are capable of hydrolyzing 
ampicillin, 1st, 2nd, and 3rd generation cephalosporins, 
as well as monobactams. Like the TEM-type ESBL, the 
SHV-type ESBL also have this hydrolyzing activity and are 
mainly present in Enterobacterales. SHV-type ESBLs have 
more than 50 types and are derived from SHV-1 (non-ESBL) 
[59, 64].

ESBLs of the CTX-M type are capable to hydrolyze cefo-
taxime, in addition to cephalosporins, penicillins, and mono-
bactams. They have more than 40 types and are widely dis-
tributed worldwide, being found mainly in Enterobacterales. 
In addition, they are divided into 5 subgroups, according to 
similarities in the amino acid sequence: CTX-M-1, CTX-M-
2, CTX-M-8, CTX-M-9, and CTX-M-25 [64].

Resistance Rate

In North America, ESBL-producing Enterobacterales have 
been more prevalent in the US, in which a study conducted 
between 2013 and 2017 with 1.112.312 enterobacterial iso-
lates from 411 US hospitals found that about 12.05% were 
producers ESBL [65], with the CTX-M class being the most 
widespread in that country [97]. In Brazil, a study conducted 
with 435 isolates of enterobacteria from the southeast region 
of the country, showed that 48 isolates (11%) were ESBL 
producers, with the blaCTX-M-1 and blaCTX-M-8/25 genes being 
the most found in samples, as well as combinations of CTX-
M, TEM, SHV and OXA [28].

In Europe, studies carried out between 2011 and 2013, 
showed that the rates of ESBL-producing strains were high, 
especially among the Klebsiella pneumoniae group, in which 
the rate was 45.6% (476). The most prevalent ESBL classes 
in European countries are CTX-M, followed by SHV [66]. 
In the countries of the Asia–Pacific region, a study carried 
out between 2008 and 2014 identified among 2.893 isolates 
of enterobacteria, 2.728 (94.3%) were ESBL producers, with 
the CTX-M-15 gene being the most found in total [67]. In 
Asia, CTX-M-14 was most prevalent in Hong Kong as well 
as Korea and Taiwan, CTX-M-27 in Japan and Vietnam, 
and CTX-M-15 in Kazakhstan, Malaysia, the Philippines, 
Singapore, and Thailand. In Oceania, CTX-M-15 was more 
prevalent in New Zealand and AmpC ACT and CTX-M-15 
in Australia [67].

On the African continent, studies between 2009 and 
2014 in Algeria, a rate of 16.4% [68] and 99% [69] of 

ESBL-producing strains were reported among the isolates 
identified clinicians.

ESBL‑Producing Enterobacterales 
Therapeutic Approach

The rate of ESBL-producing Enterobacterales continues to 
rise, therefore limiting therapeutic options. Carbapenems are 
shown to be the most reliable antimicrobials to treat infec-
tions caused by ESBL-producing Enterobacterales, despite 
the increase of drug resistance by their overuse [70].

Hence, the Infectious Diseases Society of America 
(IDSA) recommends a guideline for treatment that includes 
mostly quinolones and carbapenems. When it is shown 
susceptibility, the prefered treatment for cystitis is with 
nitrofurantoin or trimethoprim-sulfamethoxazole, or with 
ciprofloxacin, levofloxacin, ertapenem, meropenem, imipe-
nem-cilastatin, as an alternative treatment [71].

For pyelonephritis or complicated urinary tract infec-
tions, the preferred treatment is with ertapenem, merope-
nem, imipenem-cilastatin, ciprofloxacin, levofloxacin, or 
trimethoprim-sulfamethoxazole, while for other infections 
outside of the urinary tract, the preferred treatment is with 
meropenem, imipenem-cilastatin, or ertapenem [71].

Carbapenemases

Although Enterobacterales have developed several resist-
ance mechanisms, the detection of carbapenemases is still a 
concern. The increasing number of reports of Carbapenem-
resistant Enterobacterales (ERC) and the high mortality rate 
associated with these infections in the last decade poses a 
serious health threat [51].

Despite two decades of experience with KPC-producing 
bacteria, efforts to contain its global spread have failed. This 
critical data is worrying, given the scarcity of effective treat-
ment options, due to the high rate of transmission of genetic 
material, and consequently of the resistance gene, that this 
microorganism presents [52, 53].

Carbapenemases are increasingly reported in Entero-
bacterales, mainly in the genera Klebsiella, Enterobacter, 
Escherichia, Serratia, Citrobacter, Salmonella, Proteus, and 
Morganela. The emergence and rapid spread of ERCs is one 
of the greatest challenges to global health [52].

Klebsiella Pneumoniae Carbapenemase (KPC)

Klebsiella pneumoniae carbapenemase (KPC) is the most 
isolated enzyme in the world and can hydrolyze a wide vari-
ety of β-lactams, carbapenems, cephalosporins, monobac-
tams, conferring resistance to them [73].
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Yigit et al. [72] described the presence of a carbapen-
emase enzyme in a clinical isolate of Klebsiella pneumo-
niae collected in 1996 in a hospital in the United States, 
which showed high levels of resistance to imipenem and 
meropenem. After analyzing the isolate, through phenotypic 
methods and molecular biology, the researchers confirmed 
the existence of a new β-lactamase enzyme. Serine-carbap-
enemase, described by Yigit et al. [72], showed no inhibi-
tion when exposed to EDTA and was weakly inhibited by 
clavulanic acid, thus it was classified in Ambler's group A 
and was named KPC-1. Subsequently, researchers described, 
in 2003, the enzyme KPC-2, which had a single amino acid 
variant about KPC-1, resulting in a point mutation [72, 73].

Currently, 24 variants of the KPC enzyme are described 
in Gram-negative bacteria, with endemic levels reported in 
several countries, including the United States, Greece, Italy, 
Israel, Colombia, and Brazil [74, 75]. The treatment of infec-
tions caused by microorganisms that have genes encoding 
carbapenemase enzymes in the plasmid is extremely dif-
ficult, due to the ability of these microorganisms to show 
resistance to multiple drugs [75].

Resistance Mechanism

The genes encoding class A serine-carbapenemase enzymes 
can be located on the chromosome, such as the genes of 
the SME, IMI, and NMC-A enzymes, or in mobile genetic 
elements (plasmids, transposons, and integrons), such as 
the genes of the KPC and GES. Until the early 1990s, car-
bapenemases were believed to be encoded only by chro-
mosomal genes in some bacterial species, such as L1 in 
Stenotrophomonas maltophilia and BcII in Bacillus cereus. 
Subsequently, researchers identified IMP-1, oxacillinase-23 
(OXA-23), and Klebsiella pneumoniae carbapenemase-1 
enzymes encoded by mobile genetic elements in Pseu-
domonas aeruginosa, Acinetobacter baumannii, and Kleb-
siella pneumoniae strains, respectively. This finding aroused 
greater concern in health organizations due to the potential 
for dispersal among 23 species and clonal spread in the com-
munity and nosocomial infections [73, 76, 77].

Resistance Rate

The rapid spread of K. pneumoniae carrying blaKPC gene 
variants is mainly associated with the spread of a single 
clonal group (CG) designated CG258. This group is made 
up of 43 different “sequence types” (STs), in which the two 
predominant STs are ST258 and ST512. KPC-Kpn ST258 
is associated with 90% of all infections caused by carbap-
enemase enzyme-producing K. pneumoniae in Israel and is 
related to 80% of endemic outbreaks caused by KPC-Kpn in 
the United States. Colombia was the first country in South 
America to report the presence of the KPC enzyme. In that 

country, the blaKPC gene was initially identified in K. pneu-
moniae isolates in 2005 [78]. Since then, the presence of this 
gene has been reported in other species of Gram-negative 
bacteria, such as P. aeruginosa. In Colombia, P. aerugi-
nosa carrying the blaKPC gene is considered one of the main 
endemic bacterial strains.

Klebsiella Pneumoniae Carbapenemase (KPC) 
Therapeutic Options

KPC isolates are commonly resistant to fluoroquinolones, 
aminoglycosides, and most β-lactams; however, temocillin 
has some activity against some isolates, being seen as an 
option for lower UTIs by blaKPC-containing K. pneumoniae 
[79]. Thus, antibiotics such as colistin, polymyxin B, fosfo-
mycin, tigecycline, and rifampicin have been seen as agents 
of last choice [123]. Other antimicrobials such as fosfomycin 
and nitrofurantoin, if active, may be used to a limited extent 
for lower UTIs [123].

Another recommendation to minimize bacterial resist-
ance has been combined therapy. The ceftazidime/avibactam 
(CZA) combination was approved in 2015 for use by the 
FDA, consists of a cephalosporin and a new class A beta-
lactamase inhibitor (KPC, CTX-M, SHV) and Ambler's C 
and some class D β-lactamases, which has been successful 
for the treatment of urinary tract infections, bacteremia and 
complicated intra-abdominal infections [80, 81]. Wang et al. 
[82] showed that combined administration of aztreonam and 
avibactam was effective in treating bacterial infections pro-
duction of metallo-β-lactamases (MBL). However, given 
the emergence of ceftazidime/avibactam-resistant strains, 
the new meropenem/vaborbactam combination approved 
in 2017, could become an alternative for these conditions, 
including pyelonephritis by carbapenem-resistant Entero-
bacterales (CRE). Vaborbactam, in addition to being a class 
A (KPC, CTX-M, SHV) and class C β-lactamases inhibi-
tor, also potentiates the action of meropenem against most 
Enterobacterales species [81]. Sulfamethoxazole/trimetho-
prim and colistin, even in the face of resistance reports, can 
still be considered as potential therapeutic options [83].

NDM Pseudomonas aeruginosa

Pseudomonas aeruginosa is an important and opportunistic 
pathogen responsible for several infections in the hospital 
environment, such as skin and soft tissue infections, urinary 
tract and lower respiratory tract infections [84]. Due to its 
intrinsic resistance and the ability to develop other resist-
ance mechanisms through the acquisition of mobile genetic 
elements and mutations, an alarming increase in the number 
of reports of P. aeruginosa MDR strains has been observed 
[85].
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Carbapenems are commonly used as antimicrobials of 
the last choice in infections caused by MDR P. aeruginosa; 
however, carbapenem-resistant strains have been reported 
around the world over the last decades with the production of 
MBL, enzymes that degrade carbapenems leading to resist-
ance [86].

New Delhi MBL was reported in 2009 in New Delhi, 
India, in carbapenem-resistant Klebsiella pneumoniae strain 
from a Swiss patient who, while traveling to the Indian city, 
acquired a urinary tract infection. Since then, its variants 
have been reported worldwide [85, 87–89].

Resistance Mechanism

β-Lactamases are structurally classified according to the 
Ambler classification into class A (GES, KPC), class C 
(CMY, PDC), class D (OXA), all having the amino acid ser-
ine in their active site, and class B (VIM, IMP, SIM, GIM, 
SPM, and NDM), which comprises the β-lactamases that 
contain zinc in their active site, being called MBL. They 
are capable to hydrolyze all available β-lactams, except for 
aztreonam, a monobactam [87].

NDM consists of a subgroup of MBL currently formed 
by 31 variants, being the most prevalent blaNDM-1 among all 
species [55, 56]. The blaNDM-1 gene, which encodes NDM-
1, is present in plasmids of different sizes that can undergo 
genetic rearrangements that provide rapid propagation and 
structural modifications that can increase its activity [54]. 
Unlike other MBL, this enzyme is a lipoprotein anchored 
in the inner layer of the outer membrane of Gram-negative 
bacteria. Some structural changes in NDM-1 do not occur 
in its active site and sometimes are not related to increased 
activity, but the stability of its structure in zinc-deprived 
environments, since one of the host's defense mechanisms 
is the production of metal-chelating proteins such as calpro-
tectin present in neutrophils [90].

Resistance Rate

Since its discovery in 2009 in India, several countries in 
the Indian subcontinent (Bangladesh, Pakistan, and Sri 
Lanka), Europe, Asia, and the Americas have detected the 
presence of the blaNDM-1 gene diffused heterogeneously 
among members of the order Enterobacterales and the genus 
Pseudomonas. Studies suggest that air travel and migra-
tion allowed the transport of plasmids between countries 
and continents, being an explanation for the rapid spread of 
this gene [91]. One hundred and sixty-one strains of Pseu-
domonas aeruginosa have already been identified, carry-
ing the variants blaNDM-1 (159/161) and blaNDM-4 (2/161). 
Among the strains carrying the blaNDM-1 gene, 45 were 
detected in Singapore, 19 strains in the United States, and 
13 strains in India [91].

In Brazil, the NDM-1 variant was first detected in 2013 
in an isolate of Providencia rettgeri from the culture of the 
amputated finger of the lower limb of a diabetic patient 
with peripheral vascular disease admitted to a public hos-
pital in the Rio Grande do Sul, Brazil. However, the same 
author identified, in a retrospective study, that this variant 
was already present in the hospital since 2012 in isolates of 
Enterobacter hormaechei [92]. Since then, its presence in 
other Brazilian states has been reported among species of 
E. cloacae, K. pneumoniae, K. oxytoca, Acinetobacter bau-
mannii complex, Proteus mirabilis, Citrobacter freundii, and 
Escherichia coli [93]. In 2018, during the investigation of 
the mechanism of resistance on 14 isolates of Pseudomonas 
aeruginosa resistant to β-lactams, aminoglycosides, and qui-
nolones, the presence of the blaNDM-1 gene was detected in 
two strains from urine and tracheal aspirate samples from 
two patients hospitalized in a public hospital in Pernambuco, 
becoming the first cases of Pseudomonas aeruginosa carry-
ing NDM-1 described in Brazil [94].

NDM Pseudomonas aeruginosa Therapeutic Options

The therapeutic options available for patients with infec-
tions caused by Pseudomonas aeruginosa carrying the 
blaNDM gene are scarce. Considered as antibiotics of last 
resort, Colistin and Polymyxin B, despite having in vitro 
antibacterial activity, have low clinical utility against these 
microorganisms, since toxicity and emergence of resistance 
during treatment are strictly related to the therapeutic dose 
range used [95].

Used as an alternative to monotherapy treatment, thera-
peutic combinations have been seen as a means of circum-
venting the enzymatic mechanisms of resistance to carbap-
enems; however, in NDM-producing isolates, the action of 
some of them may be insufficient [96]. Experimental stud-
ies show that the combination of Ceftazidime-Avibactam 
(CZA), a third-generation cephalosporin combined with a 
β-lactamases inhibitor, lacks antibacterial activity against P. 
aeruginosa NDM due to the inactivity of Avibactam against 
MBLs (NDM, VIM, IMP, EBV, and PER) resulting from the 
absence of a serine residue in its active site [97]. Mikhail 
et al. [98] observed a synergistic effect when using Aztre-
onam in combination with CZA against MDR isolates of P. 
aeruginosa; however, none of these isolates produced MBL.

Approved by the US Food and Drug Administration 
(FDA) in 2019 for the treatment of complicated urinary tract 
infections, nosocomial bacterial pneumonia, and ventilator-
associated pneumonia, Cefiderocol, an injectable sidero-
phore from the cephalosporin group, has been shown to be 
more stable to hydrolysis by β-lactamases, including ESBLs, 
KPCs, NDM, IMP, and VIM, when compared to Ceftazi-
dime and Meropenem [99].
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However, a UK study revealed an alarming rate of resist-
ance between P. aeruginosa NDM and IMP-positive isolates 
with MICs greater than 128 mg/L [100]. Other study car-
ried out in continental Europe did not report resistance to 
cyfederocol in P. aeruginosa NDM, VIM, IMP, and GES-
positive isolates [99].

Conclusion

Bacterial resistance is a serious problem for the pharmaceu-
tical industry, the scientific community, as well as the com-
munity at large, which will persist beyond the COVID-19 
crisis. Epidemics caused by these strains represent one of the 
main problems that will be faced worldwide in the coming 
decades. In this review, we provide a perspective on the cur-
rent scenario of important epidemic strains, describe their 
scenario of dissemination, discuss some resistance mecha-
nisms, and finally, address some of the therapeutic options 
currently implemented.

It is difficult to predict the future situation of antimicro-
bial resistance, particularly in developing countries, but 
without raising awareness, and short-term and long-term 
global, regional and local measures in infection control, 
surveillance, and diagnosis, we will likely not be able to 
slow the spread of MDRs microorganisms. Implementa-
tion of interventions aimed at a more critical outpatient 
prescription of antibiotics should be encouraged, reducing 
risks to human, animal, and environmental health. Compara-
tive genomic analysis of clinical pathogens before and after 
the current pandemic may elucidate different mechanisms 
related to the acquisition of circulating resistance genes.

The discovery of new antibiotics has become a neces-
sity to mitigate antimicrobial resistance against existing 
antimicrobials. However, these microorganisms are highly 
adaptable and rapidly evolve in the face of different and new 
antimicrobial therapies. Thus, we cannot resort to the idea 
that new antibiotics are sufficient to control these patho-
gens. These data only reinforce the importance of continuous 
epidemiological surveillance aiming at caution in the clini-
cal application of these antimicrobials in order to preserve 
their activity in the treatment of more serious infections. In 
addition, techniques for removing antibiotic residues and 
pathogens from the environment/hospital are also necessary.
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