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Brown adipose tissue (BAT) is proposed to maintain thermal homeostasis through
dissipation of chemical energy as heat by the uncoupling proteins (UCPs) present
in their mitochondria. The recent demonstration of the presence of BAT in humans
has invigorated research in this area. The research has provided many new insights
into the biology and functioning of this tissue and the biological implications of its
altered activities. Another finding of interest is browning of white adipose tissue (WAT)
resulting in what is known as beige/brite cells, which have increased mitochondrial
proteins and UCPs. In general, it has been observed that the activation of BAT is
associated with various physiological improvements such as a reduction in blood
glucose levels increased resting energy expenditure and reduced weight. Given the
similar physiological functions of BAT and beige/ brite cells and the higher mass of WAT
compared to BAT, it is likely that increasing the brite/beige cells in WATs may also lead to
greater metabolic benefits. However, development of treatments targeting brown fat or
WAT browning would require not only a substantial understanding of the biology of these
tissues but also the effect of altering their activity levels on whole body metabolism and
physiology. In this review, we present evidence from recent literature on the substrates
utilized by BAT, regulation of BAT activity and browning by circulating molecules. We
also present dietary and pharmacological activators of brown and beige/brite adipose
tissue and the effect of physical exercise on BAT activity and browning.

Keywords: brown fat, dietary additive, exercise, metabolism, hormones

INTRODUCTION

Given the widespread prevalence of obesity and associated diseases, efforts are underway to reduce
the body weight gain through modulating the energy intake and/or expenditure. A large portion of
the resting energy expenditure is spent on thermoregulation (Lee and Greenfield, 2015). Uncoupled
respiration – a process where the oxidative phosphorylation is uncoupled from ATP generation,
shivering thermogenesis, and diet-induced thermogenesis play an important part in thermal
homeostasis. Overall, thermogenesis accounts for about 15% of the daily energy expenditure (van
Marken Lichtenbelt and Schrauwen, 2011) or about 20% of the oxygen consumed (Rolfe and
Brown, 1997). Thus, activation of uncoupled respiration could be a useful strategy to counter
body weight gain. In mammals, brown adipose tissue (BAT) plays an important role in uncoupled
respiration. While some previous studies had shown the existence of BAT in adult humans (Heaton,
1972; Huttunen et al., 1981; Bouillaud et al., 1983), it was the (re)demonstration of active BAT in
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adult humans about 10 years ago (Nedergaard et al., 2007; Cypess
et al., 2009; Virtanen et al., 2009; Zingaretti et al., 2009) that has
greatly increased the research efforts to understand and modulate
this tissue. In humans, BAT is often seen in the cervical, upper
supraclavicular area, mediastinal and perirenal regions. Due to its
intense PET signal in the upper supraclavicular area (abbreviated
“USA”), it became popularly known as “USA” fat (Cohade et al.,
2003).

Brown adipose tissue plays an active role in thermoregulation
in adult humans (Chondronikola et al., 2016). Biochemical
and ultrastructural analyses identified that this tissue is rich
in mitochondria and possesses a unique protein called the
uncoupling protein 1 (UCP1). Other pathways, such as the
glycerol-3-phosphate shuttle (Anunciado-Koza et al., 2008) and
creatinine cycling (Kazak et al., 2015) may also contribute to
heat generation along with UCP1 mediated uncoupling. These
molecules provide the tissue with a thermogenic capacity which
helps in maintaining body temperature without the need to
shiver constantly. The heat thus generated is termed as non-
shivering thermogenesis (NST). Some recent review articles
have looked into the effect of various biochemical mediators
on UCP1 activity and molecular tools used to study UCP1
functioning (Klingenberg, 2017; Ricquier, 2017). Given the
potential of regulated uncoupling to dissipate energy, novel
chemical uncouplers are being investigated (Ost et al., 2017) in
other tissues such as WAT and skeletal muscle.

A lot of our understanding of BAT functioning comes from
rodent studies. In mice, the interscapular BAT (IBAT) is the
primary BAT depot, while brown adipocytes are also present
in the supraclavicular region (scBAT). Several mice depots with
topological similarities to human BAT-like and beige depots were
identified recently (Zhang et al., 2018). Another study has shown
that the gene expression pattern of mice scBAT was similar to that
of human scBAT (Mo et al., 2017).

Under prolonged cold conditions, the brown fat size and
activity increases, a term called BAT “recruitment.” BAT
recruitment is associated with increased proliferation and
differentiation of BAT precursor cells. Exposure to cold
also increases BAT volume and activity in humans (Blondin
et al., 2014) and also in individuals with obesity and type
2 diabetes (Hanssen et al., 2016). Increased sympathetic
nervous system (SNS) activity, including on cold exposure,
is a primary mechanism of BAT activation. Activated SNS
releases norepinephrine which acts on the beta-adrenergic
receptors on the BAT. In addition to epinephrine and
norepinephrine, dopamine stimulation of brown adipocytes
was also associated with increased oxygen consumption,
UCP1 protein and mitochondrial mass (Kohlie et al., 2017).
Prolonged exposure of mice to cold not only leads to brown
fat recruitment but also to appearance of white adipocytes
containing multilocular fat droplets and UCP1-expressing
mitochondria – a process called “browning” of the white
adipose tissue (WAT) depots. Brown-like adipocytes in WAT
can arise from several origins – through the development of
distinct subpopulations or through the trans-differentiation of
differentiated white adipocytes (Okamatsu-Ogura et al., 2018).
Additionally, the “brite” cells may also develop through the

bi-directional interconversion of some cells between brite and
white adipocyte phenotypes (Rosenwald et al., 2013). In spite
of many molecular similarities between the BAT and brite cells,
there is a differential expression of certain genes between BAT
and brite cell. These include metabolic proteins (e.g., Slc27a1),
inflammatory proteins (e.g., CD40 and CD137) and transcription
factors (Tbx15 and Zic1) (Waldén et al., 2012; Wu et al., 2012).
The gene expression profile of BAT in human infants resembles
that of the classical BAT (Lidell et al., 2013), though they also
express typical brite marker proteins TBX1 and CD137 (Sharp
et al., 2012). The BAT in the neck of adult humans contains a
mixture of classical brown and brite cells (Jespersen et al., 2013;
Lidell et al., 2013). While the expression of browning genes in
mice is greater in subcutaneous WAT (scWAT) compared to
visceral WAT (vWAT), an opposite pattern of browning gene
expression with vWAT having higher expression than scWAT
was observed in humans (Zuriaga et al., 2017).

Brown adipose tissue and UCP1 levels have been shown
to be involved in body weight regulation, glucose, and lipid
homeostasis in mice (Kontani et al., 2005; Feldmann et al.,
2009; Stanford et al., 2013). Mice strains which have a tendency
to be obese have comparable BAT levels and activity but
diminished browning of WAT depots (Guerra et al., 1998;
Xue et al., 2007). Interestingly, transplantation of BAT from
healthy mice into the visceral cavity of apoE–/– mice led
to a 20% reduction in atherosclerotic lesions (Kikai et al.,
2017). Similarly, transplantation of human beige tissue in mice
significantly improved their metabolic parameters (Min et al.,
2016). Obese humans have reduced BAT compared to those
with normal weight (Orava et al., 2013) and the amount of
detectable BAT correlated inversely with total, subcutaneous and
visceral adiposity (Saito et al., 2009). Individuals who are BAT-
positive have a reduced probability of type 2 diabetes and obesity
(Cypess et al., 2009). Another study employing retrospective
analysis of FDG-PET/CT scans of 4852 patients showed that
BAT-positive patients had lower visceral, subcutaneous and
liver fat content (Brendle et al., 2018). BAT-positive individuals
have better insulin-stimulated glucose disposal compared to
BAT-negative individuals (Chondronikola et al., 2014). Among
patients with cardiovascular comorbidities, those with higher
BAT fraction had better metabolic profiles (Franssens et al., 2017).
The activated BAT was shown to be associated with reduced
arterial inflammation and fatty liver (Nam and Jun, 2017). Even
in newborns, those with the higher BAT at birth were shown
to have lesser fat-gain over the period of 6 months (Entringer
et al., 2017). Activation of BAT by cold-exposure was shown to be
associated with improved glucose uptake, insulin sensitivity and
reduced plasma FFA levels (Iwen et al., 2017), and lesser central
adiposity (Green et al., 2017). Activated BAT is also associated
with other physiological benefits such as amelioration of obesity-
associated reduction in male fertility (Liu H. et al., 2017) and
improved menstrual regularity in rat model of Polycystic ovary
syndrome (PCOS) (Yuan et al., 2016). Thus, BAT recruitment has
been suggested as an anti-obesity agent in humans (Yoneshiro
et al., 2013). Individuals with active BAT weighed on an average
4 kg less than BAT negative individuals (Lee et al., 2010).
Leaner individuals had about 50% higher UCP1 mRNA levels.
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Interestingly, the UCP1 levels accounted for about 50% of BMI
variance (Lee et al., 2011).

Given the strong correlation between active BAT and positive
metabolic and physiological responses, there is an intense interest
in understanding the biology and regulation of this tissue. The
level of interest can be gleaned from the fact that the search for
the term “brown adipose tissue” in Pubmed produced a list of
over 10000 articles, most of which were published in the past
decade. While there are many reviews that cover specific aspects
of brown and brite adipocyte biology and some of the recent ones
are referenced in this review, our aim is to provide an integrative
overview of the recent literature and current understanding of
brown/brite adipocyte biology and functioning.

SUBSTRATES UTILIZED BY BROWN FAT
FOR HEAT PRODUCTION

Brown fat is a metabolically active tissue that can metabolize
a variety of substrates for the production of heat. A major
source for short-term activity is the intracellular lipid that
is stored in the form of multi-locular droplets. However,
knockout of essential enzymes of lipolysis (Schreiber et al.,
2017; Shin et al., 2017) indicate that lipolysis is not essential
for cold-induced thermogenesis in mice. However, inhibition of
intracellular lipolysis by feeding nicotinic acid was associated
with a diminished increase in cold-induced BAT activity in men
(Blondin et al., 2017a).

Brown fat can also metabolize a variety of extracellular
substrates, primary among which is glucose. The rapid uptake
of glucose by this tissue is the reason for its prominent display
during the FDG-PET imaging. It has been suggested that the
glucose can be used for de novo fatty acid synthesis which is then
channeled to a pool of triacylglycerol (TAG) which is rapidly
hydrolyzed to yield fatty acids that can serve as substrates for
increased thermogenesis (Irshad et al., 2017). Circulating lipids
and lipoproteins are also utilized by BAT (Bartelt et al., 2011;
Berbée et al., 2015; Khedoe et al., 2015; Blondin et al., 2017b).
The clearance of glucose and triglycerides by cold-activated BAT
can account for about two-thirds of total increase in substrate
clearance (Bartelt et al., 2011). Circulating acylcarnitines (Simcox
et al., 2017), as well as lipoproteins (Hoeke et al., 2016) can
also be utilized by activated BAT as substrates. Lipid oxidation
was shown to be important for BAT thermogenic function
(Gonzalez-Hurtado et al., 2018). A correlation between BAT
activity and serum HDL cholesterol levels has been reported
(Bartelt et al., 2017). Thus, the BAT, when activated, could
be an important organ for clearance of glucose and lipid
species.

CIRCULATING MODULATORS OF
BROWN ADIPOSE ACTIVITY AND
BROWNING

Several previous and recent studies have shown that BAT
activation and WAT browning are regulated by the actions of

various hormones. The regulation of BAT activity and browning
by hormonal mediators was the subject of some recent review
articles (Hu and Christian, 2017; Rodríguez et al., 2017; Ludwig
et al., 2018). In this section, we present some of the recent
literature reports on BAT regulation, linking those to the
overall understanding of BAT physiology and function. Figure 1
provides an overall picture of the regulation of brown fat activity
and browning by hormones and circulating factors.

Hyperinsulinemia, induced by daily injection of insulin, was
associated with a reduction in IWAT and IBAT respiratory activity
(Dallon et al., 2018). Leptin, a hormone released by WAT and
known for its appetite suppressing effects, was shown to increase
SNS activity to BAT (Enriori et al., 2011). However, the IBAT
SNS activity was shown to be not necessary for leptin-induced
weight loss (Côté et al., 2018). Proopiomelanocortin (POMC)
and Agouti-related protein (AgRP) neurons play a role in leptin-
mediated increased SNS activity to BAT, while the AgRP are the
major regulators of increased SNS activity to the inguinal fat in
response to leptin in mice (Bell et al., 2018). Significantly reduced
levels of the β3-adrenergic receptor, PGC-1α, and UCP1, were
found in the leptin-deficient ob/ob (–/–) mice (Martins et al., 2017)
which were improved by injection of capsules containing poly-
L-lysine-embedded engineered 3T3-L1 adipocytes constitutively
expressing leptin (DiSilvestro et al., 2016).

Increased thyroid hormone activity is known to
promote energy expenditure. One study showed that both
hypothyroidism, as well as hyperthyroidism, led to increased
WAT browning in mice (Weiner et al., 2016). The study showed
that hyperthyroid mice had higher BAT mass and activity than
the hypothyroid mice. The thyroid hormone T3 can increase
SNS activity to BAT, increasing BAT activity (López et al., 2010).
Treatment with T4 or administration of T3 to VMH was shown
to be associated with the browning of WAT (Martínez-Sánchez
et al., 2017a). In humans too, the cold-induced increase in energy
expenditure was shown to be associated with circulating T3
levels (Gavrila et al., 2017). The action of T3 on BAT activity
was shown to be mediated by a reduction of endoplasmic
reticulum stress in the VMH (Martínez-Sánchez et al., 2017b).
Angiotensin type 2 receptor (AT2R) was shown to play a role
in T3-induced upregulation of browning genes in WAT (Than
et al., 2017) and an AT2R agonist was shown to increase WAT
browning. On the other hand, deleting the AT1aR was shown
to be associated with IWAT browning (Tsukuda et al., 2016).
Injection of angiotensin 1–7 peptide through a micro-osmotic
pump was shown to increase in BAT size and UCP1 levels as
well as increase thermogenesis in subcutaneous WAT without
affecting UCP1 levels there (Morimoto et al., 2018). A thyroid
receptor beta (TR-β) specific agonist GC-1 was shown to increase
energy expenditure and prevent weight gain in rats (Villicev et al.,
2007). The molecular mechanisms involved in the TH-induced
increase in thermogenesis was reviewed in Weiner et al. (2017)
and involves both direct activation of thyroid hormone receptors
in the adipose tissues as well as indirectly through the activation
of hypothalamic neurons. A recent study has identified the
carbohydrate response element binding protein (ChREBP) as
one of the targets of T3 which regulates the UCP1 expression in
brown adipocytes (Katz et al., 2018).
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FIGURE 1 | Circulating regulators of BAT and their origin. Hypothalamus plays an important role in regulating brown fat activity through regulating the sympathetic
nervous system activity. Several circulating regulators impact BAT functioning and browning. Many of these act through increasing the sympathetic nervous activity
to BAT and WAT, increasing UCP1 expression.

Sex hormones play an important role in regulating brown fat
function. As several studies have shown that females have higher
BAT activity than males, it is likely that estrogen levels impact
BAT activity (Frank et al., 2018). Reduced levels of estradiol
(E2), an ovary-derived hormone, are associated with reduced
BAT activity (López and Tena-Sempere, 2016) and E2 treatment
can increase BAT activity by activating hypothalamic AMPK
(López and Tena-Sempere, 2017). The roles of E2 in regulating
thermogenesis were recently reviewed (González-García et al.,
2017). Pharmacological activation of estrogen receptor β(ER-
β) was shown to increase BAT volume and energy expenditure
(Ponnusamy et al., 2017). Progesterone, a hormone associated
with gestation, was shown to cause a brown-to-white conversion
of BAT in mice (McIlvride et al., 2017). Removal of BAT prior to
conception led to maternal and fetal hyperlipidemia and larger
fetuses. Inhibiting follicle stimulating hormone (FSH) through a
polyclonal antibody was shown to induce beiging, activate BAT
and thermogenesis and reduce WAT (Liu P. et al., 2017). BAT
was shown to have the highest expression of Follistatin (Fst),
previously known as FSH-suppressing protein. Overexpression
of Fst was shown to increase BAT mass as well of browning of
WAT (Singh et al., 2017). These results suggest that FSH has an
inhibitory effect on BAT activity and browning. Castration was
shown to increase browning of IWAT in mice (Hashimoto et al.,
2016).

Some other hormones or peptides have been reported to
affect BAT functioning. These include ghrelin, which negatively

correlated with BAT activity (Chondronikola et al., 2017) and
erythropoietin (EPO), which was shown to promote thermogenic
activity (Kodo et al., 2017).

Small molecule circulating regulators of BAT physiology
include hydrogen sulfide (H2S) (Soriano et al., 2018), pyruvate
(Soto et al., 2018) and abscisic acid (Sturla et al., 2017).

Brown fat is also a source of various BATokines which can
impact other organs. FGF21 is a well-studied batokine, though
it can also be released by liver and WAT. FGF21 can act on
BAT and WAT through the central nervous system and increase
the SNS activity, leading to weight loss and increased energy
expenditure (Bookout et al., 2013; Owen et al., 2014; Douris et al.,
2015). FGF21 can also act in an autocrine manner on the tissue.
FGF21 can also lead to browning of WAT through increased
PPAR-γ (Dutchak et al., 2012) and PGC1-α activity (Fisher et al.,
2012). A clinical trial showed a reduction in body weight and
improvements in lipid metabolism in obese patients on treatment
with LY2405319, analog of FGF-21 (Gaich et al., 2013). Batokines
and their effects have been reviewed in Villarroya et al. (2017).

DIETARY AND PLANT-DERIVED
MOLECULES

Alterations in diets and major dietary components have been
shown to be associated with variation in the activity of BAT.
Figure 2 depicts some of the food items whose derived
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FIGURE 2 | Food-derived molecules shown to be involved in BAT activation and browning, and their sources. Several diet-derived molecules have been shown to
activate brown fat and browning. These are obtained from both plant and animal products.

compounds have been shown to increase BAT activity and
browning of WAT.

Macromolecular Composition of Diets
The macromolecular composition of diets can affect BAT activity
and browning. A comparison of several diets showed that a high
protein diet was associated with higher amounts of BAT (de
Macêdo et al., 2017). However, other studies have shown that
diets low in protein diet were associated with increased BAT
activity and browning (Pereira et al., 2017; Kitada et al., 2018).
Some studies have observed that the source of protein affects diet-
induced thermogenesis (DIT) and BAT UCP1 levels (Ezoe et al.,
2016; Li T. et al., 2018). The BAT response on a high fat diet was
time-dependent – shorter (2–4 week) high-fat diet increase UCP1
levels in BAT, while longer feeding with HFD (20 weeks) bringing
them back to normal levels (Ohtomo et al., 2017).

Surprisingly, sucrose intake was shown to increase BAT
activity (Maekawa et al., 2017; Velickovic et al., 2018). Addition of
dietary fiber to a high-fat diet (HFD) increased lipolysis and the
levels of various thermogenic proteins in WAT (Han S.-F. et al.,
2017).

Dietary Components Known to Increase
BAT Activity
Long-term feeding of specific diets may cause alterations in
the BAT composition and activity. Our work has shown that
a high fat, low carbohydrate ketogenic (KG) diet (Srivastava
et al., 2013) increased BAT volume and the expression of

mitochondrial proteins in BAT in mice. A novel dietary additive,
which can be given along with a normal carbohydrate-level
diet and yet can increase blood ketone levels, was developed
in the lab of R.L. Veech. This ketone ester, when given to
mice in liquid diets, produced blood ketone (β-hydroxybutyrate)
levels much greater than that achieved with the KG diets
without the need to restrict carbohydrate intake (Srivastava et al.,
2012). The increased ketone levels were associated with several
positive metabolic effects. These include a significant activation
of BAT and mitochondrial biogenesis in this tissue, increased
UCP1 levels in WAT. Dietary administration of medium chain
triglycerides (MCTs) (Zhang et al., 2015) as well as MCT-enriched
diacylglycerol oil (MCE-DAG) (Kim et al., 2017), which also
increase blood ketone levels, was shown to activate BAT. Azelaic
acid, a pharmacological activator of Olfr544, was shown to
induce ketogenesis in the liver and increased UCP1 expression
in the BAT (Wu et al., 2017). All these results indicate that
increased blood ketone levels can modulate brown fat activity.
Other diet-derived small molecule BAT activators have also been
identified. These include butyrate (Li Z. et al., 2018), acetate
(Sahuri-Arisoylu et al., 2016) and succinate (Mills et al., 2018).
These studies suggest that elevation of TCA cycle metabolites
can trigger changes in BAT activity. Table 1 lists some of the
diet-derived small molecules shown to increase BAT activity and
browning of WAT.

There is a significant interest in identifying dietary additives
that can improve BAT activity. Several dietary BAT modulators
have been identified. Figure 2 provides a summary of reported
dietary molecules that increase BAT activity and browning.
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TABLE 1 | Some diet-derived small molecules known to activate brown fat and/or
browning.

Molecule Structure Reference

Acetic acid Sahuri-Arisoylu et al., 2016

Butyric acid Khan and Jena, 2016;
Li Z. et al., 2018

Ketone bodies Srivastava et al., 2012, 2013

Succinic acid Mills et al., 2018

Feeding mice a diet rich in fish oil (Bargut et al., 2016), olive
oil (Shin and Ajuwon, 2018) or PUFAs (Crescenzo et al., 2017;
Pahlavani et al., 2017; Ghandour et al., 2018) or conjugated
linoleic acid (Shen and McIntosh, 2016) was shown to activate
BAT and browning in rodents.

Chronic cold exposure was associated with increased bile
acid production by the liver and modulation of the bile acid
production modulated the thermogenic response (Worthmann
et al., 2017). Studies have shown activating effect of bile acids on
BAT activity in rodents (Watanabe et al., 2006; Eggink et al., 2018)
and humans (Broeders et al., 2015).

Supplementation with non-pungent capsinoids (compounds
associated with the hotness of peppers) (Yoneshiro et al., 2012) as
well as grains of paradise (Sugita et al., 2013) was associated with
increased thermogenesis. Activation of the transient receptor
potential cation channel subfamily V member 1 (TRPV1) by
these compounds (Baskaran et al., 2016) leads to increased SNS
activity to induce BAT (Saito and Yoneshiro, 2013). Selective
ablation of inguinal WAT (IWAT) sensory neurons by capsaicin
treatment was shown to reduce the norepinephrine turnover
not only in the IWAT but also in the IBAT, and reduce UCP1
expression in IBAT (Nguyen et al., 2018). Similarly, loss of
TRPV2 was associated with impaired thermogenic response to
β-adrenergic stimulation and poor cold tolerance (Sun et al.,
2016a, 2). Expression of TRPV2 is significantly increased during
brown fat differentiation, and TRPV2-agonists inhibited the
brown adipocyte differentiation (Sun et al., 2016b). Human
studies have shown that increased energy expenditure following
capsaicin treatment was observed only in individuals with the
active BAT (Sun et al., 2018). Supplementation of vanillic acid
also increases BAT activity (Jung et al., 2018). These studies
have shown that BAT plays a role in the increased energy
expenditure following intake of “hot” foods and have elucidated
the underlying mechanisms, providing new targets to modulate
BAT activity.

Several studies have shown that intake of tea-derived
compounds is associated with increased thermogenic capacity in
mice (Neyrinck et al., 2017) and humans (Nirengi et al., 2016;
Yoneshiro et al., 2017).

Resveratrol (RSV), a flavonoid found on the skin of grapes,
and related compounds have been shown to activate BAT and
increase thermogenesis (Andrade et al., 2014; Ku et al., 2016;
Li et al., 2017) likely through AMPKα activation (Wang et al.,
2017). A combination of RSV with Quercetin, active compound

from onion peels (Arias et al., 2017), and pentamethyl quercetin
(PMQ) (Han Y. et al., 2017) was shown to induce BAT activation
and browning.

Dietary supplementation of raspberry to mice on a high-fat
diet (Xing et al., 2018) or oral treatment with raspberry ketone
(Leu et al., 2018) was recently shown to increase beiging through
AMPK activation (Zou et al., 2018).

While the list given in this section is not exhaustive, it is clear
that BAT and WAT are responsive to diet composition, type of
lipid and to several natural compounds. This also calls for an
appropriate control diet as well as a careful comparison of the
macro and micronutrient composition of diets while designing
dietary studies involving BAT activators.

PHARMACOLOGICAL ACTIVATORS OF
BROWN AND BEIGE FAT

Several pharmacological activators of brown fat and browning
have been reported. These include β3-adrenergic receptor agonist
(Cypess et al., 2015), PPAR-γ activators (Xie et al., 2017; Loh
et al., 2018; Merlin et al., 2018), PGC-1α stabilizers (Pettersson-
Klein et al., 2018), PPAR-α agonist (Rachid et al., 2018), AMPK
activators (Kim et al., 2016, 2018; Tokubuchi et al., 2017) and
PDE5 inhibitors Sildenafil and Tadalafil (Maneschi et al., 2016; Li
S. et al., 2018). Several other pharmacological modulators of BAT
activity and browning have been reported. While some of them
are expected from our understanding of brown fat biology, the
other modulators identified could be used to gain further insights
into the mechanisms of regulation of brown fat activation and
browning.

EFFECT OF PHYSICAL EXERCISE ON
BAT AND BROWNING

Physical exercise can have beneficial effects on general
metabolism and physiology. Several rodent studies showed
increased BAT activity and browning of WAT in rodents on
exercise (De Matteis et al., 2013; Aldiss et al., 2017; Peppler et al.,
2018). However, a systematic review concluded that regular
exercise is not a major stimulus for increased BAT activity even
though an increase may be observed in animals consuming
high-fat diets or with low endogenous UCP1 levels (Flouris et al.,
2017). Most human studies have shown a negative correlation
of BAT activity with exercise (Motiani et al., 2017; Trexler et al.,
2017). Endurance-trained athletes have reduced BAT activity
compared to sedentary controls (Trexler et al., 2017). Endurance
training was also not associated with beiging of abdominal or
subcutaneous WAT (Tsiloulis et al., 2018). Two weeks of exercise
training decreased insulin-mediated glucose uptake by BAT in
healthy middle-aged men (Motiani et al., 2017). Thus, human
studies have generally shown that metabolic benefits of exercise
are not mediated by increased BAT activity and browning.

Several exercise-induced mediators have been suggested to
play a role in browning of WAT in rodents. These include
myokines such as Irisin, a hormone released by skeletal muscles
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whose levels increase following exercise (Boström et al., 2012),
IL-6 (Knudsen et al., 2014) and β-amino isobutyric acid (BAIBA)
(Roberts et al., 2014), etc. While the initial findings of existence
of irisin were questioned due to non-specificity of the antibodies
(Atherton and Phillips, 2013; Albrecht et al., 2015), a mass
spectrometry-based analysis confirmed the presence of irisin in
human plasmas and its increase following exercise (Jedrychowski
et al., 2015). In humans, habitual physical activity was shown to
be positively correlated with serum irisin levels (Buscemi et al.,
2018) but a lower active BAT (Singhal et al., 2016). A systematic
review of the literature has concluded that it may not be possible
to conclude an association between physical activity and Irisin
or PGC-1α because of lack of precision of available methods
(Dinas et al., 2017). Thus, further research is needed to evaluate
the effects of myokines on brown fat physiology and browning
process, taking into consideration that trained individual may
show a divergent response than untrained/sedentary individuals
(Vosselman et al., 2015).

CONCLUSION AND FUTURE
DIRECTIONS

It is now clear that BAT is a metabolically active tissue and
when activated, can clear very high levels of glucose and lipids
on a per weight tissue basis. Increased BAT activity is associated
with several metabolic benefits such as reduced body weight and
improved glucose control. The beiging of WAT holds promise to
further increase the metabolic benefits.

An important, less-emphasized factor regulating the activity
of this tissue is the ambient temperature. Most of our
knowledge has come from studies conducted under cold
conditions which lead to chronic BAT activation. Housing
at or near thermoneutral temperature is associated with
significantly reduced basal metabolic rate and UCP1 levels
and higher body fat (Shi et al., 2017). Chronic exposure to
thermoneutral and warm conditions significantly reduce the
levels and activity of this tissue in rodents (Cui et al., 2016)
and humans (Turner et al., 2016). Warmer temperatures are
also associated with higher incidences of diabetes and glucose
intolerance in humans (Blauw et al., 2017). As most humans
live at or near thermoneutrality, only a small fraction of the
total BAT may be active in humans under normal living
conditions. Similarly, ambient temperature may also affect the
response to “inducers” of BAT activity. For BAT research to be
applicable to humans, a careful choice of ambient temperature is
needed.

While physical exercises of different modalities are generally
associated with improved metabolic parameters, studies generally
suggest a divergent response of WAT browning to exercise in
rodents vs. humans. Human studies have generally shown a
reduced BAT activity and no significant effect on browning,
while rodent studies have generally shown browning of WAT
by exercising. It is plausible that this divergent response may
be related to the different ambient temperatures, along with
other factors such as greater genetic and dietary diversity
of humans compared to the mice studied. Nonetheless, the
tantalizing possibility exists of further improving the benefits of
exercise in humans through a parallel activation of browning by
environmental, dietary or pharmacological treatments. Various
exercise-induced factors have also been identified, with the goal
to extend the metabolic benefits of exercising to sedentary
individuals.

Given our increased understanding of the metabolic effects of
the activated BAT, novel approaches to increase its activity are
being explored. Using optical and electrical genetic stimulation of
specific neurons in the sympathetic nervous offers an interesting
option (François et al., 2017) to modulate the activity of BAT
or to induce browning in specific depots. Oral genetic therapy
to manipulate BAT has been reported in mice (Huang et al.,
2016) and was able to increase BAT mass and activity. Similarly,
stem cells derived from rat and human WAT were successfully
differentiated into a three dimensional BAT using hydrogels
(Yang et al., 2017). The effect of gut microbiota on BAT
activity and browning is increasingly being recognized (Moreno-
Navarrete et al., 2018) and would likely be a fertile area of
research.

Novel small molecule activators of BAT and brite cells
are being developed, along with novel delivery systems such
as functionalized nanoparticles (Xue et al., 2016) and lipid
nanocarriers (Zu et al., 2017). Such delivery systems hold
promise for precise and efficient delivery of bioactives to their
target site(s). Similarly, several dietary additives that activate
BAT and browning have been reported. However, long-term
studies with pharmacological and dietary treatments are needed.
Future studies can also investigate the combined dietary and
pharmacological treatments. Further research is likely to generate
more information on BAT and brite biology and its interaction
with various other physiological processes.
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