Plasma gelsolin facilitates

interaction between β_2 glycoprotein I and $\alpha_5\beta_1$ integrin

Miyuki Bohgaki ^{a, b}, Masaki Matsumoto ^{c, d}, Tatsuya Atsumi ^b, Takeshi Kondo ^a, Shinsuke Yasuda ^b, Tetsuya Horita ^b, Keiichi I. Nakayama ^{c, d}, Fumihiko Okumura ^a, Shigetsugu Hatakeyama ^{a, *}, Takao Koike ^b

^a Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan ^b Department of Medicine II, Hokkaido University Graduate School of Medicine, Sapporo, Japan ^c Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan ^d CREST, Japan Science and Technology Agency (JST), Kawaguchi, Japan

Received: June 4, 2009; Accepted: October 6, 2009

Abstract

Antiphospholipid syndrome (APS) is characterized by thrombosis and the presence of antiphospholipid antibodies (aPL) that directly recognizes plasma β_2 -glycoprotein I (β_2 GPI). Tissue factor (TF), the major initiator of the extrinsic coagulation system, is induced on monocytes by aPL *in vitro*, explaining in part the pathophysiology in APS. We previously reported that the mitogen-activated protein kinase (MAPK) pathway plays an important role in aPL-induced TF expression on monocytes. In this study, we identified plasma gelsolin as a protein associated with β_2 GPI by using immunoaffinity chromatography and mass spectrometric analysis. An *in vivo* binding assay showed that endogenous β_2 GPI interacts with plasma gelsolin, which binds to integrin $\alpha_5\beta_1$ through fibronectin. The tethering of β_2 GPI to monoclonal anti- β_2 GPI autoantibody on the cell surface was enhanced in the presence of plasma gelsolin. Immunoblot analysis demonstrated that p38 MAPK protein was phosphorylated by monoclonal anti- β_2 GPI antibody treatment, and its phosphorylation was attenuated in the presence of anti-integrin $\alpha_5\beta_1$ antibody. Furthermore, focal adhesion kinase, a downstream molecule of the fibronectin-integrin signalling pathway, was phosphorylated by anti- β_2 GPI antibody treatment. These results indicate that molecules including gelsolin and integrin are involved in the anti- β_2 GPI antibody-induced MAPK pathway on monocytes and that integrin is a possible therapeutic target to modify a prothrombotic state in patients with APS.

Keywords: β_2 GPI • gelsolin • integrin • TF • APS

Introduction

Antiphospholipid syndrome (APS) is a clinical condition characterized by recurrent thrombotic events and/or pregnancy morbidity associated with the persistence of antiphospholipid antibodies (aPL). Although the original concept of aPL considers that those antibodies were directed against anionic phospholipids, evidence shows that phospholipid-binding plasma proteins such as β_2 -glycoprotein I (β_2 GPI) [1–3] and prothrombin [4] are the dominant antigenic targets recognized by aPL in patients with APS.

Among the aPL found in patients with APS, antibodies directing to cardiolipin-B2GPI complex (aCL/B2GPI), also called anticardiolipin antibodies or anti-B2GPI antibodies, have been the best studied in their clinical or biological properties in the last two decades [5]. B₂GPI is a single-chain glycoprotein containing 326 amino acids and contains a high proportion of proline and cysteine residues and is heavily glycosylated [6]. B2GPI is a member of the complement control protein repeat or short consensus repeat (SCR) superfamily and is composed of five homologous motifs of approximately 60 amino acids designated as SCR or as sushi domains. Each motif contains four conserved half cysteine residues, related to the formation of two internal disulphide bridges. While the first four domains are typical, the fifth domain of B₂GPI is a modified form containing 82 amino acid residues and six half cysteines. The tertiary structure of B2GPI revealed a highly glycosylated protein with an elongated fishhook-like arrangement

doi:10.1111/j.1582-4934.2009.00940.x

^{*}Correspondence to: Dr. Shigetsugu HATAKEYAMA, Department of Biochemistry, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan. Tel.: +81-11-706-5899 Fax: +81-11-706-5169 E-mail: hatas@med.hokudai.ac.jp

of the globular SCR domains [7, 8]. β_2 GPI binds to solid phase phospholipids through a major phospholipid binding site located in the fifth domain, C281KNKEKKC288 close to the hydrophobic loop [9].

The aCL/ β_2 GPI recognize the epitopes that appear on β_2 GPI only when B₂GPI interacts with anionic phospholipids [10]. The location of the exact epitopic sites for aCL/B2GPI on B2GPI molecule has been focus of intensive debate. ACL/B2GPI have been shown to recognize different epitopes located in all five domains of B2GPI. Domain IV or I were reported as candidates for major epitopic location by using a series of deletion mutant proteins of B₂GPI [11]. Recently, de Laat *et al.* showed that pathogenic aCL/B2GPI bind a cryptic epitope on domain I of B2GPI, which is accessible for aCL/B2GPI only after conformational change, and is induced by the binding of B₂GPI to a negatively charged surface via a positive-charge patch in domain V [12, 13]. Moreover, our aroup demonstrated that epitopic structures recognized by aCL/ β_2 GPI are cryptic and that three electrostatic interactions between domain IV and V (D¹⁹³-K²⁴⁶, D²²²-K³¹⁷ and E²²⁸-K³⁰⁸) are involved in their exposure [14]. This hypothesis is also supported by our previous data showing that replacement of one single amino acid at position 247 of B2GPI, which is important for the interaction between domain IV and V, can alter the antigenicity of β₂GPI for pathogenic autoantibodies [14, 15].

Recently, great interest has arisen on the binding of aCL/B2GPI to endothelial cells or other procoagulant cells and how this binding mediates cell dysfunctions that potentially induce the clinical manifestations of the APS. A number of in vitro studies have shown that procoagulant cells, treated with aCL/B2GPI, are activated and express procoagulant molecules such as tissue factor (TF) [16, 17]. Further research has focused on the signal transduction mechanisms implicated in the increased expression of pro-coagulants substances in response to aPL. The adapter molecule myeloid differentiation protein (MyD88)-dependent signalling pathway and the nuclear factor KB (NF-KB) have been involved in endothelial cell activation by aPL [18-21]. We [22] and others [23-26] showed clear evidence that the p38 mitogen-activated protein kinase (MAPK) pathway of cell activation plays an important role in aPL-mediated cell activation. Such cell activation by aCL/B2GPI might require an interaction between B2GPI and a specific cell surface receptor. The Toll-like receptor (TLR) family may mediate a role in the interaction of the B2GPI-aCL/B2GPI complex on the endothelial cell surface [18]. Annexin II, also known as Annexin A2, is an endothelial cell receptor for tPA and plasminogen, and suggested to interact with the B2GPI-aCL/B2GPI complex on the endothelial cell surface mediating cell activation [27, 28]. Some members of low-density lipoprotein receptor family, such as LDL-R related protein, megalin, the very-low density lipoprotein receptor, were shown to bind to B2GPI [29]. However, no evidence has shown a direct interaction between B2GPI and TLRs. Annexin II does not span the cell membrane thus cannot induce cell activation unless the presence of an unknown 'adaptor' is present. β₂GPI was required to be chemically dimerized to bind to any of LDL receptors [29]. In addition, no information has been available regarding B2GPI on monocytes. In fact, monocytes are more potent to produce TF compared with endothelium, therefore the investigation of β_2 GPI-aCL/ β_2 GPI interaction on monocytes are essential to explore the pathophysilogy of APS.

In this study, we identified a plasma gelsolin as a novel protein associated with β_2 GPI by using affinity purification and liquid chromatography with mass spectrometry (LC-MS) analysis, and we showed functional interaction of plasma gelsolin with β_2 GPI.

Materials and methods

Cell culture

RAW264.7 and HEK293T cell lines were cultured under an atmosphere of 5% CO₂ at 37°C in Dulbecco's modified Eagle's medium (DMEM; Sigma Chemical Co., St. Louis, MO, USA) supplemented with 10% foetal bovine serum (Gibco BRL, Paisley, UK). To remove β_2 GPI, the culture medium was changed to serum-free DMEM for 16 hrs before the assay.

Cloning of cDNAs and plasmid construction

The signal sequence region and other region of human $\beta_2 GPI$ cDNA lacking the signal sequence ($\beta_2 GPI[ss-]$) were amplified by PCR from human B cell cDNA (CLONTECH Laboratories, Inc., Mountain View, CA, USA). The resulting fragment containing $\beta_2 GPI(ss-)$ was ligated into the EcoR I and Sal I sites of p3xFLAG CMV7.1 vector (Sigma Chemical Co.). The fragment containing the human $\beta_2 GPI$ signal sequence was ligated into the BamH I and Pst I sites of pBluescript II SK⁺ vector (pBS-Sig) (Stratagene, La Jolla, CA, USA). The $\beta_2 GPI(ss-)$ cDNA fragment with 3xFLAG was ligated into the Pst I and Sal I sites of pBS-Sig. The Sig-3xFLAG- $\beta_2 GPI$ fragment was then ligated into pcDNA3 (Invitrogen, Carlsbad, CA) (pcDNA3-Sig-3xFLAG- $\beta_2 GPI$) or into pCAG-puro vector which contains a puromycin-resistant gene in pCAGGS vector provided by Dr. J. Miyazaki (Osaka University). The plasma gelsolin cDNA was obtained from ATCC (#MGC-39262, Manassas, VA, USA) and ligated into pcDNA3.

Proteins and antibodies

Recombinant human B2GPI was purified as described previously [11]. FLAG-B2GPI was collected from the culture supernatant of HEK293T cells transiently transfected with pcDNA3-Sig-3xFLAG-B2GPI using FuGENE6 (Roche, Branchburg, NJ). Expression of all constructs was performed in conditioned serum-free Opti-MEM (Gibco BRL). Furthermore, a stable cell line expressing FLAG-B2GPI was generated by transfection with pCAG-Ipuro vector encoding FLAG-tagged-B2GPI cDNA. The culture supernatant of FLAG-B2GPI-expressing cells was collected after 4 days of culture and then filtered (0.22 µm). The antibodies used in this study were as follows: mouse monoclonal anti-B2GPI antibody (WBCAL1; aCL/B2GPI [30], and MAB1066, Chemicon International Inc., Temecula, CA, USA), mouse monoclonal antigelsolin antibody (clone 2, BD Transduction Laboratories, San Jose, CA, USA), rat monoclonal anti-integrin $\alpha_5\beta_1$ antibody (MAB1984, Chemicon International Inc.), mouse monoclonal anti-integrin β1 antibody (Ha2/5, BD), rabbit polyclonal anti-p38 MAP kinase antibody (#9212, Cell Signaling Technology, Inc., Beverly, MA, USA), rabbit polyclonal anti-phospho-p38 MAP kinase antibody (#9211, Cell Signaling Technology, Inc.), mouse monoclonal anti-focal adhesion kinase (FAK) antibody (clone 77, BD), mouse monoclonal anti-FAK(pY397)-phospho-specific antibody (clone 18, BD), mouse anti- β -actin (AC15, Sigma Chemical Co.) and mouse monoclonal anti-FLAG (M2) (Sigma Chemical Co.). EZ-Link Sulfo-NHS-Biotin Reagent was used as a biotinylation reagent. IgG with aPL activity was purified from sera of six patients with APS diagnosed by Sapporo criteria. Control IgG was isolated from normal human serum. Protein concentrations were determined by Bradford method. Consent forms for this study were signed by all of the patients and healthy donors.

Purification of the β_2 GPI-related proteome

NHS-activated Sepharose 4 Fast Flow (0.5 ml) (Amersham Biosciences AB. Sweden) washed with 100 mM HCl was mixed with 250 µg of anti-FLAG (M2) mAb (250 µg) in coupling buffer (0.2 M NaHCO₃-NaCl, pH 8.3), and the mixture was rotated for 2 hrs at room temperature for conjugation. The unconjugated antibody was removed from the resin by washing with 500 mM ethanolamine (pH 8.3) and 0.1 M CH₃COOH (pH 4.0), and the resin was then equilibrated with PBS. RAW264.7 cells were cultured under an atmosphere of 5% CO₂ at 37°C in serum-free DMEM for 16 hrs. After incubation, 5×10^7 cells were collected, suspended with 1 ml of PBS, and incubated for 2 hrs at 4°C with 0.5 ml of culture supernatant (FLAG-B2GPI) after transfection with pcDNA3-Sig-3xFLAG-B2GPI. The cells were then washed twice with 1 ml of PBS, suspended with 1 ml of PBS, and incubated for 2 hrs at 4°C after addition of the membrane-impermeable crosslinker 3.3'-Dithiobis(sulfosuccinimidylpropionate) (DTSSP) (Pierce) was added to a final concentration of 1 mM. Then Tris-HCl (pH 7.5) was added as a stop solution to a final concentration of 10 mM. The cells were then harvested, washed with PBS, lysed in 10 ml of a solution containing 50 mM Tris-HCI (pH 7.4), 150 mM NaCl, 0.5% Triton X-100, aprotinin (10 mg/ml), leupeptin (10 mg/ml), 1 mM PMSF, 400 mM Na₃VO₄, 400 mM EDTA, 10 mM NaF and 10 mM sodium pyrophosphate (buffer A), and centrifuged at 16,000 \times g for 10 min. at 4°C. The resulting supernatant was applied to the M2 column of 100 µl bed volume and the column was then washed with buffer A. HA-peptide (Roche) was loaded to the column to remove non-specific binding and then bound proteins were eluted with two volumes of FLAG peptide (Sigma Chemical Co.). The eluents from the column were concentrated by precipitation with TCA and subjected to insolution digestion for LC-MS/MS analysis.

In-solution digestion of purified proteins

Proteins were precipitated with 10% TFA and washed with acetone twice. Precipitated proteins were dissolved in 100 mM Tris-HCI and 7 M guanidium hydroxide (pH 8.0), diluted with 100 mM Tris-HCI (pH 8.0) to 1 M guanidium hydroxide, and then digested with Lys-C endopeptidase (500 ng) for 16 hrs at 37°C. The resulting peptides were desalted with a C18 disc settled microtip, dried, and dissolved in 0.1% TFA/2% acetonitrile.

MS and database searching

Peptides were analysed by using a quadrupole time of flight hybrid mass spectometer (Q-tof2, Waters) equipped with an Agilent HP1100 nanoflow pump with a laboratory-made nano-spray stage and ESI column. C18 beads (L-column, 3 μ m) were packed in the spray tip and used as a nano-ESI column (5 cm in length, 100 μ m in id). The sample was loaded to the ESI column at a flow rate of 800 nl/min with mobile phase A (0.1% formic acid/2% acetonitrile) and eluted with a linear gradient of 5 to 35% B (0.1% formic acid/90% acetonitrile) at a flow rate of 200 nl/min. CID spectra were acquired automatically in the data-dependent scan mode in which the two highest peaks were selected for precursor ions. All MS/MS spectra were processed by a MASCOT distiller for generation of peak list files and were subjected to a database search by the MASCOT algorithm (Matrix Science, London) against the non-redundant National Center for Biotechnology Information (nrNCBI) database. Search parameters were set as follows: Lys-C/P was selected as an enzyme allowing one miscleavage, oxidized methionine and pyroglutamine derived from the amino terminus of glutamine were selected as variable modifications, and the mass tolerance was 0.3 Da for precursor ions and 0.3 Da for MS/MS ions.

Transfection, immunoprecipitation and immunoblot analysis

HEK293T cells were transfected by the calcium phosphate method or lipofection method. After 48 hrs, the cells were lysed in a solution containing 50 mM Tris-HCI (pH 7.4), 150 mM NaCl, 1% Nonidet P-40, leupeptin (10 µg/ml), 1 mM phenylmethylsulfonyl fluoride, 400 µM Na₃VO₄, 400 µM EDTA, 10 mM NaF, and 10 mM sodium pyrophosphate. The cell lysates were centrifuged at 16,000 \times g for 10 min. at 4°C, and the resulting supernatant was incubated with antibodies for 2 hrs at 4°C. Protein G-Sepharose (Amersham Biosciences AB) that had been equilibrated with the same solution was added to the mixture, which was then rotated for 1 hr at 4°C. The resin was separated by centrifugation, washed four times with ice-cold lysis buffer, and then boiled in SDS sample buffer. Immunoblot analysis was performed with the primary antibodies with horseradish peroxidase-conjugated antibodies to mouse or rabbit immunoglobulin G (1:10,000 dilution, Promega Corporation, Madison, WI, USA) and an enhanced chemiluminescence system (ECL, Amersham Biosciences, Little Chalfont, UK).

Binding assay

The binding between phospholipid-B2GPI complex and plasma gelsolin was confirmed by an ELISA. Non-irradiated microtitre plates (Sumilon type S, Sumitomo Bakelite, Tokyo, Japan) were coated with 30 μl of 50 µg/ml cardiolipin (Sigma Chemical Co.) and dried overnight at 4°C. To avoid nonspecific binding of proteins, wells were blocked with 150 µl of Tris-buffered saline (TBS) containing 1% fatty acid-free bovine serum albumin (BSA, A-6003, Sigma Chemical Co.) and CaCl₂ (BSA-Ca). After 3 washes in TBS containing 0.05% Tween 20 (Sigma Chemical Co.) and CaCl₂ (TBS-Tween-Ca), 50 μ l of 10 μ g/ml β ₂GPl in BSA-Ca was added to half of the wells in the plates and the same volume of BSA-Ca alone (as a sample blank) was added to the other half of the wells. After 1-hr incubation at 37°C, plates were washed and 50 µl of plasma gelsolin (Sigma Chemical Co.) (0-10 µg/ml) in BSA-Ca was added in duplicate. Plates were incubated for 1 hr at room temperature, followed by incubation with mouse monoclonal anti-gelsolin antibody, alkaline phosphatase conjugated goat antimouse IgG and substrate. The optical density of wells coated with cardiolipin alone was subtracted from that of wells containing cardiolipin-B2GPI complex. All procedures were done in the presence of 0, 1 or 2 mM CaCl₂

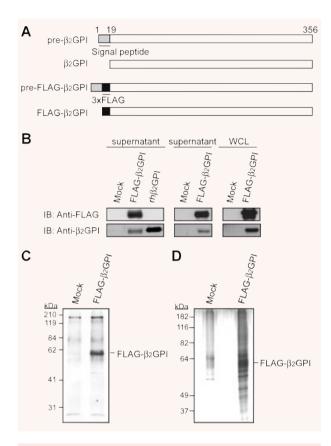


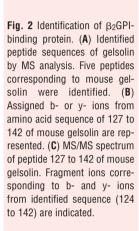
Fig. 1 Immunoaffinity purification of the β_2 GPI-related proteome. (A) Schematic representation of β_2 GPI. Grey box: signal peptide, black box: FLAG-tag. (B) Expression of secretory β_2 GPI and intracellular β_2 GPI. HEK293T cells were transfected with expression plasmids encoding FLAG-tagged β_2 GPI. Cells were lysed and subjected to immunoblot analysis with anti-FLAG or anti- β_2 GPI antibody. (C) Pull-down analysis of biotinylated cell surface proteins binding to FLAG- β_2 GPI. RAW264.7 cell surface proteins were biotinylated using EZ-Link Sulfo-NHS-Biotin Reagent and then the cells were cross-linked with FLAG- β_2 GPI using 3,3'-Dithiobis(sulfosuccinimidylpropionate). The cells were lysed and subjected to immunoprecipitation with anti-FLAG antibody. The resulting precipitates were subjected to SDS-PAGE and visualized with HRP-conjugated streptavidin. (D) Silver staining of β_2 GPI-associated proteins. The β_2 GPI-associated proteins purified by the procedure indicated in (C) were detected by silver staining.

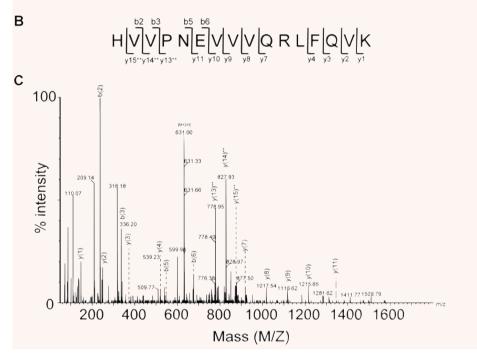
Flowcytometric analysis

Surface aCL/ β_2 GPI and gelsolin binding on RAW264.7 cells was analysed using FACSCalibur (Becton Dickinson Immunocytometry Systems, San Jose, CA, USA) with the CellQuest program. RAW264.7 cells were cultured with serum-free DMEM for 16 hrs. The cultured cells were washed with PBS including 2% BSA and 0.1% NaN₃ and treated with 50 µg/ml of β_2 GPI at room temperature for 10 min., followed by exposure to primary antibodies for 30 min. on ice. After washing twice, cells were stained with Alexa488-labeled goat antimouse IgG antibody (Invitrogen) for 30 min. on ice. After washing twice, cells were analysed using FACSCalibur.

Luciferase assay

Stable κ B luciferase reporter-expressing RAW264.7 cells were inoculated into a 24-well dish at 1 \times 10⁶ cells/500 μ l of cell culture medium and stimulated as indicated [31]. After stimulation at 37°C for 4 hrs, the cells were harvested and lysed in 50 μ l of cell culture lysis reagent (Promega Corporation), and then luciferase activity was measured using 20 μ l of lysate and 100 μ l of luciferase assay substrate (Promega Corporation). The luminescence was quantified with a luminometer (Berthold Japan, Tokyo, Japan).


Results


Immunoaffinity purification of β_2 GPI-associated proteins

To isolate B₂GPI-binding proteins, we constructed FLAG-tagged human B₂GPI (Fig. 1A). Since B₂GPI binds to anionic phospholipids via a lysine-rich motif on domain V at the carboxy-terminus, we decided to preserve the intact structure at the carboxy-terminus. B2GPI is a secretory apolipoprotein that is mainly produced in the liver and secreted to plasma. B2GPI cDNA encodes a protein of 345 amino acids including a hydrophobic amino-terminal signal sequence (19 amino acid residues) that is lacking in the mature form of B2GPI. Thus, the FLAG-tag sequence was placed between the signal peptide sequence and mature protein (Fig. 1A). An expression vector encoding FLAG-B2GPI was transfected into HEK293T cells, and the culture supernatant and whole cell lysate were analysed by immunoblotting using anti-FLAG or anti-B2GPI antibody. Immunoblot analysis showed that FLAG-B2GPI was detected by anti-FLAG and anti-B2GPI antibody from both the cell lysate and culture supernatant (Fig. 1B).

To confirm that B2GPI binding proteins exist on the cell surface of RAW264.7 cells, we performed a pull-down assay using biotinylated cell surface proteins from RAW264.7 cells and FLAG-tagged B2GPI. The cell surface proteins of RAW264.7 cells were biotinvlated, incubated with FLAG-B2GPI, and then biotinylated cell surface membrane proteins were chemically cross-linked with FLAG-B₂GPI. Cells were lysed, and the lysates were immunoprecipitated with anti-FLAG antibody to purify biotinylated proteins cross-linked to FLAG-B2GPI and visualized with HRP-conjugated streptavidin. Smeared proteins other than FLAG-B2GPI were reproducibly found (Fig. 1C). Next, we performed large-scale immunoaffinity chromatography with an anti-FLAG pull down assay. RAW264.7 cells were cultured with FLAG-B2GPI and then the lysate of RAW264.7 cells was used for affinity chromatography with anti-FLAG antibody-conjugated Sepharose beads. The purified fraction eluted using FLAG-peptides was subject to SDS-PAGE and detected with silver staining. Silver staining indicated that a large number of smeared proteins interact with β_2 GPI (Fig. 1D).

Α				
Start-stop	Charge	Sequence	Delta mass	Mascot score
2-10	2	VVEHPEFLK	-0.05	26
11-24	3	AGKEPGLQIWRVEK	-0.08	22
127 - 142	3	HVVPNEVVVQRLFQVK	-0.10	55
534 - 546	2	SGALNSNDAFVLK.	-0.06	58
547 - 564	2	TPSAAYLWVGAGASEAEK	-0.06	20

Identification of β_2 GPI-associated proteins by LC-MS

Proteins immunopurified with anti-FLAG (M2)-conjugated Sepharose were directly digested with Lys-C endopeptidase and analysed by an online-nanoLC-ESI-quadrupole time of flight hybrid mass spectrometer. Obtained MS/MS data were searched against the non-redundant National Center for Biotechnology Information (nrNCBI) database MASCOT algorithm. Many proteins with a significant MASCOT score were identified, but most of them were intracellular proteins such as molecular chaperones and ribosomal proteins that were abundant and seem to be contaminants (Table S1). These proteins were omitted from the list of identified protein, and proteins expressed on the membrane and/or cell surface were approved as candidates for β_2 GPI-binding protein. Eventually, we found five peptides corresponding to gelsolin, and two of the five peptides had reliable MASCOT scores (more than 31, P < 0.05,) (Fig. 2A). The MS/MS data of the peptide (127–142 amino acid residue) with the highest MASCOT score are shown in Fig. 2B and C. Gelsolin has two types of localization pattern: one isoform localizes in the cytosol to regulate formation of actin fibre, whereas the other isoform, which has a signal peptide, localizes outside the cell or on the cell surface. We focused on plasma gelsolin as a β_2 GPI-binding protein because gelsolin interacts with fibronectin and integrin, which can transduce intracellular signalling in collaboration with several types of kinase such as MAPK and FAK.

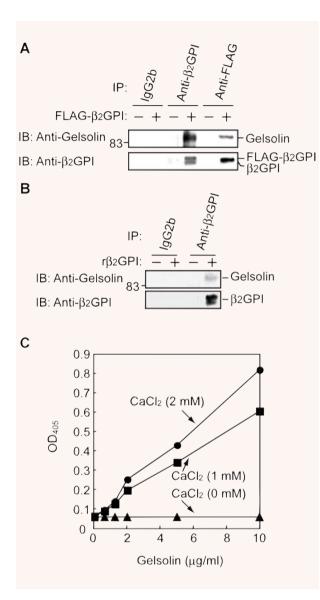
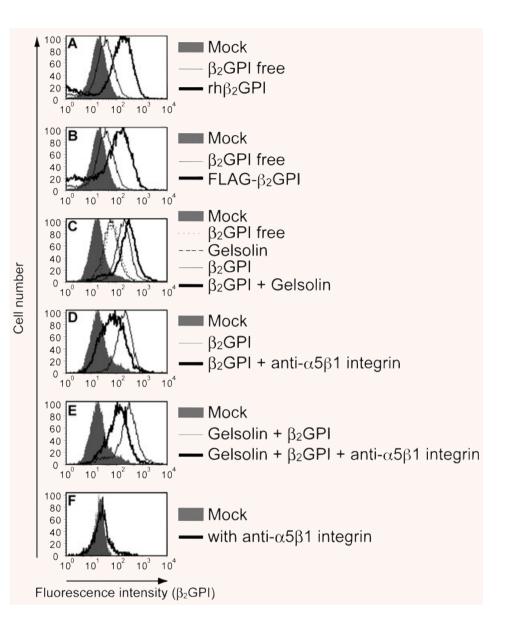


Fig. 3 Biochemical interaction between β_2 GPI and plasma gelsolin. (A) Interaction between gelsolin and FLAG- β_2 GPI. HEK293T cells were transfected with expression plasmids encoding FLAG-tagged β_2 GPI and plasma gelsolin. Proteins secreted from transfected cells were subjected to immunoprecipitation with an antibody as indicated, and the resulting precipitates were subjected to immunoblot analysis with anti-gelsolin or anti-FLAG antibody. (B) Interaction between endogenous gelsolin and recombinant human β_2 GPI. HEK293T cells were transfected cells was mixed with human recombinant β_2 GPI and subjected to immunoprecipitates were subjected to immunoprecipitates and the resulting precipitates were subjected to immunoblot analysis with anti-gelsolin or anti-FLAG antibody. (B) Interaction between endogenous gelsolin and recombinant human β_2 GPI. HEK293T cells were transfected cells was mixed with human recombinant β_2 GPI and subjected to immunoprecipitates were subjected to immunoblot analysis with anti-gelsolin or anti- β_2 GPI antibody. (C) The binding between phospholipid-bound β_2 GPI and plasma gelsolin was confirmed by ELISA as described in the 'Materials and methods' section.

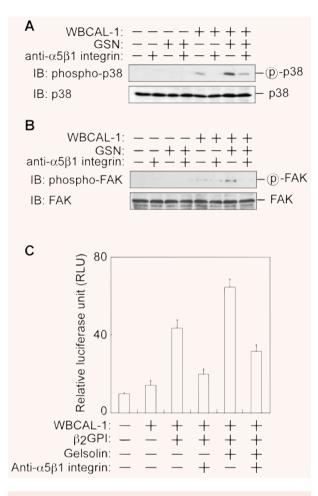

Interaction of β_2 GPI with plasma gelsolin

To confirm the binding between B₂GPI and gelsolin, we examined the interaction between B₂GPI and gelsolin using HEK293T cells. HEK293T cells were transfected with expression plasmids encoding FLAG-tagged B2GPI and plasma gelsolin. The cell lysates were immunoprecipitated with anti-B2GPI (WBCAL1; monoclonal aCL/B2GPI) or FLAG antibodies and then immunoblotted with antigelsolin or B2GPI antibodies (MAB1066). Immunoprecipitation and immunoblot analysis revealed that FLAG-tagged B2GPI specifically interacted with gelsolin (Fig. 3A). To further verify the interaction between recombinant B₂GPI and endogenous gelsolin, we examined the interaction with endogenous gelsolin. The supernatant including endogenous plasma gelsolin secreted from cultured RAW264.7 cells was mixed with human recombinant β2GPI and subjected to immunoprecipitation with antibodies as indicated (WBCAL1 or Mock), and the resulting precipitates were subjected to immunoblot analysis with anti-gelsolin or anti-B2GPI antibody (MAB1066). An in vitro pull-down assay showed that plasma gelsolin directly binds to B2GPI (Fig. 3B). Direct binding of plasma gelsolin to cardiolipin-B2GPI complex in a calcium-dependent fashion was confirmed by ELISA (Fig. 3C).

Plasma gelsolin enhances the localization of $\beta_2 GPI$ on the cell surface

It has been reported that plasma gelsolin binds to fibronectin, which belongs to the family of extracellular matrix (ECM) proteins and plays important roles in cellular adhesion, proliferation, differentiation and migration [32]. First, we confirmed the expression of β_2 GPI (recombinant human β_2 GPIs or FLAG-tagged β_2 GPIs) on the cell surface by flowcytometric analysis. When RAW264.7 cells were incubated with B2GPI at 37°C for 1 hr, interaction of B2GPI on the cell surface was observed (Fig. 4A and B). To determine whether gelsolin affects the expression of B2GPI on the cell surface, we examined the expression level of B2GPI on the cell surface. The expression level of β_2 GPI on the cell surface was enhanced in the presence of gelsolin compared to that in the absence of gelsolin (Fig. 4C). It has been shown that fibronectin, which binds to gelsolin, associates with the extracellular domain of the integrin family. To determine whether the cell surface expression of B2GPI depends on integrin, we examined the expression level of β_2 GPI with anti-integrin $\alpha_5\beta_1$ antibody as an inhibitory antibody. Anti-integrin $\alpha_5\beta_1$ antibody inhibited the expression of B2GPI on the surface of RAW264.7 cells (Fig. 4D and E). Furthermore, to determine whether anti-integrin $\alpha_5\beta_1$ antibody affects the expression of B2GPI without addition of recombinant B2GPI, RAW264.7 cells cultured with serum-free medium were incubated with anti-integrin $\alpha_5\beta_1$ antibody, and then the cells were stained by aCL/B2GPI. Flowcytometric analysis showed that without addition of recombinant β_2 GPI, anti-integrin $\alpha_5\beta_1$ antibody does not affect the staining by anti-B2GPI antibody (WBCAL1) (Fig. 4F). These findings indicate that gelsolin

Fig. 4 Interaction of β_2 GPI and plasma gelsolin on cell surface. (**A** and **B**) β_2 GPI binding to the cell surface. RAW264.7 cells cultured with serum-free medium were incubated with or without recombinant human β2GPI or FLAG-β2GPI, and then binding of β_2 GPI to the cell surface was detected by aCL/B2GPI (WBCAL1). Mock has no primary antibody. Binding to the cell surface by recombinant human β_2 GPI (A) showed almost the same intensity as that by secreted FLAG-B₂GPI (**B**). (**C**) Gelsolin affects the binding of β_2 GPI to the cell surface. RAW264.7 cells were incubated with or without recombinant FLAG-B2GPI and gelsolin, and then binding of B2GPI to the cell surface was detected by aCL/B2GPI. (D and **E**) Binding of β_2 GPI to the cell surface was inhibited by anti-integrin $\alpha_5\beta_1$ antibody. RAW264.7 cells were incubated with or without recombinant FLAG-B2GPI, gelsolin and anti-integrin $\alpha_5\beta_1$ antibody, and then binding of β_2 GPI to the cell surface was detected by aCL/ β_2 GPI. (F) RAW264.7 cells cultured with serum-free medium were incubated with anti-integrin $\alpha_5\beta_1$ antibody, and then the cells were stained by aCL/β₂GPI.



enhanced the cell surface expression of β_2 GPI and that the interaction is mediated by integrin on the cell surface.

Intracellular signalling via aCL/ β_2 GPI antibody is dependent on integrin $\alpha_5\beta_1$

We previously reported that p38-MAPK was phosphorylated in RAW264.7 cells stimulated by human monoclonal aCL/ β 2GPI [22]. To determine whether a cell surface complex including gelsolin activates RAW264.7 cells, we investigated the phosphorylation of p38-MAPK. Stimulation to RAW264.7 cells by aCL (WBCAL1) showed that p38-MAPK phosphorylation was not

induced by plasma gelsolin alone but was induced by aCL/ β_2 GPI stimulation and was further enhanced by plasma gelsolin plus aCL/ β_2 GPI stimulation (Fig. 5A). However, anti-integrin $\alpha_5\beta_1$ antibody attenuated phosphorylation of p38-MAPK by plasma gelsolin plus aCL/ β_2 GPI stimulation (Fig. 5A). These findings indicate that aCL/ β_2 GPI caused phosphorylation of p38-MAPK in collaboration with gelsolin and integrin on the cell surface. Furthermore, to determine the effect on downstream molecules such as focal adhesion kinase FAK, the phosphorylation of FAK by aCL/ β_2 GPI was investigated. Stimulation of aCL/ β_2 GPI and plasma gelsolin resulted in an increased level of phosphorylation of FAK, whereas anti-integrin $\alpha_5\beta_1$ antibody attenuated the phosphorylation of FAK (Fig. 5B). Taken together, the results suggest that anti- β_2 GPI

Fig. 5 Change in intracellular signalling by gelsolin and aCL/β₂GPI. (**A**) Gelsolin and integrin affect phosphorylation of p38 MAPK by anti-β₂GPI antibody. RAW264.7 cells were incubated for 2 hrs as indicated after serum-free culture for 16 hrs and then stimulated with aCL/β₂GPI (WBCAL1) for 30 min., and then phosphorylation of p38 MAPK was determined by immunoblot analysis using specific antibodies against total-p38 and phospho-p38. (**B**) Anti-integrin $\alpha_5\beta_1$ antibody inhibits phosphorylation of FAK by aCL/β₂GPI. RAW264.7 cells were stimulated with aCL/β₂GPI for 10 min. and then phosphorylaion of FAK was determined by immunoblot analysis. (**C**) aCL/β₂GPI increases NF-κB activity. RAW264.7 cells stably expressing κB luciferase reporter were inoculated into a 24-well dish and stimulated as indicated. After stimulation at 37°C for 4 hrs, κB luciferase activity was measured.

antibody affects the integrin signalling including its downstream signal molecule FAK, followed by activation of p38-MAPK.

It has been reported that the p38-MAPK pathway is linked to the NF- κ B pathway [33]. To determine whether aCL/ β_2 GPI antibody functions with gelsolin, we examined its effect on relative luciferase activity by NF- κ B. The transcriptional activity of NF- κ B was further increased by stimulation with the combination of gelsolin and one of the aCL/ β_2 GPI antibodies, WBCAL1, whereas it was inhibited by anti-integrin $\alpha_5\beta_1$ antibody (Fig. 5C). These findings indicate that aCL/ β_2 GPI causes the engagement of integrin with gelsolin, resulting in activation of the p38-MAPK pathway and NF- κ B pathway.

Discussion

We identified plasma gelsolin as a novel B2GPI-binding protein on the cell surface of monocytes. Affinity purification using an anti-FLAG-B2GPI-conjugated column clarified that B2GPI interacts with gelsolin on monocytes, and then the binding of B2GPI with gelsolin was confirmed by immunoprecipitation. Moreover, flowcytometric analysis demonstrated that gelsolin enhances the affinity of B2GPI on the cell surface. Gelsolin is expressed as two isoforms, cytoplasmic gelsolin and plasma gelsolin, which are encoded by a single gene and produced by alternative translation [34]. Both gene products of gelsolin have six homologous repeats (S1-S6), each of which contains 120-130 amino acid residues, and plasma gelsolin has an extra 23 amino acid residues at the amino-terminus [35, 36]. Cytoplasmic gelsolin is known as an actin-depolymerizing factor and plays a crucial in removal of actin released by tissue injury. Plasma gelsolin has another function as a carrier protein for bioactive mediators such as lysophosphatidic acid (LPA), lipopolysaccharide (LPS), amyloid ß protein (Aß) and platelet-activating factor (PAF) to protect cells from exposure to excess stimulation [37-41]. Plasma gelsolin also interacts with fibronectin and especially colocalizes at a region where inflammation arises [32]. Fibronectin forms a dimeric glycoprotein in plasma and a dimeric or multimeric form that interacts with integrin $\alpha_5\beta_1$ on the cell surface. Fibronectin is involved in cell adhesion, morphological change and migration processes, including wound healing, blood coagulation, host defense and metastasis.

Integrins are heterodimeric membrane proteins composed of an α chain and a β chain. Each specific integrin induces a variety of responses in different cell types. Integrin α 5 chain undergoes post-translational cleavage to yield disulfide-linked light and heavy chains that join with the β_1 chain to form a fibronectin receptor [42]. Integrins provide dynamic, physical links between the ECM such as fibronectin and cytoskeletons. In addition to adhesion, integrins are known to participate in cell surface-mediated signalling in concert with other cell surface receptors. including growth factor receptors such as epidermal growth factor, lysophosphatidic acid or thrombin, and are involved in proliferation, survival, morphological change, migration and gene expression. Ligation of ECM to integrins triggers assembly of cytoskeleton proteins (such as tallin, actin and paxillin) and intracellular tyrosine kinase FAK and results in a large variety of signal transduction events. Integrin-mediated signals is likely to be necessary in normal cells, such as human umbilical vein endothelial cells or mammary epithelial cells, to block apoptosis via the Akt pathway and activate cells via the MAPK pathway [43-45]. In

Ntera2 neuronal cells, $\alpha_5\beta_1$ -mediated adhesion to fibronectin decreased apoptosis. Previous studies have shown that expression of $\alpha_5\beta_1$ promotes apoptosis of human hematopoietic cell lines, monocyte-differentiated HL-60 cell lines and mouse macrophage RAW264.7 cell lines [46–48]. However, it has been reported that fibronectin could not mediate the binding of β_2 GPI to the cell surface in endothelial cells [27, 49]. We confirmed direct interaction of phospholipid-bound β_2 GPI and gelsolin by ELISA, and the binding was found only in the presence of calcium. The interaction of β_2 GPI with gelsolin in our study suggests that engagement of β_2 GPI by anti- β_2 GPI antibody caused the complex formation including gelsolin, fibronectin and integrin $\alpha_5\beta_1$, followed by activation of the p38-MAPK pathway and NF- κ B pathway.

Zeisel et al. reported that FAK and myeloid differentiation protein 88 (MyD88) pathways were inter-linked and initiate a pro-inflammatory response through NF-KB activation [50]. In a previous study, we demonstrated that the p38 MAPK-dependent signalling pathway participates in aPL-mediated TF expression. A specific inhibitor of p38 MAPK decreased TF mRNA expression induced by aCL/B₂GPI stimulation, indicating a crucial role of the p38 MAPK pathway in APS. Raschi et al. reported that a dominantnegative form of TNF-receptor-associated factor 6 (TRAF6) and MyD88 abrogated NF-kB activation induced by monoclonal aCL/B2GPI, suggesting that aCL/B2GPI reacts to B2GPI associated with a member of the TLR or interleukin-1 receptor family. The present study demonstrated that gelsolin is a scaffolding protein that links B₂GPI and integrin/fibronectin and that integrin is also important for activation of the p38 MAPK and NF-kB pathways by aCL/B2GPI.

Several inhibitors for integrins have been developed and investigated in animal models of inflammatory diseases, and some of these inhibitors (*e.g.* anti-integrin α IIb β_3 , anti-integrin α 4 β 7) are used clinically as anti-platelet agents or anti-inflammatory bowel disease agents [51]. Recently, arginine-glycine-aspartic acid (RGD) peptides that bind to integrin α V β_3 , α V β_5 or α 5 β_1

J. Cell. Mol. Med. Vol 15, No 1, 2011

have become available for the treatment of inflammatory arthritis [52]. This is a first report to prove how the β_2 GPI-aCL/ β_2 GPI interaction on monocyte surface occurs with its partner molecule, gelsolin. Despite the fact that we could not show direct procoagulant alteration of cells by aCL/ β_2 GPI with integrin $\alpha_5\beta_1$ blockade in this study, either on monocytes or on endothelial cells, our findings provide a clue for establishing specific treatments by down-regulating the p38 MAPK pathway *via* integrin $\alpha_5\beta_1$ and therapeutic benefits for patients with autoimmune diseases, including APS.

Acknowledgements

We thank O. Amengual and K. Oku for their technical support of the experiments, and Y. Soida for help in preparing the manuscript. The work is supported in part by a research grant from Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology (to S.H.).

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Table S1. Peptide sequences of β_2 GPI-associated proteins identified by MS analysis.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

References

- McNeil HP, Simpson RJ, Chesterman CN, et al. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci USA. 1990; 87: 4120-4.
- Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 1990; 335: 1544–7.
- Matsuura E, Igarashi Y, Fujimoto M, et al. Anticardiolipin cofactor(s) and differential diagnosis of autoimmune disease. *Lancet.* 1990; 336: 177–8.
- Bevers EM, Galli M, Barbui T, et al. Lupus anticoagulant IgG's (LA) are not directed to phospholipids only, but to a complex of lipid-bound human prothrombin. *Thromb Haemost*. 1991; 66: 629–32.
- Giannakopoulos B, Passam F, Rahgozar S, et al. Current concepts on the pathogenesis of the antiphospholipid syndrome. *Blood.* 2007; 109: 422–30.
- Lozier J, Takahashi N, Putnam FW. Complete amino acid sequence of human plasma beta 2-glycoprotein I. Proc Natl Acad Sci USA. 1984; 81: 3640–4.
- 7. Bouma B, de Groot PG, van den Elsen JM, *et al.* Adhesion mechanism of human

beta(2)-glycoprotein I to phospholipids based on its crystal structure. *EMBO J.* 1999: 18: 5166–74.

- Schwarzenbacher R, Zeth K, Diederichs K, et al. Crystal structure of human beta2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome. *EMBO J.* 1999; 18: 6228–39.
- Hunt J, Krilis S. The fifth domain of beta 2-glycoprotein I contains a phospholipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. *J Immunol.* 1994; 152: 653–9.
- 10. Matsuura E, Igarashi Y, Yasuda T, et al. Anticardiolipin antibodies recognize beta

2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. *J Exp Med.* 1994; 179: 457–62.

- Igarashi M, Matsuura E, Igarashi Y, et al. Human beta2-glycoprotein I as an anticardiolipin cofactor determined using mutants expressed by a baculovirus system. *Blood.* 1996; 87: 3262–70.
- de Laat B, Derksen RH, Urbanus RT, et al. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood. 2005; 105: 1540–5.
- de Laat B, Derksen RH, van Lummel M, et al. Pathogenic anti-beta2-glycoprotein I antibodies recognize domain I of beta2-glycoprotein I only after a conformational change. *Blood.* 2006; 107: 1916–24.
- Kasahara H, Matsuura E, Kaihara K, et al. Antigenic structures recognized by anti-beta2-glycoprotein I auto-antibodies. Int Immunol. 2005; 17: 1533–42.
- Atsumi T, Tsutsumi A, Amengual O, et al. Correlation between beta2-glycoprotein I valine/leucine247 polymorphism and antibeta2-glycoprotein I antibodies in patients with primary antiphospholipid syndrome. *Rheumatology*. 1999; 38: 721–3.
- Amengual O, Atsumi T, Khamashta et al. The role of the tissue factor pathway in the hypercoagulable state in patients with the antiphospholipid syndrome. Thromb Haemost. 1998; 79: 276–81.
- Zhou H, Wolberg AS, Roubey RA. Characterization of monocyte tissue factor activity induced by IgG antiphospholipid antibodies and inhibition by dilazep. *Blood.* 2004; 29: 29.
- Raschi E, Testoni C, Bosisio D, et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. *Blood.* 2003; 101: 3495–500.
- Meroni PL, Raschi E, Testoni C, et al. Statins prevent endothelial cell activation induced by antiphospholipid (anti-beta2glycoprotein I) antibodies: effect on the proadhesive and proinflammatory phenotype. Arthritis Rheum. 2001; 44: 2870–8.
- Dunoyer-Geindre S, de Moerloose P, Galve-de Rochemonteix B, et al. NFkappaB is an essential intermediate in the activation of endothelial cells by antibeta(2)-glycoprotein 1 antibodies. *Thromb* Haemost. 2002; 88: 851–7.

- Espinola RG, Liu X, Colden-Stanfield M, et al. E-Selectin mediates pathogenic effects of antiphospholipid antibodies. J Thromb Haemost. 2003; 1: 843–8.
- Bohgaki M, Atsumi T, Yamashita Y, et al. The p38 mitogen-activated protein kinase (MAPK) pathway mediates induction of the tissue factor gene in monocytes stimulated with human monoclonal anti-beta2Glycoprotein I antibodies. Int Immunol. 2004; 16: 1633–41.
- Vega-Ostertag M, Harris EN, Pierangeli SS. Intracellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin. Arthritis Rheum. 2004; 50: 2911–9.
- Vega-Ostertag M, Casper K, Swerlick R, et al. Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies. Arthritis Rheum. 2005; 52: 1545–54.
- Simoncini S, Sapet C, Camoin-Jau L, et al. Role of reactive oxygen species and p38 MAPK in the induction of the proadhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int Immunol. 2005; 17: 489–500.
- Lopez-Pedrera C, Buendia P, Cuadrado MJ, et al. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-kappaB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum. 2006; 54: 301–11.
- Ma K, Simantov R, Zhang JC, et al. High affinity binding of beta 2-glycoprotein I to human endothelial cells is mediated by annexin II. J Biol Chem. 2000; 275: 15541–8.
- Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. *Blood.* 2005; 105: 1964–9.
- Pennings MT, van Lummel M, Derksen RH, et al. Interaction of beta2-glycoprotein I with members of the low density lipoprotein receptor family. J Thromb Haemost. 2006; 4: 1680–90.
- Ichikawa K, Khamashta MA, Koike T, et al. beta 2-Glycoprotein I reactivity of monoclonal anticardiolipin antibodies from patients with the antiphospholipid syndrome. Arthritis Rheum. 1994; 37: 1453–61.

- Matsuda M, Tsukiyama T, Bohgaki M, et al. Establishment of a newly improved detection system for NF-kappaB activity. *Immunol Lett.* 2007; 109: 175–81.
- Lind SE, Janmey PA. Human plasma gelsolin binds to fibronectin. J Biol Chem. 1984; 259: 13262–6.
- Beyaert R, Cuenda A, Vanden Berghe W, et al. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J. 1996; 15: 1914–23.
- Kwiatkowski DJ, Stossel TP, Orkin SH, et al. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. *Nature*. 1986; 323: 455–8.
- Vandekerckhove J. Actin-binding proteins. Curr Opin Cell Biol. 1990; 2: 41–50.
- Hartwig JH, Kwiatkowski DJ. Actin-binding proteins. *Curr Opin Cell Biol.* 1991; 3: 87–97.
- Meerschaert K, De Corte V, De Ville Y, et al. Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. EMBO J. 1998; 17: 5923–32.
- Goetzl EJ, Lee H, Azuma T, et al. Gelsolin binding and cellular presentation of lysophosphatidic acid. J Biol Chem. 2000; 275: 14573–8.
- Bucki R, Georges PC, Espinassous Q, et al. Inactivation of endotoxin by human plasma gelsolin. *Biochemistry*. 2005; 44: 9590–7.
- Chauhan VP, Ray I, Chauhan A, et al. Binding of gelsolin, a secretory protein, to amyloid beta-protein. *Biochem Biophys Res Commun.* 1999; 258: 241–6.
- Osborn TM, Dahlgren C, Hartwig JH, et al. Modifications of cellular responses to lysophosphatidic acid and plateletactivating factor by plasma gelsolin. Am J Physiol Cell Physiol. 2007; 292: C1323–30.
- Argraves WS, Suzuki S, Arai H, et al. Amino acid sequence of the human fibronectin receptor. J Cell Biol. 1987; 105: 1183–90.
- Hynes RO. Integrins: bidirectional, allosteric signaling machines. *Cell.* 2002; 110: 673–87.
- Meredith JE Jr, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. *Mol Biol Cell*. 1993; 4: 953–61.
- 45. Boudreau N, Sympson CJ, Werb Z, et al. Suppression of ICE and apoptosis

in mammary epithelial cells by extracellular matrix. *Science*. 1995; 267: 891–3.

- Sugahara H, Kanakura Y, Furitsu T, et al. Induction of programmed cell death in human hematopoietic cell lines by fibronectin *via* its interaction with very late antigen 5. *J Exp Med.* 1994; 179: 1757–66.
- Terui Y, Furukawa Y, Sakai T, et al. Up-regulation of VLA-5 expression during monocytic differentiation and its role in negative control of the survival of peripheral

blood monocytes. *J Immunol.* 1996; 156: 1981–8.

- Judware R, McCormick TS, Mohr S, et al. Propensity for macrophage apoptosis is related to the pattern of expression and function of integrin extracellular matrix receptors. Biochem Biophys Res Commun. 1998; 246: 507–12.
- Lutters BC, Meijers JC, Derksen RH, et al. Dimers of beta 2-glycoprotein I mimic the *in vitro* effects of beta 2-glycoprotein I-anti-beta 2-glycoprotein I antibody complexes. J Biol Chem. 2001; 276: 3060–7.
- Zeisel MB, Druet VA, Sibilia J, et al. Cross talk between MyD88 and focal adhesion kinase pathways. J Immunol. 2005; 174: 7393–7.
- Feagan BG, Greenberg GR, Wild G, et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med. 2005; 352: 2499–507.
- Gerlag DM, Borges E, Tak PP, et al. Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res. 2001; 3: 357–61.