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A B S T R A C T

Background: In healthy articular cartilage, chondrocytes are found along arcades of collagen fibers as Single 
Strings. With onset of cartilage degeneration this pattern changes to Double Strings. In the course of osteoar-
thritis Small Clusters, and finally Big Clusters form. In highly degenerated articular cartilage, another poorly 
understood pattern is found where chondrocyte morphology differs considerably, and the distribution of cells is 
diffuse. Progression of osteoarthritis is accompanied by key processes such as chondrocyte proliferation, 
apoptosis, hypertrophic differentiation, inflammation, and angiogenesis. The aim of this exploratory study was to 
identify biomarkers for these processes in the context of spatial cellular organizational changes in articular 
cartilage.
Methods: Cartilage explants (n = 166 patients) were sorted according to their predominant cellular pattern. 
Quantitative or semi-quantitative analysis of 39 biomarkers were performed by multiplex assay (31) or ELISA 
(8), and qualitative analysis on 12 immunohistochemical markers.
Results: Hypertrophic differentiation (e.g. type-X collagen, osteopontin, osteocalcin and interleukin-6) and 
angiogenesis were associated with changes in chondrocyte organisation. First changes take place already at the 
transition from Single Strings to Double Strings. Drastic changes in the appearance of numerous biomarkers are 
found at the transition from Big Clusters to Diffuse.
Conclusion: Key processes in osteoarthritis and their biomarkers seem to depend on the spatial distribution of 
chondrocytes in articular cartilage. Abrupt changes in biomarker occurrence were observed between Big Clusters 
and Diffuse insinuating that the Diffuse pattern is composed of a different cell population or at least a different 
form of chondrocyte morphology.
The Translational Potential of this Article: In situ identification of the different spatial chondrocyte patterns by 
fluorescence microscopy has already been established in the recent past. Analysing human in-situ cartilage 
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explants rather than isolated OA chondrocytes closes the gap between in vitro and in vivo studies and as such, 
stretches a big step towards translation of the observed findings. The direct association between tissue biomarker 
profile and cellular arrangements representing different states of OA sheds new light on the molecular and 
cellular physiopathology, especially in the context of larger processes such as angiogenesis, cellular proliferation, 
differentiation, and apoptosis. This also opens an interesting perspective for future investigation of such bio-
markers and processes in clinical studies.

1. Introduction

Several key processes have been defined as being characteristic for 
osteoarthritis (OA), such as cell proliferation [1], apoptosis [2] and 
differentiation of chondrocytes [3,4], as well as inflammation [5] and 
angiogenesis [6]. These processes have usually been evaluated as a 
function of radiographic [7] or macroscopic [8] degeneration of carti-
lage or based on histologic grading taking into account the wear from 
the cartilage surface [9]. Thus, the inferences drawn from such studies 
are based on aspects like matrix degeneration or even subchondral bone 
modelling as an indirect phenomenon of OA. Recently, a model has been 
proposed that allows the grading of local cartilage degeneration based 
on cellular spatial organisation [10,11], which is a parameter that 
directly addresses the living unit of the cartilage: the chondrocytes. In 
the femoral condyle, in healthy tissue, chondrocytes are organised as 
Single Strings (SS). With the onset of OA, a change in the cellular pattern 
takes place and initially Double Strings (DS) form, followed by Small 
Clusters (SC), and finally Big Clusters (BC). In end-stage OA, another 
little understood pattern is described in which the cells do not arrange 
themselves in any specific way (Diffuse - DIF). These patterns appear to 
be arranged in a concentric way around cartilage lesions [12]. Spatial 
chondrocyte organisation as an image-based biomarker has already 
been shown to strongly correlate with pericellular matrix degradation 
[13,14] and cartilage elasticity [15-17].

During OA, the morphology of chondrocytes also changes: In SC, but 
especially in BC, the chondrocytes become larger and appear vesicular, 
which is described as terminal hypertrophic differentiation [18]. This 
morphological phenomenon is considered a change in phenotype, which 
is also characterised by altered protein expression: an increased pro-
duction could, for example, be shown for type X collagen [19], osteo-
calcin, and osteopontin [20], which can all be triggered by e.g., 
interleukin 6 (IL6) through phosphoinositide 3-kinase/serine/threoni-
ne-protein kinase (PI3K/AKT) signalling [21,22]. The exact signifi-
cance and implication of this terminal hypertrophic differentiation has 
not yet been conclusively clarified. Van der Kraan et al. suggested a 
connection to the hypertrophic chondrocyte phenotype as it is described 
for endochondral ossification [23]. Such an altered phenotype and 
synthesis of proteins contribute to the imbalance of cartilage homeo-
stasis and ultimately cartilage degeneration. Changes in spatial organi-
sation of chondrocytes are an image-morphological correlate of cartilage 
degeneration at the microscopic level following a defined chronology 
from SS to DIF [24]. We hypothesised that the presence of proteins 
associated with hypertrophic chondrocyte differentiation is closely 
connected to changes in spatial chondrocyte organisation in degener-
ating cartilage (Hypothesis I).

Angiogenesis in the form of blood vessels sprouting into the cartilage 
from the subchondral bone is another key feature of OA [25]. Nerve 
fibres accompanying these blood vessels are one cause of growing pain 
in the course of the disease [26]. VEGF is a prominent angiogenesis 
factor that can trigger such processes, and it was the first biomarker 
discovered in this context [27]. Other angiogenic factors, such as FGF1 
and angiopoietin 2, have been poorly studied in osteoarthritic cartilage. 
We hypothesised that the presence of such biomarkers of angiogenesis 
also changes as the spatial chondrocyte spatial patterns change (Hy-
pothesis II).

Rolauffs et al. described lesion-associated surface aggregations in 
cartilage taken near a grade 2 focal lesion [24] that did not match any 

previously reported organisational patterns [28]. The authors described 
these patterns as "unorganised" and "diffuse" [14]. To date, little infor-
mation exists on this pattern; it is unclear whether it occurs as the end 
stage of a linear progression during cartilage degeneration [24] or if it is 
the result of immune cell infiltration due to a focal defect [29]. This 
pattern category differs considerably from the other proposed spatial 
patterns in at least two aspects: Firstly, the cells are not allocated to one 
specific pattern, but scattered diffusely in the tissue [24]. Secondly, their 
morphologic appearance is no longer smooth elliptical, spheroidal, and 
sometimes swollen [30], but instead they are oblong with long cellular 
extensions, very similar to fibroblasts [31,32]. This chondrocyte 
phenotype is described in the literature as dedifferentiated and fibro-
blastic and it is accompanied by a changed protein expression as well 
(reviewed by Ref. [4]). Because of these differences, we speculated that 
DIF does not fit into the notion of a linear progression from SS to BC and 
then DIF. We, therefore, expected major differences also to arise at the 
biomarker level, especially between BC and DIF (Hypothesis III).

2. Materials and methods

2.1. Cartilage harvest

Tissue was obtained after informed consent from the distal femoral 
cuts of the femoral condyles from patients undergoing total knee 
arthroplasty for end-stage OA of the knee in the Department of Ortho-
pedic Surgery of the University Hospital of Tuebingen, Germany, and in 
the Winghofer Medicum clinic, Rottenburg a.N. Germany. Full depart-
mental, institutional and ethical committee approval were obtained 
before commencement of the study (project number 674/2016BO2). 
Articular cartilage samples from patients with degenerative OA were 
used. Samples from patients with any other inflammatory pathology (e. 
g., rheumatoid arthritis) or with posttraumatic OA after fracture were 
excluded. Samples were collected from a total of 164 patients, with 96 
women (median age 66 years (range 44–87)) and 68 men (median age 
64 years (range 51–82)) (for sex-age distribution and frequency, see 
Fig. S1). In addition, healthy cartilage was collected from two young 
patients (aged 14 and 16) who received total knee resection due to a 
malignant tumour.

2.2. Histological evaluation of cartilage

Following intraoperative resection, the tissue was transported and 
stored at 4 ◦C in serum-free Dulbecco’s Modified Eagle’s Medium 
(Gibco, Life Technologies, Darmstadt, Germany) with 2 % (v/v) 
penicillin-streptomycin and 1.2 % (v/v) amphotericin B. For top-down 
view analysis, tangential sections were performed using a Leica 
CM3050S Cryotome (Leica Microsystems GmbH, Wetzlar, Germany) 
directly on the resected tissue from the femoral condyle at 35 μm 
thickness parallel to the articular surface.

After fixation of these sections with 4 % (v/v) formalin for 30 min at 
room temperature, they were pre-treated with 0.2 % (w/v) collagenase 
A (Sigma–Aldrich, Taufkirchen, Germany) and 0.1 % (w/v) hyaluroni-
dase (Sigma–Aldrich) in phosphate-buffered saline (PBS) for 1 h at 
37 ◦C, followed by three washing steps with PBS. To reduce unspecific 
antibody binding, sections were blocked for 30 min in 5 % (w/v) bovine 
serum albumin and 0.3 % (v/v) Triton X-100 in PBS. This was followed 
by incubation with the primary antibodies at a dilution of 1:100 in 2.5 % 
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(w/v) bovine serum albumin-PBS at 4 ◦C over-night: VEGF (rabbit anti- 
VEGF, P802; Thermo Fisher Scientific, Waltham, MA, USA); PECAM1 
(mouse anti-PECAM-1, sc-F376764; Santa Cruz Biotechnology Inc., 
Dallas, TX, USA); caspase 3 (rabbit anti-caspase-3, 9664S; Cell Signaling 
Technology, Danvers, MA, USA); caspase 8 (rabbit anti-caspase-8, 
9496T; Cell Signaling Technology); P53 (rabbit anti-P53, 9282T; Cell 
Signaling Technology), IL6 (rabbit anti-IL-6, GTX110527; GeneTex, 
Irvine, CA, USA), IL1β (rabbit anti-IL-1β, ab-2105; Abcam, Cambridge, 
UK), DKK1 (rabbit anti-DKK-1, ET-1610-63; HuaBio, Woburn, MA, 
USA); FGF23 (rabbit anti-FGF-23, orb128058; Biorbyt, Cambridge, UK); 

osteocalcin (rabbit anti-osteocalcin, ab-93876; Abcam); osteopontin 
(mouse anti-osteopontin, ab-69498; Abcam); type X collagen (rabbit 
anti-collagen type X, ab-58632; Abcam). All antibodies were used as 
specified by the manufacturers. Sections were rinsed with PBS and 
incubated with secondary antibodies at a dilution of 1:100 (Alexa fluor 
594 goat anti-mouse IgG, ab-150116; Abcam, or Alexa fluor 594 goat 
anti-rabbit IgG, ab-150080; Abcam) for 2 h in complete darkness. Nuclei 
of the cells were stained with 4’,6-diamino-2-phenyindole (DAPI) at a 
dilution of 1:1000. Fluorescent staining was visualised with a Carl Zeiss 
Axiophot fluorescence microscope (Carl Zeiss Microscopy, Jena, 

Figure 1. Flowchart of cartilage sample preparation for the quantitative biochemical analyses. Femur condyles of 164 patients undergoing total knee arthroplasty 
and of 2 young patients undergoing distal femur resection were collected during surgery, stored in Dulbecco’s Modified Eagle’s Medium (DMEM) and timely cut into 
0.3 × 4 mm discs (A). Cartilage discs were then sorted by their predominant spatial cellular pattern (Single Strings (SS); Double Strings (DS), Small Clusters (SC), Big 
Clusters (BC) and Diffuse (DIF)) under a fluorescence microscope (B) and pooled accordingly (C). After snap-freezing, samples were stored at − 80 ◦C. Pooled discs 
were homogenised in liquid nitrogen using a pestle and mortar. Proteins were then isolated and total protein content determined by means of a Bradford assay (D). 
Using this protein lysate, Multiplex Assays and ELISAs were then performed in duplicates (E).
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Germany).

2.3. Biochemical quantification of biomarkers: multiplex assays and 
enzyme-linked immunosorbent assay (ELISA)

For multiplex assays, discs of articular cartilage from 41 patients and 
for the ELISAs discs from 125 patients (approximately 50 discs per 
cellular pattern category (SS, DS, SC, BC, DIF) per experiment (4 
Multiplex Assays, 8 ELISAs), in total approximately 3000 discs)) were 
cut, sorted, and assigned to their predominant chondrocyte spatial 
pattern as previously described [17] (Fig. 1A–C). First, the cartilage was 
dissected from the bone using a scalpel no. 21 (Feather Safety Razor Co. 
Ltd, Osaka, Japan). From these large cartilage pieces, discs were then 
generated with a 4 mm biopsy punch (pfm medical ag, Cologne, Ger-
many). Afterwards, using a custom-fabricated plate with 0,3 × 4 mm 
notches, the 4 mm cartilage discs were cut in the horizontal plane (i.e., 
in parallel to the superficial zone) to obtain round discs of 300 μm in 
thickness and 4 mm in diameter (Fig. 1A). These discs were then stained 
with 4 μM calcein-AM fluorescent dye (Cayman Chemical, Ann Arbor, 
MI, USA) in Dulbecco’s modified Eagle’s medium for 30 min at 37 ◦C. 
Calcein-stained explants were then visually classified and grouped ac-
cording to their predominant cellular spatial pattern under a Leica DM 
IBRE fluorescence microscope (Leica Microsystems GmbH) (Fig. 1B). 
Pooled discs were snap-frozen with liquid nitrogen and stored at − 80 ◦C 
until further use (Fig. 1C,Table S1). These frozen and grouped discs were 
then subjected to protein extraction through crushing them with a pestle 
and mortar under liquid nitrogen and then placing them on ice for 15 
min in a homogenisation buffer (20 mM Tris–HCl pH 7.5, 150 mM NaCl, 
1 mM Na2EDTA, 1 mM EGTA, 1 % Triton, 2.5 mM sodium pyrophos-
phate, 1 mM beta-glycerophosphate, 1 mM Na3VO4, 1 μg/ml leupeptin 
and phosphate-buffered saline 1:10; Cell Signaling Technology) added 
with protease inhibitors 1:200 (100 mM AEBSF, 80 μM Aprotinin, 5 mM 
Bestatin, 1.5 mM E− 64, 2 mM Leupeptin and 1 mM Pepstatin A; Merck 
KGaA). The tissue homogenate was sonicated in an ultrasonic bath for 
20 s and then placed on ice for 30 s. This step was repeated four times. 
Extracted proteins were subjected to centrifugation at 15,000g for 15 
min at 4 ◦C, after which collection of the supernatant containing the 
protein phase followed (Fig. 1D). The total protein concentration across 
samples was determined and normalised using the Bradford protein 
assay (Bio-Rad Laboratories, Richmond, CA, USA). Multiplex assays and 
sandwich ELISAs were performed for each distinct cellular pattern 
(Fig. 1E). For each biomarker measured by multiplex assay (Merck 
KGaA, Darmstadt, Germany), a total of 33 μg of protein was used 
following the manufacturer’s protocol. A Bio-Plex 200 System (Bio-Rad 
Laboratories) was used for plate read-out. The amount of total protein 
used for the ELISAs was as follows: 10 μg for osteocalcin (Abcam); 20 μg 
for type X collagen (Elabscience, Huston, TX, USA); 40 μg VEGF (Thermo 
Fisher Scientific); 150 μg for DKK1 (Thermo Fisher Scientific), PECAM1 
(Abcam), and IL6 (Thermo Fisher Scientific); 200 μg for FGF23 (Thermo 
Fisher Scientific) and IL1β (Abcam); 250 μg for osteopontin (Abcam, 
Cambridge, UK). Absorbance was measured with an El 800 reader 
(BioTek Instruments GmbH, Bad Friedrichshall, Germany).

2.4. Live/dead cell assay

Discs were prepared as described above and then stained simulta-
neously with 4 μM calcein-AM fluorescent dye (Cayman chemical) for 
living cells and 2 μM propidium iodide (Thermo Fisher Scientific) for 
dead cells in Dulbecco’s modified Eagle’s medium for 30 min at 37 ◦C in 
the dark. Fluorescent staining was visualised with a Carl Zeiss Observer 
Z1 fluorescence microscope (Carl Zeiss Microscopy) equipped with 
MosaiX image acquisition software (Carl Zeiss Microscopy). Analysis 
was performed by counting out living and dead cells in regions of 
250,000 μm2 from acquired mosaic images of the different spatial pat-
terns. Selection of region size was based on a previous publication [33]. 
For each pattern, 5 mosaic images from different patients were counted.

2.5. Statistical analysis

Values for both multiplex assays and ELISAs are presented as the 
arithmetic mean of two measurements (duplicate) of one pooled sample, 
given with the coefficient of variation as a measure of dispersion. Their 
graphic illustration is displayed as bar diagrams. For the live dead assay, 
a non-parametric analysis in the form of the median (range)/boxplot 
was chosen because corresponding data was not normally distributed. 
Experimental data for multiplex assays were acquired and calculated by 
Bio-Plex Manager 4.1.1 and by Microsoft Excel Version 2110 for ELISAs. 
Graphical illustrations (bar diagrams and boxplots) were plotted with 
GraphPad Prism 8.0.1.

3. Results

To quantify protein content in the tissue according to the locally 
predominant spatial chondrocyte pattern, multiplex assays and ELISAs 
were performed (Table S2 and Fig. S1). The localisation of these markers 
within the tissue was visualised by immunohistochemical analyses 
(Fig. 2 and Fig. S2).

Type X collagen, osteocalcin, and IL6 as biomarkers for hypertrophic 
chondrocyte differentiation showed their maximum protein levels in BC 
(Fig. 2C–E, and Fig. 3A, B, D). Osteopontin presented high levels from SC 
to DIF (Fig. 3C). Also, interleukin 8, interleukin 1β, TNF-α, and DKK1 
had their highest values in BC or DIF (Table S2). The indirectly IL6- 
inducing leptin already had its maximum in SC, thus slightly preced-
ing the inflammation maximum. Follistatin, HGF, and the cell- 
differentiation marker HBEGF presented high values in supposedly 
healthy SS and in the end-stage degeneration pattern DIF (Table S2).

From SS to DIF, a continuous increase in the pro-apoptotic factors 
JNK, BAD, and caspase 9 (Fig. 4A–C) was observed, the strongest in-
crease thereby shown by BAD with a factor of around 15. Also, P53 and 
TRAIL had their highest values in DIF (Table S2). The anti-apoptotic 
biomarkers AKT (Fig. 4D) and BCL2 (Table S2) presented their max-
ima in BC and SC, respectively and decreased again in DIF. Looking at 
the fraction of dead cells, the live/dead cell assay indeed showed a 
relevant increase from DS with a median of 12 % to BC with a median 
dead fraction of 39 % (Fig. 4E).

Concerning angiogenesis, the pro-angiogenetic biomarkers VEGF 
and FGF1 (Fig. 5A and B, Table S2) increased from SS to BC while the 
anti-angiogenic biomarker angiopoietin 2 decreased accordingly 
(Fig. 5C). The angiogenic endoglin showed its maximum in DIF, and no 
relevant changes were observed for FGF2, PECAM1, and endothelin 1 
(Table S2).

Immunomodulatory proteins were generally at a very low level with, 
however, a sharp increase at the transition from BC to DIF for PD1, 
TIM3, and TLR2 (Fig. 6). A remarkable change in biomarker levels was 
found from BC to DIF, where protein content either abruptly increased 
(TNF-α, follistatin, HGF, angiopoietin 2, PD1, TIM3, TLR2) or decreased 
(osteocalcin, interleukin 1β, FGF1) (Table S2).

4. Discussion

Assessing a wide range of proteins relevant in OA, we wanted to 
describe the dimensions of chondrocyte proliferation [1], apoptosis [2], 
differentiation [3,4], inflammation [5], and angiogenesis [25] in the 
context of local chondrocyte spatial organisation.

We hypothesised, that hypertrophic chondrocyte differentiation ag-
gravates in the course of pattern changes from SS to BC. It had already 
been described that hypertrophic chondrocytes in OA cartilage occur 
particularly in SC and in BC, i.e., highly degenerated cartilage [30,31]. 
Properties of hypertrophic chondrocytes in osteoarthritic articular 
cartilage are thought to be similar to those in cartilage during endo-
chondral ossification [23]. This step is characterised by destruction of 
the surrounding cartilage and deposition of calcium in the sense of 
creating a foundation for bone formation [23]. The presence of a 
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hypertrophic phenotype can be recognised by the expression of proteins 
such as type X collagen, osteopontin, osteocalcin, and IL6. Type X 
collagen is predominantly produced by hypertrophic chondrocytes [34] 
and marks a structural change in the extracellular matrix (ECM) of 
articular cartilage, which is usually dominated by the presence of type II 
collagen [19,35]. Our results show a clear association of the amount of 
type X collagen with the predominating spatial chondrocyte pattern, 
with a high increase from DS to BC. Other markers for hypertrophic 
differentiation are osteopontin and osteocalcin, which are usually part 
of the little non-collagen organic ECM in bone. Osteopontin acts as a 
bridge between osteoblasts and the bone matrix. It is not only syn-
thesised by bone cells but also by chondrocytes, in particular by hy-
pertrophic chondrocytes [20]. It has been shown that osteopontin has 
inhibitory effects on matrix mineralisation in bone by activating osteo-
clasts and binding of calcium [36]. It has also been shown to be (possibly 
reactively) upregulated at sites of pathological calcification of soft tissue 
[37]. Osteocalcin in contrast promotes bone mineralisation. It was 
initially thought to be expressed by osteoblasts and odontoblasts only, 
but it is now established that it is also synthesised by hypertrophic 
chondrocytes [38,39]. Increased osteopontin and osteocalcin have even 
been suggested to indicate chondrocyte-to-osteoblast transformation in 
OA [40]. Our own results show indeed an increase in levels of osteo-
pontin and osteocalcin as early as at the transition from SS to DS, indi-
cating that a transformation towards the hypertrophic phenotype can be 
observed at already an early stage of OA. High amounts of both proteins 
are found in SC and BC where chondrocyte hypertrophy supposedly 
reaches its maximum, thus possibly leading to the cartilage-bone 
remodelling characteristic for OA or even post-hypertrophic osteo-
blast-like differentiation. Part of the increase in protein levels might be 
attributed to an increase in total cell number, thus not directly 

insinuating hypertrophic differentiation. Levels for osteocalcin, for 
example, increase however by a factor of 10 and drop again later in the 
DIF (Fig. 3), where total cell numbers are even higher. Also, collagen 
type X can clearly be noted extracellularly in SC and BC - a feature that 
cannot be observed in SS or DS (Fig. 1). Indeed, cell clusters have been 
identified as a distinctive histologic degenerative feature not only of OA 
cartilage [41], but also of intervertebral disc [42,43], meniscus [44], 
tendons [45], and cricoarytenoid cartilage [46]. Our findings are 
consistent with previous research that found that OA clusters present 
with a large number of proteins that are not found in normal chon-
drocytes [41,47-50].

IL6 was shown to activate PI3K/AKT [22]. PI3K/AKT signalling is 
crucial to regulate hypertrophic differentiation and proliferation of 
chondrocytes during endochondral ossification. Further, inhibition of 
PI3K/AKT leads to decreased chondrocyte hypertrophy and prolifera-
tion, resulting in reduced bone growth [51]. In both our qualitative and 
quantitative analysis, we found low levels of IL6 in SS, DS, and SC, but a 
strong increase from SC to BC, where IL6 appeared to be also relevantly 
present extracellularly. Taken together, all these observations strongly 
argue for a relevant hypertrophic differentiation in SC and, especially, 
BC (Hypothesis I). First changes already seem to take place at the 
transition from SS to DS. Next to a change in phenotype through hy-
pertrophic differentiation, spatial pattern changes also seem to be 
associated with an increase in the number of cells [12,13] culminating in 
the formation of numerous BC [24]. In this context, the role of apoptosis 
has been discussed extensively in the past, and many, sometimes para-
doxical, results have been reported: Sandell et al. questioned prior 
published apoptosis rates of up to 51 % in OA cartilage. These values 
would be unrealistic as in such scenarios the cartilage would entirely 
lose its synthesis and repair capacity. The authors suggested lower 

Figure 2. Signal increase in immunohistochemical analyses of inflammation and angiogenesis markers with an increasingly pathological spatial cellular pattern. 
Images are shown in their physiopathological order of cellular spatial organisation. A1-F1, Single Strings; A2-F2, Double Strings; A3-F3, Small Clusters; A4-F4, Big 
Clusters. For the apoptosis marker caspase 8 (B1-B4), no relevant signal was detected by immunolabelling. Biomarkers of hypertrophic chondrocyte differentiation 
such as type X collagen (C1-C4), osteocalcin (D1-D4) and interleukin 6 (E1-E4) show a clear increase in signal intensity from Single Strings to Big Clusters, especially 
on the extracellular side. This also applies to the angiogenesis marker PECAM1 (F1-F4). Scale bars represent 20 μm. Nuclei are stained in blue (DAPI), the stained 
biomarkers are visualised in white. Abbreviations: DAPI, 4′,6-diamidino-2-phenylindole, PECAM1, platelet endothelial cell adhesion molecule. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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apoptosis rates of around 0.1 % (unpublished data) [52].
We hence analysed also markers relevant for apoptosis and the rate 

of dead cells in the context of spatial chondrocyte organisation. Besides 
AKT, we additionally measured other key regulators of cellular prolif-
eration and apoptosis. The levels of the pro-apoptotic markers JNK, 
BAD, and Caspase 9 increased from SS to DIF, while the anti-apoptotic 
marker AKT increased only from SS to BC. AKT is described as a 
powerful counter regulator of pro-apoptotic signals, particularly of pro- 
apoptotic members of the Bcl-2 family (e.g., BAD) [53]. Decreasing 
anti-apoptotic signalling by AKT from BC to DIF suggests that 
pro-apoptotic processes take over with DIF. In line with that, the per-
centage of dead cells in our live/dead assays was only around 10 % in SS 
and increased to almost 40 % in BC. While absolute numbers need to be 
handled with care due to the sensitivity of chondrocytes to undergo 
apoptosis in the process of tissue preparation, the increase in the rate of 
dead cells in BC appears highly consistent with the results from the 
protein level measurements.

Interestingly, in endochondral ossification, hypertrophic chon-
drocytes undergo apoptosis after some time and are replaced by osteo-
blasts [54]. This might explain why AKT reaches its highest levels in BC 
but decreases again with DIF. There is indeed a phenotypic resemblance 
of hypertrophic chondrocytes with those during endochondral 
ossification.

One common feature of OA and endochondral ossification is the 
ingrowth of vessels. Nerve fibres growing along blood vessels into the 
osteoarthritic cartilage from the subchondral bone are a reason for 
growing pain. For this vessel sprouting into cartilage, molecular signals 
must reach the subchondral bone [55]. We hypothesised that bio-
markers of angiogenesis available in cartilage also follow specific 
changes along with the changes in chondrocyte spatial organisation in 
OA. To this end, we measured the presence of VEGF, FGF1 and Angio-
poietin 2. VEGF is considered one of the main drivers of angiogenesis in 
OA cartilage [27]. We found VEGF to moderately increase from SS to BC. 
FGF1 as a ubiquitous growth factor has various effects on chondrocytes 
and cartilage homeostasis. It is additionally described as an inducer of 
endothelial cell proliferation and, therefore, angiogenesis [56,57]. FGF1 
levels also steadily increased from SS to BC. The angiogenesis factor 
PECAM1 also showed increased levels in chondrocyte patterns associ-
ated with higher tissue degradation. Angiopoietin 2, in contrast, inhibits 
the growth and survival of endothelial cells by antagonising the 
Tie-2-receptor [58]. In our study, Angiopoietin 2 steadily decreased 
from SS to BC. Together these data indicate increasing induction of 
angiogenesis from SS to BC, thus supporting our Hypothesis II.

All these results appear conclusive in the context of a logical pattern 
change from SS to BC. Since cells in the DIF show a different cell 
morphology and pattern allocation, we hypothesised to see major 

Figure 3. Markers for hypertrophic differentiation increase from Single Strings to Big Clusters. Biochemical quantification of four biomarkers of hypertrophic 
differentiation (type X collagen, osteocalcin, osteopontin and interleukin 6) based on the locally dominant chondrocyte pattern. Bar diagrams showing the protein 
content as measured by ELISA (type X collagen, osteocalcin and osteopontin) (A–C) or Multiplex Assay (interleukin 6) (D). Bars represent the arithmetic mean (X) of 
two measurements (duplicates) of one pooled sample given in picograms per millilitre (pg/ml). For type X collagen (A), osteocalcin (B), osteopontin (C) and 
interleukin 6 (D), an overall increase from Single Strings to Big Clusters can be observed with an extremely prominent increase in osteocalcin. While the quantity of 
osteocalcin and interleukin 6 decreases from Big Clusters to Diffuse Pattern, osteopontin maintains high values from Small Clusters to the Diffuse Pattern. For type X 
collagen, no measurements (n. m.) were performed on the Diffuse Pattern. Abbreviations: ELISA, enzyme-linked immunosorbent assay; SS, Single Strings; DS, Double 
Strings; SC, Small Clusters; BC, Big Clusters; DIF, Diffuse Pattern.
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differences at the transition from BC to DIF (Hypothesis III). And indeed, 
total protein levels either abruptly increased (TNF-α, follistatin, HGF, 
angiopoietin 2, PD1, TIM3, TLR2) or decreased (osteocalcin, interleukin 
1β, FGF1) with mostly an inversion of the prior tendency of the protein 

content to decrease or increase. While tissue with BC thus seems to 
match the described expression profile of hypertrophic differentiation 
(e.g. high levels of osteocalcin and IL6), this profile is very different in 
tissue with DIF. A large difference in biomarker levels between BC and 

Figure 4. Apoptotic activity increases along with the spatial pattern changes in osteoarthritis. Semiquantitative biochemical analysis of biomarkers of apoptosis 
(JNK, BAD, Caspase 9, and AKT) (A–D) and live/dead assay (E) based on the locally dominant chondrocyte pattern. Bar diagrams showing the protein content 
represented in a semiquantitative fashion by median fluorescence intensity (MFI) as measured by Multiplex Assay with homogenised cartilage (A–D). Bars represent 
the arithmetic mean (X) of two measurements (duplicates) of one pooled sample reported as the MFI. From Single Strings to the Diffuse Pattern, an increase in the 
pro-apoptotic markers JNK (A), BAD (B) and Caspase 9 (C) is displayed. A similar tendency can be seen in anti-apoptotic marker AKT (D) where values slightly 
decrease again from Big Clusters to Diffuse Pattern. (E) Boxplot showing a proportional increase of dead cells from Single Strings to Big Clusters. Live/dead assay was 
performed using propidium iodide (dead cells) and calcein (living cells) staining. Abbreviations: JNK, JUN N-terminal kinase; BAD, BCL2 associated agonist of cell 
death; AKT, Serine/threonine-protein kinase; SS, Single Strings; DS, Double Strings; SC, Small Clusters; BC, Big Clusters; DIF, Diffuse Pattern.
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DIF also applies for markers for angiogenesis (FGF1, Angiopoietin 2). 
These findings support our speculation that DIF does not fit into the 
notion of a linear progression from SS to BC. The biomarker profile of 
tissue with DIF rather matches the expression profile of a dediffer-
entiated fibroblastic phenotype that can be identified by other markers: 
TNF-α promotes chondrocyte dedifferentiation [4] and Endoglin was 
shown to be increased in the fibroblastic phenotype [59]. Both markers 
were found to be highest in DIF in our data. Although extensive insights 
in immune response on cartilage lesions have been gained in the past 
[29], it remains unclear whether actual infiltration of immunomodula-
tory cells in articular cartilage occurs. High presence of immune 
checkpoints (PD1, TIM3, TLR2) and inflammatory factors (e.g. TNF-α) as 
well as remarkable changes in cellular morphology on DIF might support 
the latter fact. Especially because PD1, TIM3 and TLR2 are surface re-
ceptors that are known to be exclusively expressed on immune cells. 
Substantial migration or movement of cells trough the tight ECM has not 
been described, even though an anchoring of thin cellular extensions 

would at least be conceivable for superficial lesions. However, previous 
research stated almost no presence of immune cells in articular cartilage 
[60].

In addition, IL1β can also promote chondrocyte dedifferentiation and 
is already at a maximum at BC [61]. This fibroblastic chondrocyte 
phenotype appears to be a sign of a fibrocartilaginous state [18] which 
marks a transition from cartilage to scar tissue. Increased chondrocyte 
dedifferentiation could explain the low stimulus of angiogenesis of FGF1 
and Angiopoietin 2 on DIF, as in healing wounds, vascularisation in-
creases dramatically in the beginning, but decreases again to a physio-
logical level when the scar tissue is formed [62]. This different cell 
profile raises the question of what role the diffuse distribution of 
fibroblastic chondrocytes plays in the context of osteoarthritis and in 
what order hypertrophic and fibroblastic chondrocytes are formed. Does 
this phenotype still form as a pathophysiological follow-up after BC 
derived from the hypertrophic chondrocytes or do we see the presence of 
a different cell population here? Current literature suggests that 

Figure 5. Angiogenesis increases from Single Strings to Big Clusters. Biochemical quantification of three prominent biomarkers of angiogenesis (VEGF, FGF1, and 
angiopoietin 2) was performed according to the locally dominant chondrocyte pattern. Bar diagrams showing the protein content as measured by ELISA (VEGF) (A) 
or Multiplex Assay (FGF1 and angiopoietin 2) (B, C) on homogenised cartilage. Bars represent the arithmetic mean (X) of two measurements (duplicates) of one 
pooled sample given in picograms per millilitre (pg/ml). From Single Strings to Big Clusters, an increase in the pro-angiogenetic markers VEGF (A) and FGF1 (B) is 
shown. In accordance, a clear decrease from Single Strings to Big Clusters in the anti-angiogenetic factor angiopoietin 2 (C) can be observed. In both markers, FGF1 
and angiopoietin 2, an inversion in presence can be seen from Big Clusters to Diffuse Pattern. For VEGF, no measurements (n. m.) were performed on the Diffuse 
Pattern. Abbreviations: VEGF, vascular endothelial growth factor; FGF1, fibroblast growth factor 1; ELISA, enzyme-linked immunosorbent assay; SS, Single Strings; 
DS, Double Strings; SC, Small Clusters; BC, Big Clusters; DIF, Diffuse Pattern.

Figure 6. Immune checkpoints are exceedingly increased with the Diffuse Pattern. Biochemical quantification of three immune checkpoints (PD1, TIM3 and TLR2) 
analysed according to the locally dominant chondrocyte pattern. Bar diagrams showing the protein content as measured by Multiplex Assay (PD1, TIM3, and TLR2) 
(A, B, C) on homogenised cartilage. Bars represent the arithmetic mean (X) of two measurements (duplicates) of one pooled sample given in picograms per millilitre 
(pg/ml). PD1 (A), TIM3 (B), and TLR2 (C) show a sharp increase at the transition from Big Clusters to the Diffuse Pattern while values from Single Strings to Big 
Clusters are generally at a very low level. Values under the detection limit of the Multiplex Assay are labelled as “out of range, below” (OOR <). Abbreviations: PD1, 
programmed cell death protein 1; TIM3, T-cell immunoglobulin and mucin-domain containing-3; TLR2, Toll-like receptor 2; SS, Single Strings; DS, Double Strings; 
SC, Small Clusters; BC, Big Clusters; DIF, Diffuse Pattern.
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different phenotypes coexist and that fibroblastic chondrocytes repre-
sent a dedifferentiation back to a primitive stem cell phenotype [4]. 
Besides the dedifferentiated fibroblastic phenotype and the terminally 
differentiated hypertrophic phenotype, recent findings suggested even 
the presence of a total of 7 molecularly defined populations of chon-
drocytes by single-cell RNA-sequence analysis [63].

Apart from the biomarkers that were presented in this study, there 
are numerous other factors having been described to play a role in the 
pathophysiological processes of osteoarthritis. Some of these factors or 
their inhibitors have already been tested in clinical trials as summarised 
by Zhang et al. [64]. Of high interest might be FGF-18 and its human 
recombinant sprifermin which was reported to increase cartilage 
thickness of the femorotibial joint in humans after intraarticular injec-
tion with an acceptable safety profile [65]. TGF-β, as another key 
regulator in differentiation processes, plays a dual role: on the one hand 
it positively affects articular cartilage by maintaining the differentiated 
chondrocyte phenotype and also stimulating chondrogenesis of precur-
sor cells in a healthy joint, on the other hand it acts as a promoter of 
synovial inflammation in OA joints [23]. Inhibition of TGF-β Type I 
receptor protected, however, against OA degeneration in an anterior 
cruciate ligament transection osteoarthritis mouse model [66]. In 
addition, TGF-β was described to play a crucial role in arthrofibrosis for 
which reason its inhibition is subject of several clinical trials [67]. 
Investigation of IL-1 demonstrates that seemingly obvious harmful ef-
fects on chondrocytes and cartilage in vitro do not necessarily reflect in 
vivo: clinical trials with intra-articular injection of IL-1 inhibitors on OA 
patients did not lead to clinical improvement [68,69]. IL-1β was shown 
to promote proliferation and disorganisation of chondrocytes in growth 
plates of rats [70]. Our results show the highest occurrence of IL-1β in BC 
where the chondrocyte count per cartilage volume is the highest [12].

From the exploratory data in this study, it would seem that the 
pathophysiological changes of the chondrodytes stretch from SS to BC. 
At the transition from BC to DIF, a seemingly new phenotype is present. 
Investigating various biomarkers on human in-situ explants allowed us 
to draw observations on associations between tissue biomarker profile 
and cellular arrangement. This approach closes the gap between in vitro 
and in vivo studies and as such, stretches a big step towards translation 
of the observed findings. The direct association between tissue 
biomarker profile and cellular arrangements representing different 
states of OA sheds new light on the molecular and cellular physiopa-
thology, especially in the context of larger processes such as angiogen-
esis, cellular proliferation, differentiation, and apoptosis. This also 
opens an interesting perspective for future investigation of such bio-
markers and processes in clinical studies. The technical requirements to 
carry out such studies are already available: Tschaikowsky et al., for 
example, were already able to identify the differenc chondrocyte pat-
terns by confocal laser-endomicroscopy [71], a technique that can be 
also carried out in the operation theatre. It should therefore be noted 
that next to insights on connections between macroscopic and micro-
scopic physiopathology, now the connection between microscopic and 
molecular physiopathology can be better understood.

4.1. Study limitations

The main strength of the present study is the fact, that data can be 
provided for specific chondrocyte patterns which can be considered as 
having also a specific metabolic state. The price for such a selective data 
generation creates at the same time the main limitation of the present 
study, which is the need for pooling of cartilage samples. Very strict 
sampling to create tissue batches composed of single cellular patterns 
made it impossible to measure, for example, biomarkers of individual 
patients because of the very limited sample volume. This problem is 
aggravated even more in the patterns of lower cartilage degeneration, 
especially the supposedly healthy SS. The reason lays at hand, since 
patients who undergo total knee arthroplasty are expected to have 
cartilage degeneration of higher degree. This results in a higher 

occurrence of BC and lower occurrence of SS in the collected specimens.
Moreover, during the microscopic pattern-based sorting of the 

cartilage discs, often several different patterns were present in one single 
disc, resulting in the discs being discarded. This, in many cases, resulted 
in only very few discs of 4 × 0.3 mm size (a very low sample volume) 
being available per patient per specific pattern which could be used for 
biomarker analyses by multiplex assay or ELISA.

As a result of the cartilage pooling, the actual sample size was one - 
with duplicate measurements such as to recognise possible experimental 
errors and to better interpret the reliability of the technique. For this 
reason of this sample size, no inferential statistics were performed, but 
rather descriptive analyses are presented. These descriptive analyses 
represent, however, an averaged value across dozens of patients. In a 
small number of cases, the coefficient of variation within the measured 
duplicates was above 1, which limits the accuracy of the results in these 
cases. It is conceivable that particle interferences during measurement 
occurred as a result of possible inhomogeneities of the minced tissue.

To improve the availability of discs containing SS and DS, we addi-
tionally harvested cartilage discs of two young patients (aged 14 and 16) 
who received total knee resection due to a malignant tumour. It has 
already been established in the literature that cartilage composed of SS 
should be considered as supposedly still microscopically healthy 
[72-74]. Differences within one patient between cartilage areas 
composed for example of SS and of BC by far exceed differences between 
different patients or healthy subjects. For this reason, we consider the 
chosen sample as not a perfect, but an acceptable reference.

As also in the supposedly healthy cartilage areas, that is SS, the 
persevering osteoarthritic condition of the joint will have affected the 
cellular expression profile. For this reason, more pathologic protein 
levels might have been measured in SS than would have been the case in 
truly healthy cartilage. Although the tissue was instantly processed, the 
technique of sorting the cartilage first before snap-freezing might have 
allowed the cells to modify their expression profile as a response to the 
trauma of sectioning. Despite these theoretical limitations, we still see 
clear changes in protein levels in identically processed cartilage samples 
in most investigated parameters encompassing the whole range from a 
continuous increase to sudden extreme rises or drops. These changes are 
also frequently clearly associated with changes in spatial patterns.

It must also be kept in mind that measuring proteins extracted 
directly from the native tissue does not allow a final statement about the 
origin of certain biomarkers. In addition to the actual cartilage, this 
leaves synovia, synovial fluid, and subchondral bone as a possible origin 
for measured biomarkers. Many of the measured proteins were, how-
ever, structural proteins of the ECM where this phenomenon should not 
be of relevance. Nevertheless, the obtained results do thus not display a 
causality but just an association of the observed processes. To the best of 
our knowledge, to date no other study has used such a broad protein 
analysis performed on in situ human cartilage explants generated from 
such a large patient cohort. The aspect on doing theses analyses on a 
pattern specific basis is completely new. We believe that the presented 
exploratory data allow for an averaged perspective on the present 
expression profile of the chondrocytes in the different spatial chon-
drocyte patterns present in the development and course of osteoarthritis.

5. Conclusions

The results of our study suggest that changes in spatial chondrocyte 
organisation are also associated with changes in chondrocyte differen-
tiation. Markers like type X collagen, osteopontin, osteocalcin, and its 
promoter IL6 showed their first relevant changes already at the transi-
tion from SS to DS. Until the formation of BC, the changes in chon-
drocyte differentiation are accompanied by increasing induction of 
angiogenesis. Drastic changes can be observed in the biomarker profile 
at the transition from BC to DIF. This abrupt marker change insinuates 
that it is either a different cell population responsible for this latter 
pattern or at least a different form of chondrocyte morphology.
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