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Abstract: When healthcare professionals have the choice between several drug treatments 
for their patients, they often experience considerable decision uncertainty because many 
decisions simply have no single “best” choice. The challenges are manifold and include that 
guideline recommendations focus on randomized controlled trials whose populations do not 
necessarily correspond to specific patients in everyday treatment. Further reasons may be 
insufficient evidence on outcomes, lack of direct comparison of distinct options, and the need 
to individually balance benefits and risks. All these situations will occur in routine care, its 
outcomes will be mirrored in routine data, and could thus be used to guide decisions. We 
propose a concept to facilitate decision-making by exploiting this wealth of information. Our 
working example for illustration assumes that the response to a particular (drug) treatment 
can substantially differ between individual patients depending on their characteristics (het-
erogeneous treatment effects, HTE), and that decisions will be more precise if they are based 
on real-world evidence of HTE considering this information. However, such methods must 
account for confounding by indication and effect measure modification, eg, by adequately 
using machine learning methods or parametric regressions to estimate individual responses to 
pharmacological treatments. The better a model assesses the underlying HTE, the more 
accurate are predicted probabilities of treatment response. After probabilities for treatment- 
related benefit and harm have been calculated, decision rules can be applied and patient 
preferences can be considered to provide individual recommendations. Emulated trials in 
observational data are a straightforward technique to predict the effects of such decision rules 
when applied in routine care. Prediction-based decision rules from routine data have the 
potential to efficiently supplement clinical guidelines and support healthcare professionals in 
creating personalized treatment plans using decision support tools. 
Keywords: claims data, decision-making, heterogeneous treatment effects, effect 
modification, confounding by indication, prediction-based decision rules

Introduction
While it is commonly agreed that informed medical decisions require profound 
understanding of specific benefits and risks of treatments, conclusive information 
for a specific situation is often lacking.1 As an example, this was the case in about 
half of the 3000 treatment options compiled in the BMJ Clinical Evidence com-
pendium 2013 with another seven percent requiring (individualized) trade-offs 
between benefits and harms.2 Thus, when prescribing drugs, clinicians constantly 
need to make treatment decisions for patients without knowing the best choice of 
often multiple available options.3 This is especially important if different patients 
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respond differently to distinct treatment options, ie, if 
treatment effect measure modifiers4 such as patient char-
acteristics can cause heterogeneous treatment effects 
(HTE, for a comprehensive list of abbreviations, see also 
Suppl. Table 1).5 As a consequence, most patients under 
a given treatment will not experience the average effect.6 

In addition, individually varying probabilities of treatment 
response and also of potential treatment-related harm may 
have to be weighed against each other.7,8 In such common 
situations, decisions cannot simply rely on averaged 
results of clinical trials,6,9 but rather require individualized 
decisions to avoid mistakes and are thus depending on the 
physicians’ preference when personalizing their decisions 
(precision medicine).10

A central goal of precision medicine is therefore the 
derivation of individualized treatment rules (ITR) that 
maximize the benefit of respective treatments 
in situations with HTE.11,12 ITR thus go beyond classical 
subgroup analyses, which generally stratify by only one or 
two characteristics to define treatment recommendations.6 

In ITR, estimated individual treatment responses are used 
to determine the allocation rule according to the most 
desirable predicted outcome.13 There are numerous exam-
ples for heterogeneous responses to treatment that hold the 
promise for improvements through ITR: a relevant exam-
ple is the use of antiplatelet drugs such as prasugrel and 
clopidogrel in secondary prevention after acute coronary 
syndromes,14 the choice of which depends on individual 
patient characteristics. The greatest benefit of prasugrel 
over clopidogrel was observed in patient subgroups with 
diabetes and myocardial infarction (STEMI) in whom 
ischemic events appear to be more effectively reduced 
than in others without concurrently increasing the risk 
for major bleeding.15 In contrast, older patients (despite 
concomitantly increased effectiveness), underweight 
patients, or patients with a history of stroke or transient 
ischemic attack experienced a net harm by prasugrel due 
to major bleeding events. While the resulting complexity 
in treatment decision can be mapped by simple decision 
rules, more complex situations (such as those associated 
with multimorbidity) can hardly be addressed by general-
izing guidelines, especially if numerous diverse subgroup 
effects contribute to individual treatment success. When 
multiple subgroup variables impact the outcome, it will be 
difficult to define a single reference class that should guide 
the choice of therapy (“reference class problem”).16 What 
would be needed instead is a kind of “multivariate” indi-
vidualized risk estimate,6 which can be used for model- 

assisted decision support by personalized evidence target-
ing the particular healthcare situation.

Admittedly, treatment decisions have always been per-
sonalized, simply because they are made for a particular 
patient. They could become more precise though and 
potentially result in improved effectiveness and increased 
safety, if clinicians integrated not only signs and symp-
toms, generalized treatment guidelines, personal experi-
ence, and patient preferences, but also exploited real- 
world evidence from routine data that more closely reflect 
the inter-patient variability and can thus better account for 
individual patient conditions. Data from randomized con-
trolled trials (RCTs) do not necessarily provide the best 
basis for investigating HTE, especially if a subpopulation 
is excluded or underrepresented in these trials.8,17 While 
HTE occurs independent of the data source or quality of 
evidence,6,8 it is debatable whether highly controlled 
experimental evidence can be reasonably generalized to 
fit a particular situation in day-to-day healthcare.6 In con-
trast, routine data collected under exactly these circum-
stances contain relevant decision factors and could thus 
enable predicting individual treatment responses and defin-
ing suitable decision rules under a causal inference 
framework.18 Hence, while modelling HTE is a well- 
established technique to derive ITR from mainly RCT 
data, it is rarely applied to non-randomized observational 
data, in which both effect measure modifiers and con-
founding variables can be present. Moreover, observa-
tional data such as health insurance data have rarely been 
used to generate missing evidence in drug therapy and 
have not yet been used to provide individualized sugges-
tions for specific patients. The novelty of this approach 
thus consists of two aspects. 1) By combining several well 
evaluated, emerging knowledge-generation techniques, 
information is to be extracted from health insurance claims 
data that is hardly ever used for this purpose. 2) In addi-
tion, it opens up the additional possibility of developing 
several competing drug therapy proposals, which subse-
quently allow for individualization to the needs and pre-
ferences of the patient.19

In our methodological perspective, we show how prin-
ciples from epidemiology (eg, causal inference frame-
work), statistics, and machine learning can be used to 
inform clinical medical decisions about drug treatments. 
In the end, the derived information can be integrated into 
clinical decision support systems, such as electronic tools 
that guide physicians during the prescribing process by 
offering relevant information either on specific risks 
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arising from the prescribed drugs or by suggesting ade-
quate treatment choices and anticipated benefits. Hence, 
the clinical decision support tool as such offers 
a structured framework that helps to make clinical treat-
ment decisions according to standardized principles and, 
thus, reduce variability introduced by variable knowledge 
and performance of healthcare professionals. This makes it 
possible to generate more than one treatment option and to 
create a list of possible treatment strategies with benefits 
and risk, which helps to reconcile patients’ preferences 
with individualized treatment options. Along this way, 
we address the special aspects of the analysis of observa-
tional data and present an exemplary situation typical for 
this field of research, which can be readily adopted in 
analyses for the improvement of daily healthcare (see 
also Suppl. Figure 1). We adapt an established simulation 
framework for a data-generating process involving con-
founding by indication and effect measure modification. 
We then apply state-of-the-art methods for simultaneous 
confounding adjustment, HTE identification, and deriva-
tion of ITR as the critical steps to obtain useful predictions 
for clinical decision support.

State-of-the-Art for Developing 
Prediction-Based 
Recommendations
Prediction models attempt to predict a future health state 
of a patient on the basis of the individual’s current health 
condition. They are called prognostic if they include 
patient characteristics to calculate probabilities for 
a future outcome.20 If they additionally include informa-
tion influencing the prognosis (eg, treatments), they are 
called predictive models and patient variables that modu-
late the effect of treatment effects are called predictive 
variables.21 This means that the effect measure of 
a (pharmacological) treatment and also the probability of 
achieving a clinical outcome under these treatments varies 
individually according to a patient’s health condition or 
further modifiers. In turn, outcome predictions for indivi-
dual patients could nicely support and facilitate clinical 
decision-making by suggesting, which patient should be 
treated with a particular drug.5 Good prediction model 
accuracy generally ensures good performance of the asso-
ciated ITR.11 If individuals respond differently to given 
treatments, such HTE will yield distinct response probabil-
ities whereupon ITR can be defined. In practice, though, 
clear rules based on these probabilities are often lacking. 

Moreover, even a predictive model will only become use-
ful once clear decision rules for the clinical context are 
set.22 To achieve this goal, we provide a working example 
for individually varying response probabilities due to HTE 
and apply ITR to these probabilities to decide, which 
treatment should be preferentially recommended.

Numerous methodological approaches to estimate HTE 
and define ITR exist and comprehensive reviews can hardly 
keep pace within this vibrant area of research.23 Among the 
multifaceted methods are penalized regression,24 random 
forests,25 Bayesian additive regression trees 
(BART),12,13,26,27 or other machine learning methods as 
recently summarized.28 However, methods applied to obser-
vational data must appropriately handle selection bias, which 
is all the more relevant in routine claims data, where treat-
ments are administered to patients for a specific reason (ie, the 
medical indication and co-morbidities).27 Thus, the indica-
tion for treatment (and physician knowledge and experience) 
leads to a selective prescription and confounding by indica-
tion can inherently arise if the decision for a particular treat-
ment is also related to the prognosis (ie, benefit and risk of the 
outcome).8,29

In the next subsections, we highlight the need for 
confounder adjustment during HTE exploration, show 
how individualized recommendations can be obtained, 
and explain how model-based decision rules would influ-
ence the frequency of future clinical events once 
implemented.

Addressing Confounding and Effect 
Measure Modification
When models are derived from or applied to observational 
healthcare data, confounding and effect measure modifica-
tion can affect their validity and thus require special atten-
tion. Confounding occurs when treatment allocation 
depends on a patient's condition that is also related to the 
outcome of interest.30 As a result, such confounding by 
indication can distort the studied drug effect on the out-
come if not adequately accounted for. In theory, the actual 
drug effect is determined by the results a patient would 
achieve with the different treatment options. However, we 
do not know what outcome a particular patient would 
experience under the alternative treatment option, nor can 
we derive it from averaged treatment effects if treatment 
allocation was not random. Thus, the underlying problem 
can be regarded as a missing-data problem because we can 
only observe the outcome for patients with actually used 
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drugs (formalized in the Roy-Rubin-model31,32). Formally, 
we are thus interested in outcomes Yi of each individual 
i under a standard treatment (Ti = A) or an alternative (Ti = 
B) and henceforth denote them Yi (A) and Yi (B). The (true) 
treatment effect for an individual i would correspond to the 
individual treatment effect (ITE), though not directly 
observable and denoted as

ITE ¼ Yi Bð Þ � Yi Að ÞITE ¼ Yi Bð Þ � Yi Að Þ (1) 

Assuming that individual i actually received treatment B, 
Yi (A) is unobservable and called the counterfactual. While 
it is impossible to calculate the comparisons from 
Equation (1), one can instead derive the average treatment 
effect (ATE) from group means defined as

ATE ¼ E Yi Bð Þ � Yi Að Þ
� �

¼ E Y jBð Þ � E Y jAð Þ (2) 

A randomized experiment would provide an unbiased esti-
mate of the ATE, whereas an observational study with 
confounding by indication would provide biased estimates 
if treatment allocation was not random but rather depended 
on patient characteristics with prognostic impact on the 
outcome. By weighting (or matching) patients according to 
their propensity (score) for being treated with the respec-
tive drug, this source of bias can be reduced by adjusting 
treatment effect estimates for covariate imbalances 
between patients treated with drug A or B (ie, treatment 
allocation in dependence of covariates X). Treatment 
recommendations can be based on ATE when response- 
modifying patient characteristics are absent.33

Effect measure modification is another fundamental 
issue to be considered in observational data.34 The ITE 
estimate for an individual i (Equation (1)) by calculating 
the ATE (Equation (2)) from balanced or weighted groups 
assumes that all patients respond in the same way (except 
for unexplained random variability/error). This may not 
apply if the clinical response is modulated by other (obser-
vable) variables Z (called effect modifiers) and if the 
individual patient deviates significantly from the average 
through his set of modifiers.33 A simple example is the 
different response to prasugrel across several subgroups, 
which can be attributed to effect modifiers (eg, age, 
weight, and medical history). More complex cases are 
often not well described, also because they neither have 
been identified nor comprehensively evaluated nor ade-
quately reported. To provide an initial glimpse into this 
emerging field of research, Table 1 lists further candidate 
effect modifiers extracted from the literature. It should be 
noted that effect measure modification can arise from both 

varying baseline risks (making an averaged treatment 
more or less effective) and varying effectiveness itself.6

In many cases, ATE will result in a potentially inaccu-
rate estimate of individual responses. To account for an 
effect measure modification, we can condition the ATE to 
the effect modifiers Z to obtain the conditional average 
treatment effect (CATE) by

CATE ¼ E Yi Bð Þ � Yi Að ÞjZ ¼ z
� �

(3) 

Which is achieved by predicting the respective outcomes 
(Y�i ) depending on the effect modifiers Z as predicted 
individual treatment effect (PITE):

PITEi ¼ E Y�i jZ ¼ zi;;T ¼ B
� �

� E Y�i jZ ¼ zi;;T ¼ A
� �

(4) 

To illustrate the two concepts of confounding and effect 
measure modification, we adopted the simulation frame-
work proposed by Anoke and co-authors.26 We acknowl-
edge that a real-data example would yet require 
pre-validated exposure, covariate, and outcome definitions, 
and would require that HTE are present and are suffi-
ciently large to impact differential ITR (see also Suppl. 
Figure 1). By simulating such a setting with a known data- 
generating process, we can be sure to have met these 
requirements and can readily interpret its results. In parti-
cular, we simulated binary outcomes in dependence of 
nine covariates acting as (continuous) confounders (X), 
(binary) effect modifiers (Z), or both in 1500 virtual 
patients (Figure 1). Thus, the data presented in Figures 1 
and 2 originate from a simulation study, where treatment 
allocation may depend on covariates (Ptreatment = expit(l1) 
with expit(x) = ex/(1 + ex) = 1/(1 + e−x) as the logistic 
function and the linear predictor l1 as a combination of 
covariate influences). Likewise, the likelihood for the bin-
ary outcome may be defined by a similar linear predictor 
(Poutcome = expit(l1)) including the treatment (main) effect 
T, further (prognostic) covariates (X and Z), and finally 
predictive covariates as indicated by product terms T · 
Z (ie, in a multiplicative interaction). The source code 
with actual parameters and the simulated data set are 
available upon request from the first author. In brief, the 
simulated main treatment effect is identical in all scenar-
ios, but is further modulated by complementary interaction 
effects with the effect measure modifiers. In Figure 1, the 
net treatment effect is visualized by the different event 
proportions attributed to the red and blue bubbles indicat-
ing treatments A and B, respectively. The corresponding 
odds ratio (OR) is proportional and may differ from raw 
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analyses and multivariate analyses adjusted for confound-
ing (first column of the categorical x-axis). Subgroups 
defined by effect modifiers Z can show pronounced devia-
tions from averaged mean effects in case of HTE presence, 
which can be further distorted by confounding.

Deriving Individualized Treatment Rules
Whenever a prescriber expects that a certain treatment 
option is more effective than another, confounding by 
indication occurs.8 Physicians are more likely to select 
treatment options with larger expected benefit, smaller 
treatment-related harm, and a favourable benefit–risk 
ratio. If a patient risk profile will modify treatment effects 
and will thus cause or contribute to interpatient response 
differences, the crucial patient variables will act as con-
founders and effect modifiers (ie, representing the most 
probable scenario D in Figure 1).34

It is therefore essential to account for confounding by 
indication and effect measure modification when estimating 
the CATEs or predicting ITEs from observational data 
(Equations (3) and (4)). While propensity scores represent 
a well-established strategy to adequately deal with 

confounding, effect measure modification needs to be accu-
rately quantified to obtain individual response probabilities to 
possible treatment options. The resulting response probabil-
ities for a given patient can be compared to estimate where 
treatment benefit is largest. The comparison of the individual 
response probabilities can be termed benefit score.35

In order to quantify effect measure modification and 
estimate benefit scores, the literature offers a wide range of 
regression techniques or supervised learning methods in 
statistics and machine learning.28 Basic (S-learner or 
T-learner) and advanced approaches (X-learner) have 
already been introduced and are promising options to 
quantify effect measure modification.5,25,26 The 
T-learner25 approach fits “two” regression models or (ran-
dom-forest) trees for patient subgroups treated with either 
option A or B and thus yields corresponding outcome 
probabilities. This results in two probabilities of outcome 
for each patient, one estimated for the treatment actually 
received and one for the treatment with the alternative 
option (which provides the potential outcome). The differ-
ences between the two probabilities are the expected treat-
ment benefits or risks for individual patients based on their 

Table 1 Examples for Candidate Effect Modifiers Identified from the Literature

Drug (Class) Potential Effect Modifiers Major Adverse Events Exemplary 
Reference(s)

Anticoagulants (oral) History of thromboembolism 

Co-medication

Thromboembolic events 

Major bleeding

[54,55]

Antidepressants Sex Healthcare utilisation (eg, 

hospitalizations)

[56]

Antidiabetics History of cardiovascular disease Major cardiovascular events [57]

Antithrombotic drugs/antiplatelets (eg, 

prasugrel)

Co-medication, age 

Diabetes

Major bleeding 

Major cardiovascular events

[15,58,59]

Beta-Blockers Age 

Heart failure after myocardial 

infarction

Cardiovascular events 

Mortality

[60,61]

Drugs acting on the renin-angiotensin- 

aldosterone-system

Previous stroke 

Age

Cardiovascular events 

Mortality

[62,63]

Disease-modifying anti-rheumatic drugs Sex 

Disease duration

Non-persistence as a proxy for 

treatment failure

[64]

Statins Chronic kidney disease/dialysis 

Age

Cardiovascular events [65,66]

Tyrosine kinase inhibitors Co-medication (eg, proton-pump 

inhibitors)

Mortality [67]

Note: The listed examples were identified from a systematic literature search which was adapted from Schandelmaier and co-workers68 and extended by adding search 
terms for the respective drug class.
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covariates.36 In addition to differences in probabilities, the 
extended X-learner approach also considers differences 
between potential and observed outcomes to provide final 
response estimates.25 Another basic approach called 
S-learner uses only a “single” estimator to derive response 

probabilities for all treatment options, for example derived 
from a single parametric model or single random forest.26 

In such parametric models, HTE can be characterized by 
the interaction of the treatment with (one or more) patient 
characteristics.

Figure 1 A simulation study to illustrate the concept of confounding by indication and effect measure modification. 
Notes: Presented data originate from a simulation of binary outcomes in dependence of nine covariates acting as (continuous) confounders (X), (binary) effect modifiers (Z), 
or both in 1500 virtual patients. The simulation framework thus addresses a typical situation of observational data from health insurance claims. The panels below show the 
results for each simulation scenario (A–D), where event numbers (predicted in adjusted analyses) are given within circles referring to both treatment options A (red) and B 
(blue) (odds ratios were derived from logistic regression models, the size of the circles is proportional to the absolute numbers of patients, whereas no statistical 
comparison between the groups is shown).
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In our example, we apply the framework proposed by 
Chen and co-authors,35 which uses benefit scores to rank 
patients according to their PITEs (Equation (4)). In 

a penalized regression model, the treatment-covariate 
interactions are selected by the so-called “least absolute 
shrinkage and selection operator” (LASSO).37 To derive 

Figure 2 Prediction of individual treatment effects and recommendations from individualized treatment rules. 
Notes: Conditional average treatment effect (CATE) estimation was conducted via LASSO-based penalized regression to provide the predicted individual treatment effect 
(PITE) expressed as benefit scores.24,35 A decision rule would suggest selecting treatment A if the benefit score is greater than zero. Classifying individuals according to their 
benefit scores will yield differing group means in the variables that are effect modifiers (top). Thus, patients under current treatment B (indicated in blue color) may also be 
recommended the alternative; this applies to those patients having received treatment B whose benefit scores are greater than the decision threshold set to zero (mid). This 
ITR therefore defines an action space where outcome frequencies above the threshold could be presumably reduced by selecting the alternative. Likewise, this also applies 
to the opposite case, where such a re-assignment of treatment could reduce outcome frequencies suggesting option B at benefit scores below the threshold of zero (mid, 
bottom).
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PITEs, these treatment-covariate interactions are the only 
component beyond the main effect to obtain individual 
response probabilities, which we denote as benefit scores. 
These benefit scores thus indicate which patients rather 
profit from treatment options A or B. In the parametric 
regression approach, they can stem from a linear predictor 
with LASSO-selected effect modifiers.24 Given our known 
data-generating process with linear effect terms, we chose 
the parametric regression approach also for simplicity. It 
should be noted that non-linear effects can potentially be 
predicted much better by machine learning approaches 
such as random forests, but especially BART12,13,26,27 as 
one of the most prominent techniques when deriving ITR 
from predictions in situations with HTE.13

Figure 2 illustrates ITE predicted from a penalized 
regression model and the resulting treatment recommenda-
tions for our exemplary situation with two treatments 
A and B based on the simulated data from simulation 
setting D (Figure 1). The benefit scores indicate individual 
responses to both treatments and guide treatment recom-
mendations based on a decision threshold. By decision 
threshold, we mean that a certain recommendation results 
from a cut-off value in the individual response probability. 
If benefit scores are used to define subgroups, they typi-
cally differ in group means of the variables identified as 
effect modifiers (Figure 2 top). Outcome frequencies 
might differ across the range of calculated benefit scores 
for each observed treatment (middle), suggesting that par-
tial re-assignment of these options could have prevented 
clinical events (bottom).

These aspects directly relate to ITR defined as recom-
mendations that are expected to maximize patient benefit 
when applied to a population. In its most basic form, an 
ITR could mean to exclusively address beneficial effects 
and use a decision threshold above and below which 
different treatments are suggested. However, treatment 
assignment should also consider associated risks. For 
example, a certain treatment option might bring 
a particular patient substantial expected benefit, but 
might concurrently increase his likelihood for adverse 
drug events. In this case, both probabilities (ie, for benefit 
and harm) are important for decision-making. In addition 
to the benefit score, treatment effect models should also be 
developed for adverse events thus providing a “harm 
score” following similar principles. Then, both scores 
can be weighed against each other with a threshold to be 
(empirically) defined. This was applied to a situation for 
individually weighing the benefit and harms of intensified 

blood pressure control.7,38 Thus, the decision threshold 
could be obtained from a binary logit model on the com-
posite endpoint of the clinical outcome and adverse event 
with predicted probabilities for benefit and harm as 
covariates.7

Projecting Clinical Utility
ITR are especially useful when HTE is present and large 
enough to be of clinical relevance. While the model per-
formance in assessing HTE can be described by perfor-
mance metrics such as the concordance-for-benefit 
statistics,39 it is also of great interest to quantify the impact 
of ITR on the implementation of a decision tool. Once 
threshold-based ITR have been defined to identify the best 
possible treatment option, their impact on clinical out-
comes in the presence and absence of such an implemen-
ted decision aid can be projected. A controlled trial would 
require many additional efforts, but clinical utility of the 
model can be projected by examining how patient out-
comes would have been affected if treatment decisions 
had been based on prediction-based decision rules com-
pared to the standard of care.40 Thus, a prediction-driven 
trial could be emulated to evaluate the clinical utility of 
a prediction-based decision rule also in routine claims 
data.40–42 In particular, a randomized experiment between 
the decision aid and standard of care can be emulated in 
a claims data sample and potential outcomes can be pre-
dicted by means of g-computation.43 Such innovative 
approaches clearly help elucidating the value of predic-
tion-based treatment recommendations albeit without pro-
viding ultimate proof.

Discussion
Data-informed medical decision-making for an individual 
patient requires consideration of the patient’s unique con-
stellation in co-morbidities, co-medication, and other rele-
vant modifiers. Observational data from health insurance 
claims provide large longitudinal, continuously growing 
datasets containing fine-grained information about repre-
sentative patient populations, interventions, and 
outcomes.25 Such information could be used to weigh 
risks and benefits of different treatment options and to 
inform physicians and patients in a shared decision- 
making process.3 Using documented evidence in routine 
data, our decision support system would extract and 
weight possible drug treatment strategies for the complex 
situation of an individual patient. Based on these data, we 
suggest to clearly communicate the estimated likelihood of 
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different outcomes, to take into account the patient’s opi-
nion and preferences, and, based on this, to provide treat-
ment advice to support patient and physician in choosing 
an appropriate (drug) treatment option. Because claims 
data are a rather rich and comprehensive data source, the 
methodology described in this paper appears well suited 
and readily applicable. However, we highlight how neces-
sary it is to simultaneously adjust for confounding when 
assessing HTE to derive treatment recommendations from 
such observational data sources. This is particularly impor-
tant because state-of-the-art methods are rarely applied to 
non-randomized data.17

Several use cases describe how decision support can be 
based on predictive models.44–46 Predictive models for 
individual treatment response are particularly useful if 
individual patients respond differently to pharmacological 
treatments in a clinically meaningful way. On the one 
hand, it is a core premise for personalized medicine mean-
ing that the treatment effect varies across individuals 
depending on particular baseline characteristics (ie, effect 
modifiers).47 On the other hand, individual tailoring of 
therapies is only advantageous if resulting effect measure 
modifications are large enough to cause meaningful clin-
ical differences for the patients.48 However, one has to 
consider at least two basic limitations of routine (claims) 
data. First, relevant information on potential effect modi-
fiers and outcomes is required, which usually excludes 
laboratory measurements or estimates of quality of life in 
this data source. This is also important after the imple-
mentation of a model, because such additional effect modi-
fiers can actually become available from other sources, so 
that more precise predictions can be made that go beyond 
the possibilities of pure routine data. Second, treatment 
effect modifiers should only be studied in situations with 
exposure–outcome relationships allowing for valid infer-
ences in routine data. Although health insurance claims 
contain a wealth of information, it is not always clear how 
accurate they are with respect to co-morbidities or out-
come classification. Although of importance, severity of 
disease is often difficult to determine, and patient prefer-
ences are not available at all. In the end, results obtained 
from claims databases need to be robust, though, and 
comparable to gold-standard results from RCTs that 
could be used for pre-validation. By pre-validation, we 
mean that promising (literature) findings must demonstrate 
the consistency in routine claims data and thus indicate 
that the claims data are suitable for further steps of mod-
elling and HTE assessment. If main effects from RCTs can 

be consistently replicated in routine claims data, the parti-
cular clinical situation can be considered sound for the 
investigation of individual effects. If the data source 
turns out to be suitable, it may be further trimmed accord-
ing to the characteristics of a particular patient's character-
istics before the described steps of predictive modeling 
begin.49

Prognostic models and predictive models are abundant 
in clinical research with steadily growing numbers of 
articles.40 However, they are only rarely applied in health 
research, reflecting the dilemma that most of these devel-
opments never reach routine patient care.50 One obvious 
reason may be that most developments do not define ITR 
beyond mere probabilities and the models thus lack the 
necessary “action space” defined as a mapping of the 
probabilities to the set of all possible medical 
decisions.40 In our envisaged framework, we also present 
the possibility of extrapolating the clinical utility in the 
selection of ITR; this could hopefully overcome the reluc-
tance of researchers to define clear “action spaces”. This 
could indeed help to assess how different decision thresh-
olds affect clinical outcomes. In any case, it matters how 
the information is presented to the clinician or patient:3 for 
recommendations to be correctly followed, they need to be 
readily understood from the visualizing presentation for-
mat. Finally, barriers to successful implementation should 
be addressed when it comes to developing useful predic-
tive models to make treatment decisions based on routine 
data. Obstacles to the introduction of decision-making 
rules could arise before implementation (eg, skepticism 
towards new technologies, conviction that clinical judg-
ment is superior to prediction-based decision rules), during 
(eg, lack of algorithms to treat potential inconsistencies 
with the best medical treatment from guideline recommen-
dations and resulting decision conflicts, alert fatigue51), or 
after using a decision-making rule (eg, tool is not easy to 
use, absence of supportive infrastructure, fear of unin-
tended consequences).19,22 Therefore, the clinical 
usefulness should be described in terms of how clinical 
decision-making can be improved by such a predictive 
decision support tool52 and include how the information 
from predicted probabilities should be presented so that it 
is well accepted by its users,3 and how the predictive 
information influences the clinicians’ decisions.42,43

In summary, our methodological perspective assumes 
that individual patients respond differently to pharmacolo-
gical treatments and that thorough (quantitative) knowl-
edge of effect modifiers will help predicting individual 
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responses to medicines (personalized medicine). Validated 
decision support could efficiently complement clinical 
guidelines and support the healthcare professional when 
interpreting complex patient data, weighing the benefit and 
risks of multiple treatment options, and trying to incorpo-
rate patient preferences to finally design a personalized 
treatment plan. The ultimate goal would be to select the 
most efficacious therapies (to avoid nonresponse), avert 
adverse drug events (to avoid harm), and thus reduce costs 
and improve relevant endpoints (ie, survival or quality of 
life) for patients and other stakeholders.53
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