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ABSTRACT
The oral pathogen Porphyromonas gingivalis is one of the major periodontal agents and it has been
recently hailed as a potential cause of the autoimmune disease rheumatoid arthritis. In particular,
the peptidylarginine deiminase enzyme of P. gingivalis (PPAD) has been implicated in the
citrullination of certain host proteins and the subsequent appearance of antibodies against
citrullinated proteins, which might play a role in the etiology of rheumatoid arthritis. The aim of this
study was to investigate the extracellular localization of PPAD in a large panel of clinical P. gingivalis
isolates. Here we show that all isolates produced PPAD. In most cases PPAD was abundantly present
in secreted outer membrane vesicles (OMVs) that are massively produced by P. gingivalis, and to
minor extent in a soluble secreted state. Interestingly, a small subset of clinical isolates showed
drastically reduced levels of the OMV-bound PPAD and secreted most of this enzyme in the soluble
state. The latter phenotype is strictly associated with a lysine residue at position 373 in PPAD,
implicating the more common glutamine residue at this position in PPAD association with OMVs.
Further, one isolate displayed severely restricted vesiculation. Together, our findings show for the
first time that neither the major association of PPAD with vesicles, nor P. gingivalis vesiculation per
se, are needed for P. gingivalis interactions with the human host.
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Porphyromonas gingivalis is a Gram-negative, anaerobic
bacterium and a keystone oral pathogen [1,2]. Albeit
mainly studied for its status as causative agent of periodon-
titis [3], in recent times, newer discoveries have suggested a
role for this bacterium in the etiopathogenesis of the auto-
immune disease rheumatoid arthritis (RA) [4–9]. RA is a
chronic inflammatory disorder that affects the synovium,
the tissue enveloping the synovial joints, and if untreated
leads to loss of mobility [10¡12]. Severe inflammatory
responses cause synovial membranes thickening and bone
resorption which, in turn, result in deformed joints.

The etiology of rheumatoid arthritis has not been fully
comprehended, but it appears that loss of tolerance
towards citrullinated proteins plays a significant role
[4,8,13,14]. Particularly, autoantibodies against citrulli-
nated host proteins, known as ACPAs (anti-citrullinated
protein antibodies), have a remarkable specificity for RA
[15,16]. This discovery has shed new light on the link
between periodontitis and RA. P. gingivalis, in fact, is

currently the sole prokaryote reported to secrete an
enzyme capable of converting arginine residues to citrul-
line [4,13,14]. In contrast, humans possess several of such
enzymes, collectively called peptidylarginine deiminases
(PADs). Remarkably, P. gingivalis’ PAD (PPAD) is evolu-
tionary unrelated to human PADs. Despite the shared
enzymatic activity, PPAD and the human PADs appear
to exhibit different substrate specificities. Particularly,
PPAD preferentially citrullinates terminal arginine resi-
dues of a polypeptide chain, which hints at a relationship
with secreted proteases of P. gingivalis, the so-called gingi-
pains RgpA and RgpB in particular. These gingipains
cleave proteins at arginine residues, thereby creating a
perfect target for PPAD. Notably, PPAD was previously
shown to be present in two variants, an outer membrane
(OM)-bound state and a soluble secreted state [17,18].
This distinct feature of PPAD appears directly related to
the transport system responsible for its export, the Por
secretion system [17,19]. During export, a fraction of the
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PPAD is attached to the OM via A-LPS anchoring, which
involves cleavage of the C-terminal Por-specific signal
peptide by the putative sortase PorU [17,20–22]. More-
over, PPAD was proposed to reside also in outer mem-
brane vesicles (OMVs). These secreted nanostructures
result from a specific OM blebbing process that, in the
case of P. gingivalis, is not yet fully understood [2]. OMVs
are generally produced as single bilayer membranous
structures for various functions, such as shuttling their
cargo of proteins to the outside of the cell or delivering it
to targets in the extracellular milieu [23]. For P. gingivalis,
the OMVs were suggested to have a role in pathogenesis,
considering that their cargo appears to be mainly com-
posed of virulence factors [2,23,24].

Thus far, it was not knownwhether clinical P. gingivalis
isolates invariably express and secrete PPAD. The aim of
this study was therefore to investigate the extracellular
localization of PPAD in a large panel of clinical P. gingiva-
lis isolates. This was first tested by Western blotting using
unfiltered growth medium fractions of 93 clinical isolates
and two type strains. In principle, such growth medium
fractions contain both soluble secreted proteins and
OMV-associated proteins. Indeed, PPAD was detectable
in the growth media of all isolates, and the PPAD signal
was absent from samples of two genetically engineered
PPAD deletion mutants (Figs. 1 and S1). Unexpectedly,
two classes of isolates (hereafter referred to as PPAD
“sorting types”) were distinguished based on different
PPAD banding patterns. The first, most common, sorting
type I produces a major PPAD species of »75–85-kDa,
running as a broad band on lithium dodecyl sulfate
(LDS)-PAGE, plus a minor PPAD species of »47-kDa.

Some type I isolates also produce a third PPAD species of
»60-kDa (Figs. 1 and S1). The PPAD sorting type II, rep-
resented by only 9 isolates, displays massively reduced lev-
els of »75–85-kDa species. Further, the type II isolates
produce the »47-kDa species plus a PPAD species of
»37-kDa. Some also produce relatively small amounts of
the aforementioned»60-kDa species.

To verify whether any of the secreted PPAD species
are also present in cells of P. gingivalis, we analyzed cells
of P. gingivalis isolates belonging to either PPAD sorting
type by Western blotting (S2 Fig.). Cells of the type I iso-
lates, displayed only the »75–85-kDa species. In con-
trast, cells of the sorting type II isolates (513324 and
513044) displayed only the »37-kDa PPAD species. Of
note, cells of both sorting types lack the »47-kDa PPAD
species detected in growth medium fractions, showing
that this species represents a soluble secreted form of
PPAD. These findings are fully consistent with the previ-
ous reports by Konig et al. [25,26] and Shoji et al.
[25,26], who proposed that the 75–85-kDa species repre-
sents the A-LPS-modified OM-bound form of PPAD,
while the 47-kDa species represents a soluble secreted
form of PPAD. The A-LPS modification would explain
the thick banding pattern displayed by the 75–85-kDa
PPAD species upon LDS-PAGE (Fig. 1).

Previous analyses have shown that P. gingivalis secretes
OMVs [2,23,24,27]. It is thus conceivable that the secreted
75–85-kDa A-LPS-modified PPAD species is associated
with OMVs. To test this idea, we analyzed OMVs
collected from spent growth medium fractions by
ultracentrifugation for the presence of PPAD. Indeed, the
75–85-kDa species of type I and II isolates was pelleted
with the OMVs and no longer detectable in the superna-
tant after ultracentrifugation (Fig. 2). Consistent with the
literature data, the 47-kDa species of PPAD fractionated
with the ultracentrifugation supernatant showing that
this is a soluble secreted form of PPAD. Notably, the
37-kDa PPAD species displayed a dual localization, being
detectable both in the OMV and supernatant fractions
(Fig. 2). This OMV association of the 75–85-kDa and
37-kDa PPAD species is consistent with the detection of
these species in P. gingivalis cells (S2 Fig.).

Considering that the presence of the 75–85-kDa spe-
cies in the medium is associated with OMVs, it was con-
ceivable that the sorting type II might relate to impaired
production of OMVs. This was investigated by inspect-
ing the possible presence of OMVs in ultracentrifuged
cell-free growth medium fractions of three type II iso-
lates using transmission electron microscopy (TEM).
OMVs were observed in all three samples, as was the
case for the type strain W83 and a clinical isolate, both
belonging to sorting type I (Fig. 3). Of note, the sorting
type II isolate MDS33 displayed very low amounts of

Figure 1. Distinction of PPAD sorting types I and II P. gingivalis iso-
lates were cultured for four days in BHI medium. Subsequently,
bacterial cells were separated from the growth medium, and
growth medium fractions, containing OMVs, were used for immu-
noblotting with PPAD-specific antibodies. (A) P. gingivalis refer-
ence strain W83 and the isogenic PPAD deletion mutant. (B) P.
gingivalis clinical isolates. Names of sorting type II isolates are
underlined. Molecular weights of marker proteins and different
PPAD species are indicated.
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OMVs, showing that massive vesiculation, as displayed
by all other investigated clinical P. gingivalis isolates, is
not an essential trait for survival of this pathogen in the
human gingiva. Furthermore, observed variations in the
vesiculation levels and OMV shapes (Fig. 3) did not cor-
relate with the sorting types of the respective strains.

The strikingly different PPAD banding patterns of the
two sorting types prompted further analyses to verify
whether other secreted proteins might display similar
distinctive features. As shown by Western blotting, the
extracellular appearance of the OM protein Omp41 and
the secreted gingipains Kgp, RgpA and RgpB did not fol-
low the classification of the PPAD sorting types (S3 and
S4 Figs.). Notably, the isolate MDS33 displayed low levels
of vesiculation but, for unknown reasons, the levels of
Omp41 secreted into the growth medium were still com-
parable with other isolates. Together, these observations
imply that the type I and II sorting types represent a spe-
cific shared feature of the respective PPAD proteins.

P. gingivalis is renowned for its high proteolytic activ-
ity, partially due to its secreted gingipains. As shown by
Western blotting, the two sorting types did not display
major differences in gingipain secretion (S4 Fig.). To
exclude the possibility that the suppressed appearance of
the 75–85-kDa PPAD species in the type II isolates is
due to proteolytic activity, type II isolates were grown in
the presence of EDTA-free or regular protease inhibitors.
Intriguingly, this resulted in decreased levels of the
secreted 75–85-kDa species, relative to the 47-kDa and

37-kDa species (Figs. 4 and S5), suggesting a reduced
export of PPAD or a reduced level of post-translational
modification rather than reduced proteolysis. Together,
these observations imply that the suppressed appearance
of the 75–85-kDa species in type II isolates is probably
not due to gingipain activity. Conversely, the possible
involvement of proteases that are not inhibited by
standard protease inhibitors in a conversion of the
75–85-kDa species to, for example, the 37-kDa species
cannot be excluded.

Since the PPAD sorting type is apparently not related
to proteolysis or strain-specific differences in OMV for-
mation, we investigated whether particular residues in
PPAD can be associated with sorting type I or II. To this
end, the nine sorting type II isolates were sequenced and
the encoded PPAD proteins were compared to those of
previously sequenced type I isolates [28]. This showed a
high degree of PPAD conservation (S5 Table) [28]. Resi-
dues involved in catalysis (Asp130, His236, Asp238,
Asn297 and Cys351) or substrate specificity (Arg152 and
Arg154) [29] are invariably present. Compared to the
type I strain W83, the highest numbers of PPAD amino
acid substitutions are observed in the type II isolates
MDS33 and 512919 (S5 Table). However, only the
Q373K substitution is distinctive for all identified type II
isolates. This implies that Gln373 is needed to produce
the dominant 75–85-kDa PPAD species associated with
OMVs. Notably, 3D modelling maps Gln373 to the outer
surface of the PPAD protein (Fig. 5A), where this

Figure 2. Association of PPAD species with OMVs Growth medium fractions (designated ‘supernatant’) of P. gingivalis sorting type I and II
isolates were subject to ultracentrifugation. Subsequently, the supernatant and pellet fractions were analyzed by immunoblotting as
indicated for Fig. 1. Samples relating to the reference strain W83 and ATCC 33277, the respective PPAD deletion mutants, and sorting
type I and II isolates are indicated with names of type II isolates underlined. Molecular weights of marker proteins and different PPAD
species are indicated.
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residue’s side-chain has the potential to interact with
other molecules or OMVs. Interestingly, the Q373K sub-
stitution alters the electrostatic surface potential of the
protein (Fig. 5B and C). Of note, several substitutions
observed for type II isolates map to positions that allow
interactions with the outer environment. In particular,
substitutions at positions 77, 153, 203, 231, 232, 235, 291
and 335 map to the surface of PPAD (Fig. 5D). In fact,
these substitutions are located in the vicinity of the major
catalytic residue Cys351, suggesting possible alterations

in the catalytic activity or substrate specificity of the
respective PPAD molecules (Fig. 5D). This is surmised
by the massive variations in electrostatic surface poten-
tial high-lighted through 3D modeling (Fig. 5E and F).

In conclusion, PPAD is expressed by all 93 investi-
gated P. gingivalis isolates, demonstrating that this is a
highly conserved feature of P. gingivalis [28]. Interest-
ingly, we identified two different PPAD sorting types
based on the PPAD banding patterns upon LDS-PAGE.
Both sorting types produce the 47-kDa soluble secreted

Figure 3. OMV formation by sorting type I and II isolates of P. gingivalis Electron micrographs of vesiculating cells of (A) the P. gingivalis
type strain W83, and (B) the sorting type II isolate MDS33. Electron micrographs of OMVs collected from (C) strain W83, (D) the sorting
type I isolate 505700, and the sorting type II isolates (E) 505759 and (F) 512915.
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form of PPAD. However, the 82 type I isolates produce
high levels of a presumably A-LPS-modified 75–85-kDa
OMV-associated PPAD species, which is detectable only
in very low amounts in the type II isolates. Conversely,
the type II isolates produce a 37-kDa form of PPAD that
is detectable both in OMVs and in the OMV supernatant
after ultracentrifugation. At present, the origin of the
37-kDa species is enigmatic, but it could be related to
proteolysis during its export from the cytoplasm. If
so, this cleavage is not affected by inhibitors that inacti-
vate the most common classes of proteolytic enzymes,
although it is difficult to exclude the possibility that the
activity of some proteases was not or only partially inhib-
ited under the present experimental conditions. Impor-
tantly, appearance of the 37-kDa species in type II
isolates cannot be correlated to the production of gingi-
pains, especially since gingipains are abundantly pro-
duced by all type I and II isolates. On the other hand, the
levels of the 75–85-kDa PPAD species are associated
with a Q373K substitution, where Gln373 is diagnostic

for the type I sorting phenotype and Lys373 for the type
II phenotype. As the 75–85-kDa species is allegedly A-
LPS-modified, our findings implicate Gln373 in this par-
ticular modification. In this respect, it is noteworthy that
A-LPS modification occurs upon C-terminal cleavage by
the sortase-like transpeptidase PorU [17,20–22]. To date,
the precise mechanism involved in A-LPS modification
is not entirely clear, but the available data suggest that
PorU replaces the Por-specific C-terminal signal peptide
with an A-LPS-related modification through transpepti-
dation at a Ser residue [22]. In turn, this implies that the
surface-exposed Gln373 residue is probably not a target
for PorU-mediated A-LPS modification. Indeed, in a pre-
vious study we have shown the presence of unmodified
Gln373 containing peptides by mass spectrometry,
although these may have been derived from the 47-kDa
PPAD species [30]. Moreover, the detection of minor
amounts of the 75–85-kDa species in type II isolates
suggest that A-LPS modification is not fully impaired
when PPAD bears the Q373K substitution. Altogether,
these observations imply that Lys373 interferes with the
A-LPS modification of PPAD, possibly through the
altered surface charge as the lysine side chain is positively
charged while that of glutamine is neutral. Although this
is an attractive idea, further studies combining site-spe-
cific mutagenesis of PPAD and subcellular localization
experiments are needed to define the precise roles of
Gln373 and Lys373 in the sorting of PPAD.

Lastly, the level of OMV-bound PPAD does not appear
to directly correlate with a diagnosis of RA in the host.
Yet, it has to be noted that RA is a multi-factorial disease
and, as such, the PPAD sorting type of a P. gingivalis iso-
late might still be a factor that contributes to the overall
citrullination burden. In particular, OMVs are generally
considered to serve as delivery vehicles for virulence fac-
tors that are readily internalized by phagocytic cells, espe-
cially neutrophils and macrophages. In turn, this could
lead to the presentation of citrullinated peptides, leading
to the formation of ACPAs. In this case, sorting type II P.
gingivalis isolates would have a lowered propensity for
generating ACPAs. This is an intriguing hypothesis that
merits further research, because it would mean that the
bacterial machinery for A-LPS modification of PPAD
could be a druggable target for the fight against RA.

Materials and methods

Bacterial strains and culture conditions – 90 P. gingivalis
isolates (S1 Table) were collected in Groningen, the
Netherlands, from patients with a periodontal diagnosis,
of which eight were confirmed to have RA. Additionally,
the study isolates included one P. gingivalis isolate from
a healthy carrier, and two P. gingivalis type strains (W83

Figure 4. Protease inhibitors suppress the formation of a 75–85-
kDa PPAD species P. gingivalis sorting type II isolate 20663 was
grown in the presence or absence of protease inhibitors as indi-
cated. Growth medium fractions, containing OMVs, were ana-
lyzed by immunoblotting as indicated for Figure 1. Molecular
weights of marker proteins and different PPAD species are
indicated.
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and ATCC 33277), with the respective engineered PPAD
deletion mutants [31]. As controls, two unrelated oral
pathogens, Prevotella intermedia and Fusobacterium
nucleatum, were included. Each isolate was grown anaer-
obically as previously described [30, the cultures being
inoculated with 4 days old colonies on blood agar plates.

Escherichia coli BL21 was cultured aerobically in
Lysogeny Broth (LB) at 37�C and with shaking (250
rpm), or on LB agar at 37�C. Lactococcus lactis was
grown without shaking in M17 broth supplemented with
0.5% glucose and 5 mg/mL chloramphenicol at 30�C, or
on M17 agar plates with the same supplements.

Antibody production – Rabbit polyclonal antibodies
were raised at Eurogentec (Seraing, Li�ege, Belgium) for
detection of PPAD, Omp41, Kgp, and RgpA + RgpB. To
this end, the PPAD gene from reference strain W83 was
cloned and expressed without its signal sequence in Lac-
tococcus lactis PA1001[31,32], using plasmid pNG4210
[33,34] and primers P1LF and P1LR (S2 Table). To raise
Omp41-specific antibodies, the omp41 gene of strain
W83 was amplified with primers P1F and P1R (S2

Table). To raise Kgp-specific antibodies, the region of
the kgp gene from P. gingivalis ATCC 33277 encoding
the catalytic domain was amplified with primers P2F and
P2R (S2 Table). To raise antibodies recognizing both
RgpA and RgpB (hereafter named RgpA/B), the region
of the rgpA gene from P. gingivalis ATCC 33277 encod-
ing the catalytic domain of RgpA that is nearly identical
to the catalytic domain of RgpB [35,36], was amplified
with primers P3F and P3R (S2 Table). The resulting
omp41, kgp, rgpA/B fragments were all cloned and
expressed in E. coli BL21 using pET26B+. Expression of
PPAD in L. lactis was induced overnight with nisin as
described [33], while expression of Omp41 or the Kgp
and RgpA catalytic domains in E. coli was induced with
Isopropyl-b-D-thiogalactopyranoside for 2 h. After
induction, cells were collected by centrifugation and dis-
rupted by sonication (L. lactis) or bead-beating (E. coli)
in binding buffer (S3 Table). Cell lysates were added to
500 mL of HisLinkTM Protein Purification Resin (Prom-
ega, USA) and incubated at room temperature for 30–
60 min. To remove non-specifically bound proteins, the

Figure 5. Position of amino acid substitutions in PPAD and their impact on the electrostatic potential of the protein (A) 3D-structural ribbon
representation of the PPAD protein from P. gingivalis reference strain W83, showing in yellow surface-exposed amino acid residues that
have been substituted in PPAD proteins from other P. gingivalis sorting type II isolates. Catalytic residues of PPAD are shown in green.
(B and C) Electrostatic potential maps showing, respectively, the PPAD proteins of strain W83 and the sorting type II isolate MDS33 from
the same perspective. The two maps display the difference in electrostatic potential (red represents -5 KT/e and blue +5 KT/e), and the
respective Gln or Lys residues at position 373 are indicated. (D) 3D-structural ribbon representation of the PPAD protein from P. gingiva-
lis strain W83, showing surface-exposed amino acid residues that have been substituted in other PPAD proteins (marked in yellow) of
sorting type II isolates from the perspective of the catalytic site. The catalytic residues are marked in green. (E) Electrostatic potential
map of the PPAD protein of strain W83, displaying all the residues subject to substitutions in sorting type II isolates. (F) Electrostatic
potential map of the PPAD protein from the sorting type II isolate MDS33.
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resin was washed thrice with 10 mL wash buffer (S3
Table) and transferred to a column. Elution was per-
formed by collecting four fractions: two with 1.6 mL of
elution buffer 1 and two with 1.6 mL of elution buffer 2
(S3 Table). The eluted proteins in immunization buffer
(S3 Table) were used to immunize rabbits. Of note,
RgpA/B antibodies binding the catalytic domain of
RgpA will also bind RgpB, but the two proteins can be
distinguished by virtue of their different molecular
weights.

Analysis of secreted proteins – Proteins secreted into
the culture medium (2 mL) were collected through 10%
TCA precipitation as described [30]. Subsequently, they
were separated by LDS-PAGE (NuPAGE gels, Life
Technologies) [30]. Western blotting analysis was per-
formed using AmershamTM Protran® 0.45 mm nitrocel-
lulose membranes (GE Healthcare Life Sciences, Little
Chalfont, Buckinghamshire, UK) and antibodies spe-
cific for PPAD (GP2448), Omp41 (GP2451), or gingi-
pains. After overnight incubation with 5% skim milk in
phosphate-buffered saline (PBS), membranes were
washed with PBS-Tween20 (PBS-T) and incubated with
primary anti-PPAD, Omp41, Kgp or RgpA/B antibod-
ies in a 1:10000 dilution. Following one-hour incuba-
tion, membranes were washed four times for 5 min
with PBS-T before being incubated for 45 min with a
goat anti-rabbit secondary antibody IRDye® 800CW
conjugate (LI-COR Biosciences, Lincoln, NE, USA) at a
1:10000 dilution. Afterward, membranes were washed
four times in PBS-T and twice in PBS, before scanning
with an Odyssey Infrared Imaging System (LI-COR
Biosciences).

Collection of OMVs – To collect OMVs, 2 mL bacterial
culture aliquots were centrifuged at 16100 x g, 4�C, for
20 min to separate cells from OMVs in the growth
medium. 500 mL aliquots of the resulting supernatant
were subjected to ultracentrifugation at 213000 x g, 4�C,
for 2 h in an Optima MAX-XP ultracentrifuge (Beckman
Coulter, Brea, CA, USA) using an MLA-80 fixed angle
rotor. The resulting pellet containing OMVs was resus-
pended in 500 mL of PBS with 5 mM MgCl2. When
needed, the vesicle fraction was concentrated by precipi-
tation with 10% TCA.

Protease inhibition – Proteolytic activity was inhibited
by growing bacteria in presence of the cOmplete Mini or
cOmplete EDTA-free protease inhibitors (Roche Diag-
nostics GmbH, Mannheim, Germany), according to
manufacturer’s specifications.

Transmission electron microscopy (TEM) – Bacteria.
2 mL bacterial culture aliquots were centrifuged at
16100 x g, 4�C, for 20 min. The resulting pellets were
resuspended in pre-fixative (S3 Table) for 20 min at
room temperature. Subsequently, bacteria were pelleted

again and resuspended in fixative (S3 Table) for 2 h.
After washing with 0.1 M sodium cacodylate, bacteria
were pelleted in 2% low-melting-point agarose. After
2 h, 4�C treatment with post-fixative (S3 Table), bacte-
ria were dehydrated using ethanol and embedded in
EPON resin (Serva, Heidelberg, Germany). 60 nm sec-
tions were cut with an ultramicrotome UC7 (Leica,
Vienna, Austria) and contrasted using 2% uranyl ace-
tate, followed by Reynolds lead citrate. Images were
recorded with a FEI Cm100 transmission electron
microscope operated at 80 KV using a Morada digital
camera.

OMVs. OMVs were collected from 8 mL bacterial cul-
tures as indicated above. Upon ultracentrifugation, pel-
lets were resuspended in 20 mL PBS. When needed, these
samples were further diluted 1:50. 10 mL of vesicle sus-
pension were placed on Formvar coated TEM grids.
After 10 min, liquid was drained using filter paper and
grids were placed upside down onto drops of 2% ammo-
nium molybdate for 2 min, and transferred to a drop of
water for 30 sec. Subsequently, liquid was drained with
filter paper and grids were air-dried before TEM exami-
nation as specified above.

Sequence analyses – Total DNA from the nine P. gingi-
valis sorting type II strains was sequenced as described
[28]. PPAD gene sequences were retrieved from the nine
assembled genomes, seven previously sequenced P. gingi-
valis genomes [28], and 15 P. gingivalis genomes in Gen-
Bank (S4 Table). PPAD genes and their deduced amino
acid sequences were aligned using the MAFFT v7 web
server [37]. The sequence reads obtained from whole
genome sequencing were submitted to the European
Nucleotide Archive under project PRJEB20287 with acces-
sion numbers: ERS1718891, ERS1718892, ERS1718893,
ERS1718894, ERS1718895, ERS1718896, ERS1718897,
ERS1718898, and ERS1718899.

Modeling of PPAD three-dimensional (3D) struc-
tures – 3D structures of PPAD were initially modeled
by homology through the online server SWISS-
MODEL [38]. To consider possible steric changes in
the proteins due to point mutations, geometrical
optimizations of the structures were performed using
Hyperchem V.8 [39]. This minimization of energy
was performed ab initio with the Polak-Ribiere opti-
mization method and 0.1 kcal/(A

� ¢mol) as termination
parameter. Quality assessment of final structures was
achieved using QMEAN [40] and PROCHECK [41].
Visualization and localization of substitutions were
performed in Pymol [42]. To acquire the electrostatic
potential surface, Poisson-Boltzmann electrostatics
calculations were applied to optimized PDB structures
using an AMBER force field and the PDB2PQR server
[43].
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