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Abstract: Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phe-
notypes are suggested to result from genomic variations. However, the contribution of genetic factors 
to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be un-
derstood when an attempt to link behavioral variability to a specific genomic change is made.  
Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic 
mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual’s brain. Somatic 
mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. 
As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change 
dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize 
that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behav-
ioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic 
mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the 
lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulat-
ing levels of somatic mosaicism to increase functioning and to improve overall condition of individu-
als with behavioral problems. 
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1. INTRODUCTION 

 Behavior is determined by interactions between genetic 
and environmental factors. Specific behavioral patterns are 
often associated with neurobehavioral disorders with a 
strong genetic background (i.e. autism and schizophrenia). 
Actually, there are a growing number of studies associating 
genetic abnormalities with specific behavioral phenotypes 
[1, 2]. The term “behavioral phenotype” has been recently 
introduced to describe a behavior featuring a biological con-
dition associated with a certain genetic abnormality or syn-
drome [3]. Although many genetic conditions are not associ-
ated with highly specific behavioral phenotypes, there is a 
large number of syndromes originating from a genomic 
change and demonstrating characteristic behavioral features 
[4-8]. Nevertheless, underlying biological causes of specific 
behavioral manifestations resulting from genetic changes are 
extremely complicated and remain to be understood [9]. 
Still, genomic variations are consistently associated with 
specific behavioral phenotypes [10-14]. 
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 De novo and inherited genetic mutations leading to ge-
nomic variations are currently considered as a major biologi-
cal cause of interindividual behavioral variability, especially 
in brain disorders (i.e. autism, schizophrenia, intellectual 
disability) [5, 8, 9, 11, 15]. Although it is commonly ac-
cepted that genomic variations generally affect all the cells 
of an organism due to meiotic errors [16-18], there are nu-
merous studies evidencing that somatic or postzygotic ge-
nomic variations do accumulate during the early brain devel-
opment and probably brain aging, originating from the fail-
ures of DNA replication/repair and cell cycle errors [19-21]. 
These types of genomic changes are defined as somatic ge-
nome variations or somatic mosaicism. Somatic mosaicism 
has been shown to be one of the promising yet underesti-
mated mechanisms of phenotypic variability [22-26]. For 
instance, somatic mosaicism in the human brain has been 
proposed as a common mechanism for neurodevelopmental, 
neurobehavioral and neurodegenerative disorders [7, 27, 28]. 
Despite somatic mosaicism being detectable in almost all 
individuals [27-31], intercellular genomic diversification 
(genomic and chromosomal instability) has been found to be 
a highly probable mechanism for brain disorders including 
neurodegenerative and neurobehavioral diseases (i.e. Alz-
heimer’s disease, autism and schizophrenia) and may pro-
duce dramatic changes in brain cellular physiology and be-
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havior [32-47]. Mosaic genome variations accumulating or 
decreasing during lifetime may influence epigenetic and 
transcriptome patterns, ending up in functional and cellular 
diversity in the brain. The latter could negatively affect 
cell signaling pathways and neural circuit function leading 
to behavioral abnormalities and disease [7, 27, 28, 36, 40-
43]. As a result, somatic mosaicism is now being ad-
dressed with respect to behavioral disorders [7, 19, 24, 27, 
34, 42, 43]. The human brain responsible for speech, move-
ment, cognition and other mental abilities is considered a 
primary target for studying the effect of somatic mosaicism 
on behavior and neuropsychiatric diseases. Single-cell analy-
ses of brain cells in the healthy and diseased human brain 
have demonstrated that somatic mosaicism affects neuronal 
cell populations and is likely to mediate pathogenic proc-
esses associated with brain malfunctioning. Genomic 
changes are likely to be derived from disturbances in ge-
nome maintenance and cell cycle regulation pathways along 
with environmental influences (genetic-environmental inter-
actions) [7, 27, 28, 32-47]. Accordingly, one can speculate 
that somatic genomic variations could also affect behavioral 
phenotypes.  
 Somatic mosaicism has been found in many genetic syn-
dromes associated with behavioral abnormalities [1, 7, 48-
51]. For instance, phenotypic features in patients with mo-
saic trisomy of chromosome 21 (Down syndrome) are de-
termined by the percentage of trisomic cells present in dif-
ferent tissues [48, 49] (Fig. 1). Furthermore, somatic genome 
variations are generally dynamic. In other words, the amount 
of cells exhibiting altered genomes varies throughout 
lifespan [38, 51-55]. Therefore, one can speculate that varia-
tion of mosaicism levels is able to result in appreciable phe-
notypic changes including behavioral phenotypes. Interest-
ingly, this assumption resembles to some extent the concept 

of the “dynamic genome”, which is used for explaining ge-
netic-environmental interactions modulating human behavior 
as well as consequences of stress and genomic adaptation to 
environmental effects [56-60]. However, similar theories 
leave aside somatic mosaicism without considering it as a 
mechanism for behavior variability. 
 Summarizing data on somatic mosaicism and its possible 
relevance for neurobiology and behavioral sciences, we have 
proposed a hypothesis suggesting that the levels of somatic 
mosaicism are constantly changing throughout ontogeny due 
to environmental effects affecting behavioral patterns. In its 
simplest form, the hypothesis can be postulated as follows: 
the amount of abnormal cells in an organism correlates with 
the behavioral patterns, i.e. the increase in the abnormal cell 
proportion is likely to have a negative behavioral effect, 
whereas a decrease is likely to have a positive one. 
 Since genomic variations affecting behavior are likely to 
be those confined to brain tissue [7], one should address so-
matic mosaicism/mutations in the brain per se. Regardless of 
overwhelming majority of human brain cells to be postmi-
totic, non-malignant brain cells are still prone to mutational 
events and DNA damage, which seem to accumulate during 
ontogeny in the aging human [61-63]. Notwithstanding, so-
matic genomic variations essentially are accumulated during 
the prenatal and early postnatal brain development [37, 55, 
64-67]. Therefore, there is a need to modify the hypothesis. 
 Human brain is a highly plastic structure being especially 
predetermined to change in early childhood and is composed 
of a myriad of different neuronal cell types [64]. High levels 
of mosaic aneuploidy (loss/gain of chromosomes in a cell) 
hallmark the human developing brain being probably elimi-
nated at later stages of life [51, 53, 55, 65-67]. However, 
genetically abnormal cells do remain in the postnatal brain. 

 
Fig. (1). Regular versus mosaic Down syndrome: cognitive differences. 
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CONCLUSION 

 Consequently, an increase in the levels of abnormal cells 
might influence brain function, plasticity and performance 
[7, 27, 32-47]. In the behavioral context, neurodevelopmen-
tal diseases may be associated with a tissue-specific somatic 
mosaicism causing specific alterations to neural plasticity 
and interaction. We suggest that the higher is the percentage 
of mosaic cells among brain cells, the more severe are be-
havioral abnormalities. Additionally, somatic mosaicism in 
non-neuronal tissues has the potential to influence indirectly 
behavioral phenotype, as well. Since environmental factors 
are affecting levels of somatic mutations in mitotic tissues 
[23-26], these assumptions have relevance to therapeutic 
interventions [28]. Once the hypothesis is supported, new 
therapeutic opportunities for devastating neurobehavioral 
diseases would be available. Firstly, to do so, one needs to 
observe the effects described above in larger cohorts as well 
as studying somatic mosaicism in brain tissues. To correlate 
higher levels of somatic mosaicism with more severe behav-
ioral manifestations, it is mandatory to perform a longitudi-
nal study via genetic methodology and behavioral (psy-
chologic) reports on an individual condition for a rather long 
period of time. One should keep in mind that it is impossible 
to obtain brain samples from a living individual to monitor 
somatic genome variations for a long period. However, it is 
possible to correlate the results of behavioral studies with 
somatic mosaicism evaluations in mitotic tissues and as-
sessment of brain tissue susceptibility to genome instability 
uncovered by whole-genome scanning technologies (as sug-
gested in [28, 68]). In addition, basic research of correlation 
between somatic mosaicism levels in mitotic and post-
mitotic neuronal and non-neuronal (brain) tissues should be 
pursued. Ideally, data on patients with identical underlying 
causes of neurobehavioral abnormalities should be used to 
compare behavioral phenotype severity and variability with 
large genetic datasets in a personalized manner. Longitudinal 
research by monitoring tissue-specific mosaicism during the 
ontogeny along with evaluating general health and behav-
ioral condition is likely to provide speculations on the asso-
ciations between somatic mosaicism and behavioral variabil-
ity. Finally, if this hypothesis is supported, somatic mo-
saicism will be referred to as a new connecting (or missing) 
link between genome, environment and behavior. 
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