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Abstract

Kinases play a role in every cellular process involved in tumorigenesis ranging from proliferation, 

migration, and protein synthesis to DNA repair. While genetic sequencing has identified most 

kinases in the human genome, it does not describe the ‘kinome’ at the level of activity of kinases 

against their substrate targets. An attempt to address that limitation and give researchers a more 

direct view of cellular kinase activity is found in the PamGene PamChip® system, which records 

and compares the phosphorylation of 144 tyrosine or serine/threonine peptides as they are 

phosphorylated by cellular kinases. Accordingly, the kinetics of this time dependent kinomic 

signal needs to be well understood in order to transduce a parameter set into an accurate and 

meaningful mathematical model.

Here we report the analysis and mathematical modeling of kinomic time series, which achieves a 

more accurate description of the accumulation of phosphorylated product than the current model, 

which assumes first order enzyme-substrate kinetics. Reproducibility of the proposed solution was 

of particular attention. Specifically, the non-linear parameterization procedure is delivered as a 

public open source web application where kinomic time series can be accurately decomposed into 

the model’s two parameter values measuring phosphorylation rate and capacity. The ability to 

deliver model parameterization entirely as a client side web application is an important result on 

its own given increasing scientific preoccupation with reproducibility. There is also no need for a 

potentially transitory and opaque server-side component maintained by the authors, nor of 

exchanging potentially sensitive data as part of the model parameterization process since the code 

is transferred to the browser client where it can be inspected and executed.
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Introduction

Kinases have been extensively studied since the discovery of enzyme regulation via 

phosphorylation in the 1950’s. They represent more than 500 proteins and 100,000 

phosphorylation sites [1]. They have been examined, among other things, as regulators, 

signal transducers, and are the second most drugged gene class [2]. While genetic 

sequencing has identified most kinases in the human genome, it does not describe the 

‘kinome’, at the level of the activity of kinases on kinase targets. Kinases play a very 

important role in cancer development and kinomics, a global description of kinases and their 

substrates, shows great promise in the field of personalized medicine, correspondingly, 

numerous technologies have been developed to measure the kinome activity.

Of the techniques for kinome examination, peptide chips show significant promise due to 

several key features: 1) They can be used for high-throughput screening, 2) they allow the 

investigator to directly measure the effects of a drug, 3) they are comparably easy to create, 

and 4) they maintain similar enzyme kinetics to in vivo [3]. In particular, we are examining 

the PamGene PamChip© array, which allows a researcher to record and compare the 

phosphorylation of 144 13 amino acid long peptides containing one or more 

phosphorylatable residues [4].

Total protein lysates are prepared with protease and phosphatase inhibitors and 1–10 μg of 

lysate are mixed in kinase buffer with ATP and Mg2+. Samples are then loaded onto the 

PamStation© along with fluorescently labeled anti-phosphoserine, anti-phosphothreonine, or 

anti-phosphotyrosine antibodies. Using microfluidics, the sample is repeatedly pumped 

through an aluminum oxide matrix containing an array of phosphorylatable peptide probes. 

Active kinases within the lysate sample can phosphorylate these peptide probes that are then 

quantified by measuring the fluorescence of the phospho-specific antibodies using a charge-

coupled device (CCD) camera. Each PamChip® experiment produces two sets of data for 

144 phosphorylatable amino acid residues. The first, a non-linear model, uses a camera 

exposure time of 50 ms to compare the phosphorylation of the residues at time points 

throughout the experiment (Figure 1). The second, a linear model, uses varying camera 

exposure time from 5–150 ms to quantify the end level phosphorylation following the 

washing away of the reactants. For the purposes of this publication we will discuss the first, 

non-linear, time series model.

Due to the nature of kinases, any of the 144 peptides will likely have numerous kinases 

acting upon them [5,6]; additionally the secondary step of antibody binding to produce a 

fluorescent signal further complicates the picture. This leads to a serious problem with 

deconvoluting the signal to the representative original kinases. In the literature upstream 

kinases are predicted using probable upstream kinase prediction linked back to biological 

pathways. This has shown utility in a wide range of disease models such as schizophrenia 

[7,8], HIV latency [9], renal cell carcinoma [10], Glioblastoma [11,12] and lung cancer [13]. 

Additionally a number of studies have utilized ex vivo treatments with kinase inhibitors not 

only against cells prior to lysis, but also treating lysates directly before profiling. In rectal 

cancer ex vivo treatment with the kinase inhibitor sunitinib was used to properly group and 

identify patients that would respond to both chemotherapy and radiotherapy [14] as well as 
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to predict tumor cell dissemination within patients [15]. However, kinetic data, using a 

derivative of the curve fit at an early point (initial velocity or slope), was used in a similar 

drug study by Versele et al. [16] to comparatively measure, and predict response in 27 

cancer cells to a multitargeted kinase inhibitor, a finding that was validated in xenograft 

tumor bearing mice. It is of the utmost importance that the signals created properly represent 

the data and introduce minimal error. Therefore we sought to investigate the error introduced 

by the time series curve fitting procedure.

The current model of the kinomic time series [17] relies on an exponential model, which is 

typically associated with processes as diverse as biological growth, radioactive decay, and 

first order enzyme kinetics, however given the complicated picture we present above we 

theorize that first order kinetics will not be the optimal method to represent the data.

(1)

As the results described below will confirm, we hypothesize, the biochemical processes 

underlying the production of the phosphorylated fluorescent signals are better described by 

hyperbolic, not exponential, activity curves.

It should be noted that previous studies by other authors have approached the analysis of the 

kinomic signal describing it with penalized smoothing splines [18]. However, like other 

smoothing approaches to signal description [19,20]; those approaches seek to subtract the 

statistical structure of signal noise rather than capturing the underlying mechanism. Since 

our goal is to translate the dynamics of the kinomic signal into a vector of parameters that 

can be mapped to biochemical mechanisms that line of work was not pursued here. In the 

same vein, this study does not approach the systems dynamics that multiple kinomic signals 

may in fact be describing collectively. That systems-level modeling of the kinase signal is 

approached in studies like “Mathematical Models of Protein Kinase Signal Transduction” 

[21]. More broadly, the description of multi-signal systems requires the adoption of more 

generic frameworks, if for no other reason than for the sake of maintaining parametric 

sensitivity. An excellent review of the generalization of individual reaction kinetics into 

broader Biochemical Systems Theory frameworks such as S-Systems can be found in Voit 

EO [22]. The relevant context for the study reported here is that parameterization of kinomic 

signals produces more a meaningful and accurate description of both individual signal and 

system-level kinase activity.

Methods

PamGene

PamGene utilizes a peptide array consisting of 144 unique peptides in approximately equal 

concentrations. Each peptide contains one or more phosphorylatable residues, and all 

peptides are simultaneously exposed to cell lysate containing active kinases. A detailed 

description of the sample preparation, processing, and analysis can be found here [11]. Once 

a residue is phosphorylated fluorescent antibodies bind the phosphorylated peptide residue. 
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The signal recorded is then the amount of phosphorylation based on this fluorescence, for a 

series of time points [23]. The signal is normalized using PamGene®’s PAMCHIP EVOLVE 

software as part of the BioNavigator software suite in two major steps: (1) Image analysis 

segments the image to identify the spots and the local region around them, and then (2) local 

background pixels are identified as the corners of a square cell around the spots. Median 

signal over the spot is subtracted from the median background signal to produce a 

normalized value [24].

Curve fitting

The numerical methods developed for this study sought to satisfy recommendations for 

reproducibility to the fullest. Accordingly, criteria were set to utilize an open source, version 

controlled, and web executable application. Those requirements were met by developing a 

JavaScript library implementing a simplified, portable, steepest-descent non-linear 

regression algorithm. Source code can be found (https://github.com/adussaq/amd_cf).

To avoid blocking the accompanying web application, this library was written to be run 

within web workers, using background processes supported by modern Web Browsers [25]. 

A specialized library that coordinates the web workers in the execution of this algorithm by 

queuing the asyncronous tasks was developed and is also made publicly available with open 

source at https://github.com/adussaq/amd_ww/. Both of these modules are designed to work 

with all modern web browsers including Mozilla’s Firefox, Google Chrome, and Apple’s 

Safari, both on the mobile and desktop platforms.

The iterative process to minimize the sum of square deviations is summarized below:

1. p1,1 = s1 + P0,0

2. if sse(Y,f(X,P1))< sse(Y,f(X,P0))

P0,1 = P1,1, s1 = s1 * 1.2

else

P1,1 = P1,0, s1 = s1 * −0.5

3. Repeat 1 – 2 for p0,2 through p0,m

4. Repeat 1 – 3 until end condition are satisfied

Where P is the constant parameter vector, X is an independent matrix; Y is the 

corresponding dependent variable for the equation ŷi=f(X,P). S are the steps taken in each 

iteration of the algorithm and sse is the sum of square deviations. Several parameters may be 

set, including a max iteration count (default 1000), initial step (default 1/100 of P0), and 

minimum percent change of sum of square deviations (default 6e–5%). In addition to the 

parameter vector, this returns an R2 and a Wald-Wolfowitz (WW) Runs Test to measure 
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goodness of fit. Initial parameters for each equation were determined by iteratively resolving 

the equation for individual points algebraically, as illustrated for equation 3 by the 

implementation of the method setInitial at http://bit.ly/1Yosos6. All initial parameterization 

procedures, are kept alongside the version controlled in the public github repository https://

github.com/kinome.

These modules were combined with the following visualization libraries: Google chart tools 

[26], jqmath [27], bootstrap [28] and jQuery [29] to create a tool to visualize individual 

curve fits. This is available at http://bit.ly/kinomic and shown in Figure 2. This represents a 

small example of these tools as they were applied to the remainder of the data.

Model identification

Thirty-six samples ran utilizing protein tyrosine kinase (PTK) chips were selected to 

represent the global analytical space. These samples were selected to cover the spectrum of 

good to bad signal observations. These kinomic experiments included lysates derived from 

short-term frozen primary human tumor tissue, long term frozen primary human tumor 

tissue, and freshly lysed cultured human tumor and non-tumor cells. Lysates treated both in 
vitro, and ex vivo (on chip) with kinase inhibitors were included. More information on 

samples selected can be found in Table S1.

Quality control

Since poor data fitting can be due to a number of problems, we selected only the data sets 

that had a Wald-Wolfowitz (WW) runs test with a p-value ≥ 0.05 for all three models. This 

choice was based on experimentation comparing this selection method to R2 (Figure S1). 

This reference data was converted into density scores using the Matlab package kde [30] 

(available at: http://bit.ly/kde_botev).

Technical replicates

Two sets of 6 technical replicates for PTK data that passed QC as described above 

individually for models 2 and 3 (results) were selected for analysis. The values were 

exported, and the reproducibility of key parameters along with the calculated vini for model 

2 (results) were investigated using transformed non-parametric quantile data for each set of 

replicates. This data was then converted to density measurements using Kernal Density 

Estimation [31] with Parzen–Rosenblatt rule of thumb window.

Results

The data analysis that produced the results described in this section can be reproduced for 

arbitrary datasets by using the web application at http://bit.ly/kinomic, depicted in Figure 2. 

As detailed in the methods, no data is transferred out of the user’s web browser - all 

computation happens in the browser, and the code can be inspected by opening the developer 

tools or by utilizing the github repository (for example, see https://developer.chrome.com/

devtools for Google Chrome, or https://developer.mozilla.org/en-US/docs/Tools for Mozilla 

Firefox).
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Model identification

The PamGene kinase peptide arrays generate two unique sets of fluorescence intensity data 

for each sample run: a post-wash linear series and a nonlinear time progression. The post-

wash linear data is obtained by varying the camera exposure time following washing off of 

remaining sample and reagents. The time series data however, is obtained as the reaction 

progresses at set intervals based on the number of cycles the machine has run. Three models 

were investigated: a simple negative exponential (equation 1), a background corrected (c0) 

variation of the negative exponential (equation 2) and a background corrected (c0) rational 

hyperbolic (equation 3).

(1)

(2)

(3)

In each of these models, y represents the amount of phosphorylation measured as median 

signal minus the background, at cycle number, c. The value ymax is the upper asymptotic 

value y can reach, whereas vi is initial slope of y and k represents the rate of exponential 

growth. Equation 3 was derived as follows:

Due to the rate of asymptotic approarch being higher in an exponential equations than in a 

rational ones all data will produce different ymax predictions based on whether model 1/2 or 

model 3 is utilized. Since this is a predictive term and by definition never truly reached it 

cannot be expected to be accurate and should not be used for comparisons.

Model identification

The thirty-six samples analyzed to represent the global analytical space generated 5184 time 

series (36 series x 144 kinases). Each of them was parameterized for each of the 3 equations. 

Of those, 2863 (55%) had a Run’s test p-value ≥ 0.05 across all three models, (eq1 2924, 

eq2 3142, eq3 3342) passing quality control (see Methods). Figure 3a shows the distribution 
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of residuals across this sample data (37,219 points x 3 models). Peak densities were as 

follows, eq1-0.142, eq2-0.150, eq3-0.165. This suggests that model 3 offers a better 

description of the kinomic signal (See Discussion). That superiority is reinforced by the 

distribution of the sum of square deviations for each fit (2863 points x 3 models) depicted in 

Figure 3b, where equation 3 is observed to lead to narrower residual distributions. Peak 

residual densities occurred at the following points: eq1- (60.7, 0.00866); eq2- (56.8, 

0.00932); eq3- (52.8, 0.0112). While the differences presented are minor, it is important to 

note that equation 3 improves upon equation 2 while reducing the number of parameters 

from 4 to 3.

Reproducibility

The variability of the kinomic signal was assessed by analyzing two sets of 6 technical 

replicates. Based on the above results models 2 and 3 were investigated for the 

reproducibility of their key parameters. Each model was filtered individually by QC 

(methods), and then vini, the value typically utilized in current publications, was calculated 

for model 2 as follows:

These values were non-parametrically pre-processed by replacing raw values by the 

corresponding quantiles, for k, vini and ymax from model 2 and vi and ymax from model 3. 

The combined sets of technical replicates had the following quantile-quantile correlations: 

cor(q – q: equation 2, k) =0.7101; cor (q – q: equation 2, ymax) =0.8569; cor (q − q: equation 
2, vini) =0.9359 (not pictured); cor (q – q: equation 3, vi) =0.9352, cor (q − q: equation 3, 
ymax) =0.7751. Equation 2 had a total of 1252 (of 1728) successful fits and Equation 3 had a 

total of 1503 (of 1728) successful fits. The results obtained are presented in Figure 4. These 

results indicate ymax is more reproducible for model 2 than model 3. However the stability of 

this parameter is low for both models. This instability is due to the large number of curves 

produced remaining in a near linear or linear phase. This results in ymax values that far 

exceed the boundaries of the data presented and reinforces the idea that ymax should not be 

utilized for comparative analysis. The reproducibility of the key parameter for equation 3 

(vi) is a substantial improvement over the key parameter for equation 2 (k). Interestingly, the 

reproducibility of vini as calculated from equation 2 is a slight improvement (Correlation 

difference of 0.005) over that of the vi from equation 3. More importantly, vini is more 

reproducible than the parameters utilized to calculate it. This indicates that the parametric 

stability for equation 2 is low even though the estimation early slope is stable.

Discussion

The kinome represents a very functional subset of the genome and is of high interest to 

academia and pharma. Kinases are highly druggable and kinase targeted agents have 

generated very promising results in the clinic, particularly in proliferative diseases. However, 

the enzymatic nature and “promiscuity” of kinases produces significant challenges to 

studying the kinome. Indeed, an individual kinase typically targets multiple substrates with 

varying affinities while substrates are often targeted by more than one kinase. Enzymatically, 
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this can be seen in the non-linear curves generated by the time series PamStation data. The 

velocity of the reaction and shape of the curve will vary based on the kinase (or kinase 

family) and substrate affinities. Biologically, this manifests as molecular redundancy where 

multiple signals can converge on the same target protein.

Of the three models investigated the three-parameter rational model for eq3 most closely 

described the data for the following reasons:

1. Having the highest peak for the deviation plot and for the model sum of 

square deviations (Figure 3).

2. Having the highest success rate using the curve fitting algorithm, 64.5% 

(+3.9% over eq2, mixed quality data), and 87.0% (+14.5% over eq2, high 

quality data) as determined by WW runs test (Methods). This indicates a 

higher randomness in the non-parametric distribution of residuals for eq3.

3. Utilizing only three parameters to describe the model. Based on the above 

metrics, the four-parameter exponential model (eq2) is the second best 

option; however the higher number of parameters reinforces the use of 

eq3.

4. Having the key parameter with the highest reproducibility. The 

reproducibility of the key parameter, vi from model 3 is significantly 

higher than that of k from model 2 (+31.7%).

5. Qualitatively, rational models are commonly used in enzyme kinetics with 

one limiting reaction, while exponential models are utilized for first order 

reaction with one reagent.

Generally adding parameters to a model decreases the error in residuals by allowing 

additional variability to be accounted for. However when moving from the four-parameter 

eq2 to the three-parameter eq3, we do not see worsening of residuals, nor a decrease in 

reproducibility. In fact we observe the opposite. This decrease in parameter space becomes 

particularly important when considering individual fits contains only 13 points. This move 

then represents an 11% increase in the degrees of freedom with an overall improvement in 

multiple goodness-of-fit metrics. It is important to note, previously published kinetic studies 

focus on the calculated value: vini. Our analysis indicates, when calculated from eq2, the 

reproducibility of vini is nearly equivalent to that of the comparable parameter, vi from eq3. 

Once again, eq3’s use of one less parameter to produce equivalent or improved 

parameterization solidifies the suggested use of eq3.

This is the first time, to the authors’ knowledge, that even a preliminary assessment of the 

variability and reproducibility of the PamGene PamChip® has been investigated in the 

literature. Since future goals include tailoring cancer treatments to patients, a thorough 

investigation of this nature is necessary. In addition to the reproducibility of the data itself, 

the reproducibility and accuracy of the analysis itself is equally important. To this end all 

data analysis procedures were coded as web applications - that is, they are available as 

JavaScript scripts, in the open source and versioned environment of GitHub (see results and 

methods). The relevant feature of this approach, which we have explored and discussed in 
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bioinformatics applications ranging from image analysis [32] to sequence analysis [33], is 

that the analysis can be repeated in any web browser, with easily open reviewable code, and 

without need to download nor install any components. In a nutshell, this creates lasting 

reproducibility that does not depend on server-side resources maintained by the authors of 

this report, nor requires any client-side configuration by users of the tools.

Conclusion

Kinomic signals, as assessed by the PamGene platform, are accurately described as a 

rational hyperbolic function, not dissimilar in shape to Michaelis–Menten. This conclusion 

is presented here not as an alternative to noise filtering approaches followed by some 

software packages but, on the contrary, to inform the noise structure associated with the 

kinomics signal. Our original hypothesis that a non-exponential model would be provide a 

superior parameterization has been verified by an at least equivalent fit with a smaller 

parameter space, an essential characteristic given the limited data points per fit. A web 

application was developed and is made publicly available in an open source format to allow 

dissemination of libraries needed to parameterize the corresponding hyperbolic model. The 

reliance on the scripting language of the web, JavaScript, to develop those libraries, and 

depositing them in versioned GitHub pages is argued to maximize the reproducibility and 

reuse of the libraries developed. The main remaining challenge of the parameterization of 

kinomics signals appears to be associated with the robustness of the non-linear regression. 

Improvements in the parameterization procedure will decrease the number of individual 

kinomic signals that currently do not pass quality control.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representation of the data flow for the phosphorylation reaction for PamGene PamChip® 

experiments. Cycle number represents reaction time. Fluorescence intensity of peptide 

phosphorylation is recorded using a camera with a 50 ms exposure. All images were 

adjusted using color correction curve in Gimp (smooth curve x:225>10, y:225>165). (A) 

Two images taken during the phosphorylation reaction. (B) Two selected spots from (A) 

displayed for every time point. (C) Graphical representation of the median signal - 

background value calculated by the PamGene BioNavigator and plotted utilizing Google 

Charts.
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Figure 2. 
Screenshot of http://kinome.github.io/demo-cf/#model. The pictured tool is able to compare 

the three models utilizing any sample data. The top left is the editable data, the top right is 

the equation selection tool, and the bottom is the data and curve fit. Data is interactive, data 

points can be removed by clicking them, and their x, y-values are displayed on mouse over.
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Figure 3. 
Graphical representation of residual variation in background fluorescence versus cycle (see 

Figure 2) for the three models. eq3 can be seen as the solid blue line in both panels of the 

figure as the highest peak. eq2, and eq1 peak lower respectively and can be seen to follow 

eq3 as a dotted and a slash dot line in both panels. These lines were generated by fitting 36 

PTK experiments (see Methods) to all three models. Following quality control 2863 fits 

remained across all three models; deviations were calculated and plotted for density.
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Figure 4. 
Analysis of reproducibility of parameterizations in two 6 replicate sets. Ideally all data sits 

on the dashed 1-1 line. Color represents relative density with red being the highest. Panel A 

is the key parameter k for equation 2 (results) and has a Spearman’s rank correlation of 

0.7101. Panel B is the key parameter vi for equation 3 (results) and has a Spearman’s rank 

correlation of 0.9352. Panel C is the predictive parameter ymax for equation 2 (results) and 

has a Spearman’s rank correlation of 0.8569. Panel D is the predictive parameter ymax for 

equation 3 and has a Spearman’s rank correlation of 0.7751. These were produced across 

144 peptides, with 12 technical replicates, after filtering for high quality fits (See Methods) 

this created 5306 points (of a possible 8640) for panels A/C and 6802 (of a possible 8640) 

for panels B/D. k/vi are the critical values for defining the curves.
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