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Does overall thermal equilibrium exist between ions and elec-
trons in a weakly collisional, magnetized, turbulent plasma? And,
if not, how is thermal energy partitioned between ions and
electrons? This is a fundamental question in plasma physics,
the answer to which is also crucial for predicting the proper-
ties of far-distant astronomical objects such as accretion disks
around black holes. In the context of disks, this question was
posed nearly two decades ago and has since generated a size-
able literature. Here we provide the answer for the case in which
energy is injected into the plasma via Alfvénic turbulence: Colli-
sionless turbulent heating typically acts to disequilibrate the ion
and electron temperatures. Numerical simulations using a hybrid
fluid-gyrokinetic model indicate that the ion–electron heating-
rate ratio is an increasing function of the thermal-to-magnetic
energy ratio, βi: It ranges from ∼0.05 at βi = 0.1 to at least 30
for βi & 10. This energy partition is approximately insensitive to
the ion-to-electron temperature ratio Ti/Te. Thus, in the absence
of other equilibrating mechanisms, a collisionless plasma system
heated via Alfvénic turbulence will tend toward a nonequilib-
rium state in which one of the species is significantly hotter than
the other, i.e., hotter ions at high βi and hotter electrons at
low βi. Spectra of electromagnetic fields and the ion distribution
function in 5D phase space exhibit an interesting new magnet-
ically dominated regime at high βi and a tendency for the ion
heating to be mediated by nonlinear phase mixing (“entropy cas-
cade”) when βi . 1 and by linear phase mixing (Landau damping)
when βi � 1.
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In many astrophysical plasma systems, such as accretion disks,
the intracluster medium, and the solar wind, collisions between

ions and electrons are extremely infrequent compared to dynam-
ical processes and even compared to collisions within each
species. In the effective absence of interspecies collisions, it is
an open question whether there is any mechanism for the sys-
tem to self-organize into a state of equilibrium between the two
species and, if not, what sets the ion-to-electron temperature
ratio. This is clearly an interesting plasma–physics question on
a fundamental level, but it is also astrophysically important for
interpreting observations of plasmas from the heliosphere to the
Galaxy and beyond. Historically, the posing of this question 20 y
ago in the context of radiatively inefficient accretion flows and in
particular of our own Galactic Center, Sagittarius A∗ (Sgr A∗)
[in which preferential ion heating was invoked to explain low
observed luminosity (1–3)], has prompted a flurry of research
and porting of analytical and numerical machinery developed
in the context of fusion plasmas and of fundamental turbulence
theories to astrophysical problems (see, e.g., refs. 4–12, but also
ref. 13 and references therein for an alternative strand of inves-
tigations). In more recent years, heating prescriptions resulting
from these investigations have increasingly been in demand for
global models aiming to reproduce observations quantitatively
(e.g., refs. 14 and 15 and references therein).

In a nonlinear plasma system, turbulence is generally excited
by large-scale free-energy sources (e.g., the Keplerian shear flow

in a differentially rotating accretion disk), then transferred to
ever smaller scales in the position–velocity phase space via a
“turbulent cascade,” and finally converted into thermal energy
of plasma particles via microscale dissipation processes. This
turbulent heating is not necessarily distributed evenly between
ions and electrons. It may, in principle, lead to either ther-
mal disequilibration or equilibration between ions and electrons,
depending on how the ion-to-electron heating ratio changes
with the ratio of their temperatures, Ti/Te. Here we deter-
mine this dependence—along with the heating ratio’s depen-
dence (which turns out to be much more important) on the
other fundamental parameter characterizing the thermal state
of the plasma, the ratio of the ion-thermal to magnetic energy
densities, βi.

This task requires a number of assumptions, many of which
are quite simplistic, but are made here to distill what we con-
sider to be the most basic features of the problem at hand. We
assume that the large-scale free-energy injection launches a cas-
cade of perturbations that are anisotropic with respect to the
direction of the ambient mean magnetic field and whose char-
acteristic frequencies are Alfvénic—we know both from theory
(6, 16) and detailed measurements in the solar wind (17) that
this is what inertial-range turbulence in a magnetized plasma
would look like. This means that the particles’ cyclotron motion
can be averaged out at all spatial scales, all the way to the ion
Larmor radius and below. This “gyrokinetic” (GK) approxima-
tion (4, 18) leaves out any heating mechanisms associated with
cyclotron resonances (because frequencies are low) and with
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shocks (19) (because sonic perturbations are ordered out). The
amplitude of the fluctuations is assumed to be asymptotically
small relative to the mean field, and thus stochastic heating (20)
and any other mechanisms relying on finite-amplitude fluctua-
tions (21–25) are also absent. Furthermore, we assume that ions
and electrons individually are near Maxwellian equilibria, but at
different temperatures. This excludes any heating mechanisms
associated with pressure anisotropies (26–28) or significant non-
thermal tails in the particle distribution functions (29, 30). We
note that reconnection is allowed within the GK model, and so
the results obtained here include any heating, ion or electron,
that might occur in reconnecting sheets spontaneously formed
within the turbulent dynamics. [Note, however, that the width
of the inertial range that we can afford is necessarily modest. It
therefore remains an open question whether reconnecting struc-
tures that emerge in collisionless plasma turbulence in extremely
wide inertial ranges (31, 32) are capable of altering any of the fea-
tures of ion–electron energy partition reported here.] Although
the GK approximation may be viewed as fairly crude [e.g., it may
not always be appropriate to neglect high-frequency fluctuations
at ion Larmor scales (33)], it does a relatively good job of quanti-
tatively reproducing solar wind observations (5); see ref. 34 for
a detailed discussion of the applicability of the GK model to
solar wind. In any event, such a simplification is crucial for car-
rying out multiple kinetic turbulence simulations at reasonable
computational cost.

It can be shown that in GK turbulence, Alfvénic and compres-
sive (slow-wave–like) perturbations decouple energetically in the
inertial range (6). In the solar wind, the compressive perturba-
tions are energetically subdominant in the inertial range (17),
although it is not known how generic a situation this is. [For
example, turbulence in accretion flows is mostly driven by the
magnetorotational instability (MRI) (35). The partition of com-
pressive and Alfvénic fluctuations in MRI-driven turbulence is
an open question.] At low βi, it can be shown rigorously that the
energy carried by the compressive cascade will always end up as
ion heat. Here we ignore this heating channel and focus on the
Alfvénic cascade only, bearing in mind that, at low βi, our results
likely represent a lower limit on ion heating [another possible
source of additional ion heating of low βi is the stochastic heating
(20, 25)].

Numerical Approach
An Alfvénic turbulent cascade starts in the magnetohydrody-
namic (MHD) inertial range, where ions and electrons move in
concert. Therefore, it is not possible to determine the energy
partition between species within the MHD approximation. This
approximation breaks down and the two species decouple at the
ion Larmor scale, k⊥ρi∼ 1, where k⊥ is the wave number per-
pendicular to the mean field. At this scale, a certain fraction of
the cascading energy is converted into ion heat (via linear and/or
nonlinear phase mixing; see below) and the rest continues on as
a cascade of “kinetic Alfvén waves” (KAWs), which ultimately
heats electrons (6). The transition between these two types of
turbulence is well illustrated by the characteristic shape of their
spectra, familiar from solar wind measurements at βi∼ 1 (17)
(see Fig. 2, Center).

Thus, the energy partition is decided around the ion Lar-
mor scale, where the electron kinetic effects are not important
(at least in the asymptotic limit of small electron-to-ion mass
ratio). We may therefore determine this partition within a hybrid
model in which ions are treated gyrokinetically and electrons as
an isothermal fluid (6). The isothermal electron fluid equations
are derived from the electron GK equation via an asymptotic
expansion in the electron-to-ion mass ratio (me/mi)

1/2. This is
valid at scales above the electron Larmor radius and so cov-
ers a broad range including both the MHD and ion-kinetic

(k⊥ρi∼ 1) scales. In this model, there is an assumed separation
of timescales between the fluctuations and the mean fields (4),
which are parameterized by fixed βi and Ti/Te values over the
entire course of the simulation.

Our hybrid GK code (12) [based on AstroGK (8), an Eulerian
δf GK code specialized to slab geometry] substantially reduces
the cost of nonlinear simulations. It has allowed us to compute
the turbulent heating in a proton–electron plasma over a broad
parameter range, varying βi from 0.1 to 100 and Ti/Te from
0.05 to 100. Most space and astrophysical plasmas have βi and
Ti/Te within this range. Previous GK simulations of this problem
(5, 9–11) were limited to a single point in the parameter space,
specifically, (βi,Ti/Te)= (1, 1), because of the great numerical
cost of resolving both ion and electron kinetic scales.

In the hybrid code, the phase space of the ion distribution
function is spanned by (x , y , z ,λ, ε), where (x , y) are the coor-
dinates in the plane perpendicular to the mean magnetic field,
z is the coordinate along it, λ= v2

⊥/v
2 is the pitch-angle vari-

able, and ε= v2/2 is the particle kinetic energy. The standard
resolution used for each simulation was (nx ,ny ,nz ,nλ,nε)=
(64, 64, 32, 32, 16). To verify numerical convergence, we used
higher (x , y) resolution (nx ,ny ,nz ,nλ,nε)= (128, 128, 32, 32,
16), higher z resolution (nx ,ny ,nz ,nλ,nε)= (64, 64, 64, 32, 16),
and higher (λ, ε) resolution (nx ,ny ,nz ,nλ,nε)= (64, 64, 32, 64,
32) for a few sets of (βi,Ti/Te). The range of Fourier modes in
the (x , y) plane is set to 0.25≤ kxρi, kyρi≤ 5.25 for the standard-
resolution runs and 0.125≤ kxρi, kyρi≤ 5.25 for the high (x , y)-
resolution runs. In Fig. 1, we use the highest-resolved simulation
available for each point in the parameter space (βi,Ti/Te).

To model the large-scale energy injection, we use an oscillat-
ing Langevin antenna (36), which excites Alfvén waves (AWs)
by driving an external parallel current. We set the driven modes
to have the oscillation frequency ωa =0.9ωA0, the decorrelation
rate γa =0.6ωA0, where ωA0 is the AW frequency at the largest
scale, and wave numbers (kx/kx0, ky/ky0, kz/kz0)= (0, 1, ±1)
and (1, 0, ±1), where the subscript 0 indicates the smallest wave
number in the simulation. The antenna amplitude is set to drive
critically balanced turbulence, i.e., to make the nonlinear cas-
cade rate at the driving scale comparable to the linear wave fre-
quency ωA0.

The ions have a fully conservative linearized collision operator,
including pitch-angle scattering and energy diffusion (37, 38).
The collision frequency is chosen to be νi =0.005ωA0. The ions
are thus almost collisionless. Since the scale range covered in our
simulations is limited, these “true” collisions are not sufficient
to dissipate all of the energy contained in the ion entropy fluc-
tuations, especially at small spatial scales, where the turbulent
eddy-turnover rates are higher. Therefore, we use hypercollisions
with a collision frequency proportional to (k⊥/kmax)

8, where
kmax is the wave number corresponding to the grid scale (5).
While the free energy contained in the perturbed ion distri-
bution function is dissipated by these collisional mechanisms,
the physical dissipation mechanisms for the sub–Larmor-scale
turbulence destined for electron heating are ordered out by
the (me/mi)

1/2 expansion. Therefore, we introduce artificial
hyperdissipation (hyperviscosity and hyperresistivity) propor-
tional to (k⊥/kmax)

8 in the isothermal electron fluid equations
to terminate the KAW cascade (see ref. 12 for details). We
carefully tune the hypercollisionality and hyperdissipation coef-
ficients to make the artificial dissipation effective only at the
smallest scales.

Energy Partition
The main result of our simulations is given in Fig. 1, which
shows the dependence of the ratio of the time-averaged ion
and electron heating rates Qi/Qe on βi and Ti/Te. Fig. 1, Left
shows that Qi/Qe increases as βi increases regardless of Ti/Te.
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Fig. 1. The ion-to-electron heating ratio Qi/Qe vs. βi (Left) and Ti/Te (Right). We take the time average in the steady state for a period &5tA, where tA is
Alfvén time at the box scale. The error bars show the SD of the time series. The dotted lines (Right) show the fitting formula (2). Left, Inset shows Qi/Qe vs.
βi calculated via the model proposed in ref. 7, based on linear theory: Note the much lower ion heating at low βi, absence of a “ceiling” at high βi, and a
more dramatic deviation of the case of cold ions (low Ti/Te) from the general trend.

When (βi,Ti/Te)= (1, 1), we find Qi/Qe≈ 0.6, in good agree-
ment with the result found in the full GK simulation studies that
resolved the entire range from MHD to electron kinetic scales
(10, 11). We find that ions receive more energy than electrons
when βi & 1 while electron heating is dominant in the low-βi
regime.

Low Beta. In the limit βi→ 0, our results suggest Qi/Qe→ 0,
which is physically intuitive: In this regime, the ion thermal speed
is much smaller than the Alfvén speed, so ions cannot inter-
act with Alfvénic perturbations and so the cascade of the latter
smoothly turns into a sub-Larmor KAW cascade, without any
energy being diverted into ions (41). This “smooth” transition

is manifest when one examines the energy spectra in this regime
(Fig. 2, Left).

The scale where the ion heating occurs is apparent in Fig. 2,
Bottom. For low to moderate βi, the ion heating is dominated
by grid-scale hyperdissipation. This is consistent with the previ-
ous full GK simulation with βi =1 (9–11), where the ion heating
peaked at 20. k⊥ρi . 30. In contrast, the ion heating for high
βi occurs predominantly at large scales, which is revealed in this
study (next paragraph).

High Beta. In the opposite limit of high βi, simulations show
that Qi/Qe increases and appears to tend to a constant '30 for
βi & 10.

Fig. 2. Spectra of magnetic (blue) and electric (orange) perturbations, in units of total free energy (Wtot) times ρi, for three representative values of
βi = 0.1, 1, 100 and Ti/Te = 1. The region with gray shading shows the corner modes in the (kx , ky ) plane, where the (x, y) plane is perpendicular to the

ambient magnetic-field direction z. Various theoretical slopes are shown for reference: k−5/3
⊥ in the inertial range [standard MHD turbulence (16)], k−7/3

⊥
for magnetic and k−1/3

⊥ for electric fields in the sub-ion–Larmor range [KAW cascade (6, 39)], and k−1
⊥ for the purely magnetic cascade at high βi (similar

to subviscous MHD cascade (40); the scale ρ∗ at which this starts, defined in the text, is also shown). Clearly, at these resolutions, a definitive determination
of spectral slopes is not feasible. Bottom panels show ion heating rate vs. k⊥, in units of total injected power (Qtot = Qi + Qe) times ρi. The uptick in ion
heating at the smallest scales is due to ion hyperresistivity and hyperviscosity. We note that halving the box size for the βi = 100 simulation results in only a
10% change to Qi/Qe (which is smaller than the error due to finite-time averaging), suggesting that this result is independent of injection scale.

Kawazura et al. PNAS | January 15, 2019 | vol. 116 | no. 3 | 773



The physics behind this result are more complicated. In a high-
βi plasma, AWs are damped at a rate that peaks around k⊥ρi∼
β
−1/4
i , where it is comparable to their propagation frequency:

Namely, in the limit βi� 1, the complex frequency is (4, 28)

ω= |k‖|vA
[
±
√

1− (k⊥ρ∗)4− i(k⊥ρ∗)
2
]
, [1]

where ρ∗=(3/4π1/4
√
2)β

1/4
i ρi. At k⊥ρ∗> 1, AWs can no

longer propagate and at k⊥ρ∗� 1, damping peters out for
magnetic perturbations (ω≈−i |k‖|vA/2k2

⊥ρ
2
∗), but becomes

increasingly strong for velocity (electric-field) perturbations (ω≈
−i |k‖|vA2k2

⊥ρ
2
∗). The situation resembles an overdamped oscil-

lator, with magnetic field in the role of displacement. This means
that at k⊥ρ∗∼ 1, the MHD Alfvénic cascade is partially damped
and partially channeled into a purely magnetic cascade, as is
indeed evident in Fig. 2, Right [this resembles the subviscous cas-
cade in high-magnetic Prandtl-number MHD and, similarly to it
(40), might be exhibiting a k−1

⊥ spectrum, arising from nonlocal
advection of magnetic energy by ρ∗-scale motions]. The magnetic
cascade extends some way into the sub-ion–Larmor range, but
eventually, at k⊥ρi� 1, it must turn into a KAW cascade. While
the sorts of spectra that we find at βi . 1 (Fig. 2, Left and Cen-
ter) are very similar to what has been observed both in numerical
simulations (5, 9, 10, 33, 42, 43) and in solar wind observa-
tions (17) at βi∼ 1, the high-βi spectra described above have
not been seen before and represent an interesting type of kinetic
turbulence.

Thus, there is a finite wave-number interval of strong damp-
ing around k⊥ρ∗∼ 1. In a “critically balanced” turbulence, |k‖|vA
is of the same order as the cascade rate, so this damping will
divert a finite fraction of total cascaded energy into ion heat
(this is manifest in Fig. 3D). Exactly what fraction it will be is
what our numerical study tells us. We do not have a quantita-
tive theory that would explain why Qi/Qe should saturate at the
value that we observe numerically (which, based on a resolution
study, appears to be converged). Presumably, this is decided by
the details of the operation of ion Landau damping in a turbulent
environment [a tricky subject (44–46)] and by the efficiency with
which energy can be channeled from the MHD scales into the
magnetic cascade below ρ∗ and the KAW cascade below ρi. In
the absence of a definitive theory, Qi/Qe≈ 30 should be viewed
as an “experimental” result.

Relation to Standard Model Based on Linear Damping. It is instruc-
tive to compare Qi/Qe obtained in our simulations with the
simple theoretical model for the turbulent heating proposed
in ref. 7, which has been used as a popular prescription in
global disk models (14, 15). The model is based on assuming
(i) continuity of the magnetic-energy spectrum across the ion–
Larmor-scale transition, (ii) linear Landau damping as the rate
of free-energy dissipation leading to ion heating, and (iii) critical
balance between linear propagation and nonlinear decorrelation
rates. As evident in Fig. 1, Left, Inset, the model gives a broadly
correct qualitative trend, but produces some noticeable quanti-
tative discrepancies: notably, much lower ion heating at low βi
and an absence of the ceiling on Qi/Qe at high βi.

This is perhaps not surprising, for a number of reasons. First,
the Landau damping rate is not, in general, a quantitatively good
predictor of the rate at which linear phase mixing would dissi-
pate free energy in a driven system (47). Indeed, we have found
that an approximation such as EQi(k⊥)∝ Imω(k‖, k⊥)EB⊥(k⊥)
(with ω the linear frequency and k‖ either directly measured
or inferred from the critical-balance conjecture) did not repro-
duce quantitatively the heating spectra shown in Fig. 2, Bottom.
Second, at high βi, the model of ref. 7 does not treat turbu-

E

A B

C D

Fig. 3. (A–D) Phase-space spectra of the gyroaveraged perturbed ion dis-
tribution function |ĝ|2 in Fourier–Laguerre space (k⊥, `) (A and B) and
Fourier–Hermite space (k⊥, m) (C and D) for Ti/Te = 1, βi = 0.1 (A and C)
and βi = 100 (B and D). (E) Hermite spectrum at k⊥ρi = 0.33, i.e., a cut along
the dotted line in C and D, for βi = 0.1 (blue) and 100 (orange). Note the
standard m−1/2 slope associated with linear phase mixing (41, 47) at high
βi and a steeper m−1 slope at lower βi, indicating suppressed phase mixing
(cf. refs. 45 and 46).

lence in the no-propagation region at k⊥ρ∗ as a nonlocally driven
magnetic cascade, choosing rather to smooth the frequency gap
between the AWs and KAWs. Third, at low βi, as we are about to
see below, the ion heating is controlled by the nonlinear, rather
than linear, phase mixing [“entropy cascade” (6, 33, 48, 49)].

Temperature Disequilibration. Apart from the βi dependence, the
key finding of our simulations is that Qi/Qe is mostly insensitive
to Ti/Te (keeping βi constant; Fig. 1, Right). Some dependence
on Ti/Te does exist when βi . 1 and Ti/Te is small [for βi� 1,
this is the “Hall limit” of GK (6)]. This dependence is redistribu-
tive: Colder ions are heated a little more. At low βi, most of the
energy still goes into electrons, but at βi∼ 1, the effect might be
of some help in restoring some parity between ions and electrons
because Qi/Qe> 1 at low Ti/Te and Qi/Qe< 1 at high Ti/Te.

Overall, we see that whether ions and electrons are already
disequilibrated or not makes relatively little difference to the
heating rates—there is no intrinsic tendency in the collisionless
system to push the two species toward equilibrium with each
other (except at βi∼ 1). In fact, in the absence of ion cooling
and at constant magnetic field, turbulent heating would gradually
increase βi and thus push the system toward a state of dominant
ion heating and hence hotter ions. Runaway increase of Ti/Te

can be envisioned if Te is capped by, e.g., radiative cooling.

Fitting Formula. For a researcher who is interested in using these
results in global models (as in, e.g., refs. 14 and 15), here is
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a remarkably simple fitting formula, which, without aspiring to
ultrahigh precision, works quite well over the parameter range
that we have investigated (Fig. 1, Right):

Qi

Qe
=

35

1+ (βi/15)−1.4e−0.1Te/Ti
. [2]

Phase-Space Cascades
One of the more fascinating developments prompted by the
interest in energy partition in plasma turbulence has been the
realization that, in a kinetic system, we are dealing with a free-
energy cascade through the entire phase space, with energy
travelling from large to small scales in both position and veloc-
ity space (6, 33, 44, 45, 48–54). This is inevitable because the
plasma collision operator is a diffusion operator in phase space
and so the only way for a kinetic system to have a finite rate
of dissipation at very low collisionality is to generate small
phase-space scales—just like a hydrodynamic system with low
viscosity achieves finite viscous dissipation by generating large
flow-velocity gradients. The study of velocity-space cascades in
kinetic systems is still in its infancy—but advances in instru-
mentation and computing mean that the amount of available
information on such cascades in both real (space) physical plas-
mas (52) and their numerical counterparts (33, 46, 54) is rapidly
increasing. Let us then investigate the nature of the phase-space
cascade in our ion-heating simulations.

In low-frequency (GK) turbulence, there are two routes for the
velocity-space cascade: Linear phase mixing, also known as Lan-
dau damping (55), produces small scales in the distribution of the
velocities parallel to the magnetic field (v‖) (47, 56), whereas the
cascade in the perpendicular velocities (v⊥) is brought about by
nonlinear phase mixing, or entropy cascade, associated with par-
ticles following Larmor orbits (whose radii are ∝ v⊥) sampling
spatially decorrelated electromagnetic perturbations (6, 48, 49).
The latter mechanism switches on at spatial scales for which the
Larmor radius is finite, i.e., at k⊥ρi & 1. While these velocity-
space cascades are interesting in themselves as fundamental
phenomena setting the structure of plasma turbulence in phase
space, they also give us a handle on whether the ion heating tends
to be parallel or perpendicular (this could become important if
we asked, e.g., toward what kind of pressure-anisotropic states
turbulence pushes the plasma).

We use the Hermite–Laguerre spectral decomposition of the
gyroaveraged perturbed distribution function g = 〈δf 〉 (57),

ĝm,`=

∫ ∞
−∞

dv‖
Hm(v‖/vthi)√

2mm!

∫ ∞
0

d(v2
⊥)L`(v

2
⊥/v

2
thi)g(v‖, v

2
⊥),

[3]

where Hm(x ) and L`(x ) are the Hermite and Laguerre polyno-
mials. In this language, higher m and ` correspond to smaller
scales in v‖ and v⊥, respectively. Fig. 3 shows the phase-space
spectra of the ion entropy [|ĝ |2, the contribution of the perturbed
ion distribution function to the free energy (6)] for βi =0.1 and
βi =100 cases with Ti/Te =1. We see that the distribution of the
free energy and, consequently, the nature of its cascade through
phase space change with βi.

Low Beta. At low βi, linear phase mixing is suppressed (Fig. 3C;
this is because ions’ thermal motion is slow compared to the phase
speed of the Alfvénic perturbations), so most of the ion entropy
is cascaded simultaneously to large k⊥ρi and ` by nonlinear phase
mixing (Fig. 3A) before being thermalized by collisions, giving rise
to (perpendicular) ion heating. The Fourier–Laguerre spectrum
contains little energy at high ` when k⊥ρi< 1 (because plasma
dynamics are essentially drift kinetic at these scales and there is no
phase mixing in v⊥), but at k⊥ρi> 1 it is consistent with aligning

along `∼ (k⊥ρi)
2. This is a manifestation of the basic relation-

ship between the velocity and spatial scales, δv⊥/vthi∼ 1/k⊥ρi,
that is characteristic of sub-Larmor entropy cascade (6, 48, 49)
(δv⊥/vthi∼ 1/

√
` follows from the trigonometric asymptotic of

Laguerre polynomials at high `). Similar “diagonal” structure has
previously been found in 4D electrostatic GK simulations (58)
and in 6D electromagnetic hybrid-Vlasov simulations (33). Note
also that for the case (βi,Ti/Te)= (1, 1), ref. 11 compared the
contributions to ion heating from the v⊥ and v‖ parts of the
collision operator and also concluded that the nonlinear phase
mixing was the dominant process.

High Beta. In contrast, at high βi, most ion entropy is chan-
neled to high m at k⊥ρi< 1 (Fig. 3D) by linear phase mixing,
as is indeed confirmed by the characteristic m−1/2 slope of
the Hermite spectrum (41, 47) [Fig. 3E; at low βi, the Her-
mite spectrum is steeper, implying very little dissipation (44,
45)]. These perturbations are then thermalized at high m by
collisions. Thus, the preferential heating of ions at high βi is
parallel and occurs via ordinary Landau damping. [We make
this statement with some caution. The velocity resolution of our
simulations is necessarily limited, so our plasma has a certain
effective collisional cutoff mc (typically, mc∼ 10). The order of
limits mc→∞ and βi→∞ may matter to the system’s ability to
block linear phase mixing via the stochastic echo effect because
the rate at which free energy is transferred from m to m +1 by
linear phase mixing is ∼ |k‖|vthi/

√
m (44, 45) whereas the non-

linear advection rate in a critically balanced Alfvénic turbulence
is ∼ |k‖|vA = |k‖|vthi/

√
βi. At the highest values of βi , our simu-

lations have mc<βi, so the effective collisionality may interfere
with the echo. If, at infinite resolution (i.e., in an even less colli-
sional plasma than we simulate currently), the echo is restored,
ion heating at βi�mc may be all via the entropy cascade.]

Discussion
To discuss an example of astrophysical consequences of our find-
ings, let us return briefly to the curious case of low-luminosity
accretion flows—most famously, the supermassive black hole
Sgr A∗ at our Galaxy’s center. Two classes of theory have been
advanced to explain the observed low-luminosity, each corre-
sponding to a distinct physical scenario: The first scenario has
Qi/Qe� 1 and so most of the thermal energy is deposited into
nonradiating ions, which are swallowed by the black hole (1–
3); the second scenario has Qi/Qe∼ 1 but the accretion rate is
very small, with most of the plasma being carried away by out-
flows (59). Determining which of these is closer to the truth is
tantamount to identifying the fate of the accreting matter. The
low-accretion rate scenario has gradually become more widely
accepted (26, 60, 61), whereas early studies used the high-Qi/Qe

scenario (2, 62). The value Qi/Qe' 30 that we have found for
moderately high values of βi is about 10 times larger than the
value used today. However, even with this value, the accretion
rate must be much smaller than the Bondi rate (figure 1 in
ref. 61), given the observational fact that the outflow is present
(60, 63). Within this scenario, the relative amount of electron
heating in the low-βi, central region of the disk turns out to
be crucial to enable a detectable jet: Ref. 15 found a radiat-
ing jet in global simulations using the linear prescription with
very low ion heating (7) and no visible jet with a more equi-
table heating model (13). Our heating prescription is perhaps
closer to ref. 7 in that regard, but not as extreme—it would be
interesting to see what effect this has on global models of
accreting systems.

On a broader and perhaps more fundamental level, we have
shown that turbulence is capable of pushing weakly collisional
plasma systems away from interspecies thermal equilibrium—
depending on whether βi is high or low, it favors preferential
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thermalization of turbulent energy into ions or electrons, respec-
tively (although at βi∼ 1, there is some tendency to restoration
of species equality). This is a relatively rare example of turbu-
lence failing to promote Le Chatelier’s principle and instead
causing a disequilibration of a collisionless system.
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11. Bañón Navarro A, et al. (2016) Structure of plasma heating in gyrokinetic Alfvénic
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