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Background: Big data and real-world data (RWD) have been increasingly used to
measure the effectiveness and costs in cost-effectiveness analysis (CEA). However, the
characteristics and methodologies of CEA based on big data and RWD remain unknown.
The objectives of this study were to review the characteristics and methodologies of the
CEA studies based on big data and RWD and to compare the characteristics and
methodologies between the CEA studies with or without decision-analytic models.
Methods: The literature search was conducted in Medline (Pubmed), Embase, Web of
Science, and Cochrane Library (as of June 2020). Full CEA studies with an incremental
analysis that used big data and RWD for both effectiveness and costs written in English
were included. There were no restrictions regarding publication date.
Results: 70 studies on CEA using RWD (37 with decision-analytic models and 33 without)
were included. The majority of the studies were published between 2011 and 2020, and
the number of CEA based on RWD has been increasing over the years. Few CEA studies
used big data. Pharmacological interventions were the most frequently studied
intervention, and they were more frequently evaluated by the studies without decision-
analytic models, while those with the model focused on treatment regimen. Compared to
CEA studies using decision-analytic models, both effectiveness and costs of those using
the model were more likely to be obtained from literature review. All the studies using
decision-analytic models included sensitivity analyses, while four studies no using the
model neither used sensitivity analysis nor controlled for confounders.
Conclusion: The review shows that RWD has been increasingly applied in conducting the
cost-effectiveness analysis. However, few CEA studies are based on big data. In future
CEA studies using big data and RWD, it is encouraged to control confounders and to
discount in long-term research when decision-analytic models are not used.
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BACKGROUND

With the development of health care technologies, a large number
of innovative medications and health-related interventions have
been approved and available on the market (Claxton et al., 2011;
Hughes-Wilson et al., 2012). While these new therapies deliver
better health outcomes, they often come with additional
economic burdens (Hughes-Wilson et al., 2012). The cost-
effectiveness analysis (CEA) is one of the economic evaluation
techniques comparing both outcomes and costs between two or
more interventions, which could help decision-makers to decide
the most appropriate intervention and help payers to estimate the
economic burden (Eichler et al., 2004; Drummond and McGuire,
2005; Bowrin et al., 2019). When the effectiveness is measured by
a utility, it is called cost-utility analysis (CUA) (Drummond and
McGuire, 2005). CEA has been increasingly used by health
technology assessment (HTA) agencies in many countries for
the decision-making of health-related interventions, including
but not limited to market access, pricing, and formulary (Yang
et al., 2008; Clement et al., 2009; Ciani and Jommi, 2014; Dakin
et al., 2015; Jönsson, 2015).

CEA can be directly performed based on randomized
controlled trials (RCTs) or pragmatic studies, or it can be
indirectly conducted using decision-analytic models with
mixed data derived from RCTs and the real-world settings
(Drummond and McGuire, 2005; Briggs et al., 2006).
Decision-analytic models, such as the decision tree and the
Markov model, are a systematic decision-making approach
widely using in the economic evaluation of healthcare
interventions to compare decisions under uncertainty
(Drummond and McGuire, 2005; Briggs et al., 2006). Real-
world data (RWD) provided by observational studies other
sources, including medical claims data and electronic health
records (EHRs) have been used more and more in CEA
studies (Drummond, 1996; Terkola et al., 2017; Bowrin et al.,
2019). The International Society for Pharmacoeconomics and
Outcomes Research (ISPOR) Real-World Data Task Force
published a report supporting the use of RWD for coverage
and payment decisions in 2007, which defined RWD as the data
used not collected in conventional RCTs (Garrison et al., 2007).
Specifically, six sources of RWD were defined by the ISPOR,
including supplements to traditional RCTs, large simple trials,
registries, administrative data, health surveys, and EHRs and
medical chart reviews. In 2017, ISPOR and International
Society for Pharmacoepidemiology (ISPE) Joint Task Force
published an article about the practice for real-world studies
of comparative effectiveness (Berger et al., 2017). Compared to
the RCTs considered as the “golden standard” in evaluating
efficacies, RWD from observational studies or other real-world
settings features a larger sample size (Silverman, 2009; Makady
et al., 2018). Additionally, real-world settings can offer long-term
scrutinization of effectiveness, which is reliable and ensures less
uncertainty in a lifetime decision-analytic model compared to the
RCTs commonly designed with a relatively short time horizon
(Makady et al., 2018; Bowrin et al., 2019).

With the evolvement of technology, big data have been used
more and more often in health care settings. Big data are a special

kind of real-world data, which are characterized by high volume,
high velocity, high variety, high value, and high veracity (5Vs)
(Mehta and Pandit, 2018). Big data combine data from a variety
of sources, including insurance claims, electronic medical
records, patient-reported data, social media, etc. The combined
data can be analyzed to predict the diagnosis and medication
administration patterns using artificial intelligence models such
as machine learning to compare health-related interventions
(Wordsworth et al., 2018). However, because many big data
are unstructured, certain challenges in the data collection,
management, cleaning, and analysis need to be addressed
before big data can be widely used in CEA studies
(Wordsworth et al., 2018).

Limited studies have systematically reviewed the
characteristics, methodologies, and quality of CEA studies
based on big data and RWD. A study in 2019 reviewed the
limitations in using RWD for CEA studies (Mehta and Pandit,
2018). However, this review does not include specific CEA studies
using RWD, but overview literature (Mehta and Pandit, 2018). In
addition, no studies have examined the differences between CEA
studies based on big data and RWD with or without decision-
analytic models. To fill the gap in the literature, the objectives of
this study were to review the characteristics and methodologies of
the cost-effectiveness analysis based on big data and real-world
data and to compare the characteristics and methodologies
between the cost-effectiveness analyses with or without
decision-analytic models.

METHODS

Search Strategy and Sources
A comprehensive literature search was implemented to identify
CEA studies using big data and RWD. The literature search was
conducted within the scope of four databases (as of June 2020)
including Medline (Pubmed), Embase, Web of Science, and
Cochrane Library. In addition, manual searches on the
reference lists of included studies as well as related
systematic reviews were performed to ensure the retrieval
completeness. Search terms used in this study include cost-
effectiveness analysis, cost-utility analysis, economic
evaluation, pharmacoeconomics, big data, real-world study,
real-world evidence, real-world data, RWD, RWE, RWS,
electronic health records, EHRs, claims, and registry. Details
are shown in Supplemental Material S1.

Eligibility Criteria
Full CEA studies with an incremental analysis that compared
both incremental effectiveness and incremental cost between two
or more interventions that used big data and RWD for both
effectiveness and costs written in English were included. The
definition of RWD in this review was based on the report
published by ISPOR, where RWD was defined as data not
derived from RCTs but rather come from pragmatic trials,
registries, administrative data, health surveys, electronic
records, or paper medical charts (Garrison et al., 2007). Big
data were identified if two or more RWD were combined in a
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single parameter, or if any artificial intelligent methods, such as
machine learning and deep learning methods, were used to
process the data (Mehta and Pandit, 2018; Wordsworth et al.,
2018). Furthermore, there were no restrictions regarding the
publication date. Cost-minimization analysis, cost-of-illness,
cost-benefit analysis, reviews, meta-analysis, comments, letters,
protocols, posters or presentations at conferences or workshops,
literature unavailable, and studies that are not health-related were
excluded.

Study Selection
According to the patient/population, intervention, comparison
and outcomes (PICOS) principle, patients were any patients, data
for intervention and control groups were from the real world, and
outcomes were ICER (Amir-Behghadami and Janati, 2020). Two
rounds of screening were carried out independently by two
reviewers after removing duplicates. In case a disagreement
was expressed, a senior reviewer made the final decision. In
the first round, titles and abstracts were screened for eligibility.
Studies were included if 1) baseline population is based on real-
world studies; 2) big data and RWD are used for both
effectiveness and costs; 3) transition probabilities in the
decision-analytic models are not obtained from RCTs. Then,
the full-text review was performed for verification of potentially
eligible studies according to the eligibility criteria. The entire
selection process, including study identification, eligibility
screening, and selection of full-text articles, followed the
preferred reporting items for systematic reviews and meta-
analyses (PRISMA) statement (Moher et al., 2009).

Information Extraction and Data Synthesis
The extracted information included the study characteristics: title,
name of the first author, published year, study regions, affiliations of
the first author, funding sources, diseases, interventions, and sample
size. We also collected information on the study methodologies:
study design, data type (RWDor big data), time horizon, methods of
controlling confounders, the primary outcome, indirect costs
(including the cost of absence from paid work, reduced
productivity at paid work, and unpaid production), sources of
effectiveness, sources of costs, report of missing data, methods of
handling missing data, threshold consideration, sensitivity analysis,
and discount rate (Liljas, 1998; McNamee, 2005). The process of
study selection, along with the included and excluded number of
studies, was presented in a PRISMA flowchart (Figure 1). The
descriptive characteristics and methodologies were summarized and
compared between the cost-effectiveness analyses with or without
decision-analytic models.

Quality Assessment
We assessed the quality of the included studies using the Quality
of Health Economic Studies (QHES) instrument (Ofman et al.,
2003; Di Marco et al., 2018; McQueen et al., 2018). The QHES
instrument consists of 16 items with scores ranging from 1 to 9,
and the total score of the instrument is 100. During the
assessment process, if the included study satisfied the criterion
of an item, the study received an item-specific score, otherwise it
received a score of zero. The quality assessment was conducted by
two reviewers independently, and any controversies were
resolved by discussion with a third investigator to reach a

FIGURE 1 | Flowchart of publication selection.
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consensus. The QHES has a score-based grading system. The
QHES has a score-based grading system. The scores are grouped
into four groups: extremely poor quality (0–24), poor quality
(25–49), fair quality (50–74), and high quality (75–100) (Ofman
et al., 2003). Details of the QHES instrument are shown in
Supplemental Material S2.

RESULTS

Overview
The systematic literature search identified 6,751 studies after
applying search strategies from different databases combined.
After removing duplicates, 4,589 studies were eligible for the title
and abstract screening. Upon screening of the titles and abstracts,
4,406 studies were excluded. The full-text screening was
conducted on 183 eligible studies. A total of 113 studies were
excluded from the full-text review, and a total of 70 studies were
finally included for review (Figure 1). The number of
publications on CEA studies based on big data and RWD
increased over the years, and the majority of the studies were
published between 2011 and 2020 (Figure 2).

Charcteristics of Included Studies
Among 70 studies included, 37 (52.9%) were based on decision-
analytic models, and 33 (47.1%) were not. The study regions of
most studies were in Europe (42.9%). For the research design, the
number of studies using CEA (55.7%) was slightly more than that
of those using CUA (44.3%). Nearly 70% of the studies had a
sample size higher than 100, and around a quarter of the stuides
did not report the sample size. The most frequently used study
perspective was the health care system (45.7%), followed by
society (22.9%) and patients (11.4%). Most of the authors were
from government or academic institutions (67.1%), and most of
the funding came from the industry (48.6%). Neoplasms (25.7%)
and circulation diseases (24.3%) were the most frequently studied
diseases. The most frequently evaluated intervention was
pharmacological treatment (54.3%). (Table 1).

Methodologies of Included Studies
The majority of included studies (65.7%) reported patient
baseline information. Nearly half of the studies (48.6%) did
not report methods used to control for confounders, and
matching (30.0%) was the most frequently used method for
controlling, followed by regression (17.1%). Quality-adjusted
life year (QALY) was the most frequently used effectiveness
measure (55.7%), followed by the clinical endpoint (21.4%) and
life year (18.6%). One-fifth of the studies included both direct
and indirect costs (21.4%). The main sources of effectiveness
were observational studies (48.6%), followed by registry and
hospital information system (22.9%), while the main sources of
cost were claims (31.4%), followed by the hospital information
system (22.9%), and governmental published sources (18.6%).
More than 70% of the studies did not report missing data of
RWD. Among the studies with the report of missing data,
excluding individuals with missing data was the most
common method of handling the missing data, followed by

imputation (25.0%). In addition, one study (5.0%) requested
missing data from additional sources, while three studies
reported missing data but did not use any method for
handling. Half of the studies (52.9%) used a threshold to
determine cost-effectiveness, and nearly one-third of the
studies (17.1%) did not report any sensitivity analyses. The
majority of the studies (82.9%) used a time horizon longer than
1 year, and nearly one-fifth of the studies (17.1%) did not report
the time horizon. The number of discounted (52.9%) and
undiscounted (47.1%) studies was about the same. (Table 2).

Comparison of Studies With or Without
Decision-Analytic Models
The majority of included studies with decision-analytic models
used CUA (86.5%), while most of the studies without the model
used CEA (78.8%). (Table 1). For the diseases evaluated in the
studies, Figure 3 showed that Studies with decision analysis
models were more likely to study on pharmacological
interventions, management programs, and screening, while
studies not based on decision analysis models were more likely
to study on surgical interventions, treatment regimens, and
devices. In terms of the interventions evaluated, Figure 4
illustrated that the studies with decision-analytic models
preferred to evaluate pharmacological interventions,
management programs, and screening, whereas those without
models preferred to study surgical interventions, treatment
regimens, and devices.

Compared to the studies without decision-analytic models,
those with the model were less likely to control for confounding
variables and preferred to use QALYs as the effectiveness
measure. However, the studies without the model were less
likely to use threshold and sensitivity analysis, and the time
horizon of them was shorter compared to the studies with the
model. For sources of effectiveness, compared to the studies
without decision-analytic models, the effectiveness of those with
the model was less likely to be obtained from claims and health
information systems and was more likely to be obtained from
the registry and observational studies (Figure 5). As for sources
of costs, Figure 6 demonstrated that official resources, registry,
observational studies, and especially literature review were
preferable for the studies using decision-analytic models,
while claims and hospital information systems were
preferable for those not using the models. In terms of
missing data, the studies that did not use the model were
more likely to report missing data. The methods of handling
missing data were mainly excluding regardless of whether the
model was used.

Quality of Included Studies
The average QHES score for the studies with decision-analytic
models was 95.7, while the score for the studies without the model
was 88.7. The detailed results of the quality assessment are shown
in Figure 7. Most of the included studies were conducted
reasonably well. However, many studies have failed to deal
with the time horizon, where only 51.4% of studies stated the
time horizon and used discounting correctly.
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DISCUSSION

This systematic literature review assessed the characteristics and
methodologies of the CEA studies based on big data and RWD.
Out of 70 included studies, we found that the number of the CEA
studies based on big data and RWD has been increased over the
years, and the majority of the studies were published between
2011 and 2020, which is similar to previous studies reviewing the
economic evaluations based on RWD and routine data (Gansen,
2018; Parody-Rúa et al., 2020). We also found that the study
region with the most stuides was Europe. This distribution is as
expected given that many European countries have HTA agencies
and have been using CEA studies to make reimbursement and
formulary decisions (Dakin et al., 2015; Makady et al., 2018).
Most of the first authors were from government or academic
institutions, and most of the funding came from the industry,
which is similar to a previous study (Parody-Rúa et al., 2020).

A study by Bowrin et al. systematically reviewed the barriers of
using RWD in CEA modeling as well as the existing guidelines
and recommendations for incorporating RWD in CEAmodeling,
in which they found that RWD is valuable in CEA studies for
their internal information and suggested that the methods and
potential applications of RWD in CEA should be studied (Bowrin
et al., 2019). Our study complemented this research gap with a
systematic review of the published CEA studies based on big data
and RWD. Bowrin et al. indicated that there might be several
barriers in the CEA studies using RWD, among which
confounding bias was one of the main issues (Bowrin et al.,
2019). Our findings are consistent with their results. In the 70
studies using RWD we included, we found that nearly half of the
RWD-based studies lacked the control for confounders. Direct
use of RWD may be biased due to possible differences in
characteristics between the control and experimental groups
and may result in causality not being explained. Confounders
need to be tightly controlled in future studies using RWD. In
future research, it is important to control for confounders and
make the experimental group and the control group comparable.
A similar issue is a lack of reporting baseline information of the

study population. If there is a deviation between RWD and the
baseline characteristics of the study population in the CEA, the
direct use of the RWD data may be biased. The studies that did
not report baseline information accounted for nearly of the
studies that used the decision-analytic model. Although all of
these studies used sensitivity analysis that could reduce the
uncertainty, the reporting of the results of base case analysis
might be biased. Bowrin et al. also mentioned that CEA using
RWE might have the issue of missing data (Bowrin et al., 2019).
During our review, we found that more than 70% of the included
studies did not report missing data and how it was handled. This
issue was more common in the CEA studies using the model. In
future research, missing data should be strictly reported for CEA
studies using RWD. Although Bowrin et al. indicated that the use
of RWD might have a small sample size, in our review (Bowrin
et al., 2019), we found that most the included studies had a sample
size larger than 500, and even eight studies had a sample size of
more than 10,000. However, there were more than a quarter of
the included studies without reporting the sample size.

Compared with the previous study, we also compared the CEA
study using RWD with and without the decision-analytic model.
The CEA studies using models were more likely to study chronic
diseases and to use a lifetime horizon, which might be due to the
ability of decision-analytic models in simulating the lifetime cost-
effectiveness (Drummond and McGuire, 2005; Tarride et al.,
2010). Although CEA studies directly based on RWD can also
provide long-term effectiveness and costs, they are rarely lifelong.
However, in most of the studies using the model with a lifetime
horizon, RWD-based effectiveness did not reach the lifetime.
Although sensitivity analysis can partially solve this problem by
reducing the uncertainty with a range of ICER, how to solve the
potential problems of extrapolating the use of RWD still needs to
be studied (Makady et al., 2018). In terms of the diseases studied,
the studies without decision-analytic were more likely to study
pharmacological interventions, while those with the model were
more likely to focus on the treatment regimen. A direct
comparison of pharmacological interventions without the
model can reduce the uncertainty introduced by the model

FIGURE 2 | Trends in the publications of real-world based cost-effectiveness analysis.
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TABLE 1 | Characteristics of included studies.

Characteristics Total N = 70 Analytic decision
model N = 37

Non-analytic
decision model

N = 33

N % N % N %

Year
2000–2010 7 10.0 4 10.8 3 9.1
2011–2015 19 27.1 11 29.7 8 24.2
2016–2020 44 62.9 22 59.5 22 66.7

Study regions
Africa 2 2.9 0 0.0 2 6.1
Asia 18 25.7 11 29.7 7 21.2
Europe 30 42.9 18 48.6 12 36.4
Oceania 2 2.9 2 5.4 0 0.0
North America 18 25.7 6 16.2 12 36.4

Study types
CEA 31 44.3 5 13.5 26 78.8
CUA 39 55.7 32 86.5 7 21.2

Sample size
0–100 4 5.7 0 0.0 4 12.1
101–500 18 25.7 10 27.0 8 24.2
501–1,000 9 12.9 5 13.5 4 12.1
1,001–10,000 13 18.6 4 10.8 9 27.3
≥10,001 8 11.4 2 5.4 6 18.2
NA 18 25.7 16 43.2 2 6.1

Cost perspectives
Patients 8 11.4 3 8.1 5 15.2
Society 16 22.9 11 29.7 5 15.2
Health care system 32 45.7 17 45.9 15 45.5
Third-party payer 4 5.7 2 5.4 2 6.1
Others 3 4.3 2 5.4 1 3.0
NA 7 10.0 2 5.4 5 15.2

Affiliations of the first author
Government/academia 47 67.1 26 70.3 21 63.6
Hospital 12 17.1 3 8.1 9 27.3
Industry 2 2.9 1 2.7 1 3.0
Consulting firms 9 12.9 7 18.9 2 6.1

Funding sources
Government/academia 22 31.4 9 24.3 13 39.4
Industry 34 48.6 21 56.8 13 39.4
No funding 6 8.6 4 10.8 2 6.1
NA 8 11.4 3 8.1 5 15.2

Disease categories (Based on ICD-10 categories)
I Certain infectious and parasitic diseases 4 5.7 2 5.4 2 6.1
II Neoplasms 18 25.7 7 18.9 11 33.3
IV Endocrine, nutritional and metabolic diseases 5 7.1 4 10.8 1 3.0
V Mental and behavioral disorders 3 4.3 0 0.0 3 9.1
IX Diseases of the circulatory system 17 24.3 8 21.6 9 27.3
X Diseases of the respiratory system 6 8.6 2 5.4 4 12.1
XIII Diseases of the musculoskeletal system and connective tissue 7 10.0 6 16.2 1 3.0
Others 1 1.4 1 2.7 0 0.0
NA 4 5.7 3 8.1 1 3.0

Intervention categories
Pharmacological 38 54.3 25 67.6 13 39.4
Surgical 7 10.0 2 5.4 5 15.2
Treatment regimen 13 18.6 3 8.1 10 30.3
Management program 3 4.3 3 8.1 0 0.0
Prevention program 6 8.6 3 8.1 3 9.1
Screening 1 1.4 1 2.7 0 0.0
Devices 2 2.9 0 0.0 2 6.1

CEA: Cost-Effectiveness Analysis; CUA, Cost-Utility Analysis; NA, Not Available; ICD-10, International Classification of Diseases, 10th Revision.
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TABLE 2 | The methodologies used of included studies.

Methodologies TotalN = 70 Analytic decision
modelN = 37

Non-analytic decision
modelN = 33

N % (SD) N % (SD) N % (SD)

Patient baseline information
Yes 46 65.7 19 51.4 27 81.8
No 24 34.3 18 48.6 6 18.2

Confounders controlled
Randomization 3 4.3 1 2.7 2 6.1
Matching 21 30.0 8 21.6 13 39.4
Regression 12 17.1 1 2.7 11 33.3
NA 34 48.6 27 73.0 7 21.2

Analytic models
Decision tree 4 10.8 4 10.8 - -
Markov 30 81.1 30 81.1 - -
Others 3 8.1 3 8.1 - -

Effectiveness
QALYs 39 55.7 30 81.1 9 27.3
DALYs 1 1.4 0 0.0 1 3.0
Life years 13 18.6 5 13.5 8 24.2
Clinical endpoint 15 21.4 2 5.4 13 39.4
Health care utilization 2 2.9 0 0.0 2 6.1

Cost input
Only direct costs 55 78.6 27 73.0 28 84.8
Both direct and indirect costs 15 21.4 10 27.0 5 15.2

Sources of effectiveness
Claims 16 22.9 10 27.0 6 18.2
Registry 9 12.9 2 5.4 7 21.2
Observational studies 11 15.7 2 5.4 9 27.3
Hospital information system 34 48.6 23 62.2 11 33.3

Sources of costs
Claims 13 18.6 8 21.6 5 15.2
Registry 10 14.3 6 16.2 4 12.1
Literature review 22 31.4 9 24.3 13 39.4
Government-published resources 16 22.9 7 18.9 9 27.3
Observational studies 2 2.9 1 2.7 1 3.0
Hospital information system 7 10.0 6 16.2 1 3.0

Report of missing data
Yes 20 28.6 6 16.2 14 42.4
No 50 71.4 31 83.8 19 57.6

Methods of handling missing dataa

Imputation 5 25.0 0 0.0 5 35.7
Excluding 11 55.0 3 50.0 8 57.1
Request from other sources 1 5.0 1 16.7 0 0.0
No 3 15.0 2 33.3 1 7.1

ICER Threshold
Yes 37 52.9 27 73.0 10 30.3
No 33 47.1 10 27.0 23 69.7

Sensitivity analysis
Only deterministic sensitivity analysis 15 21.4 7 18.9 8 24.2
Only probabilistic sensitivity analysis 20 28.6 12 32.4 8 24.2
Both deterministic and probabilistic sensitivity analysis 23 32.9 18 48.6 5 15.2
NA 12 17.1 0 0.0 12 36.4

Time horizon
≤ 1 year 12 17.1 6 16.2 6 18.2
> 1 year 21 30.0 6 16.2 15 45.5
Lifetime 25 35.7 22 59.5 3 9.1
NA 12 17.1 3 8.1 9 27.3

Discount rate
Yes 37 52.9 30 81.1 7 21.2
No 33 47.1 7 18.9 26 78.8
QHES score 92.4 7.0 95.7 5.4 88.7 6.8

NA, Not Available; QALY, Quality-Adjusted Life Year; DALY, Disability-Adjusted Life Year; ICER, Incremental Cost-Effectiveness Ratio; QHES, Quality of Health Economic Studies.
aThe denominator is the 20 of studies with report of missing data.
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FIGURE 3 | Differences in disease categories between real-world cost-effectiveness analysis with or without decision-analytic model.

FIGURE 4 | Differences in intervention categories between real-world cost-effectiveness analysis with or without decision-analytic model.

FIGURE 5 | Differences in effectiveness sources between real-world cost-effectiveness analysis with or without decision-analytic model.
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(Briggs, 2000). However, for the treatment regimen, it might be
difficult to select a sample in a real-world setting where the
treatment regimen is always complicated (Schulman et al., 2013).
Consequently, those studies aiming to compare different
treatment regimens preferred to use a model approach that
allows greater freedom in the choice of study and control
groups (Behar et al., 2017; Thronicke et al., 2020). This might
be due to the fact that most of the studies with the model used
sensitivity analysis to control for uncertainty. Compared to CEA
studies with decision-analytic models, both the effectiveness and
costs were more likely to be obtained from the literature review,
which might be due to CEA studies using models often use mixed
data from different sources (Briggs et al., 2006). In addition, the
effectiveness of the studies using the decision-analytic model was
mainly from claims and hospital information system, while the

sources of studies without the model were more extensive. In
addition to the above two, registry and observational studies were
also main sources for studies without the model. We also found
that four studies without models did not test the uncertainty of
the study or control for confounders for assessing the
effectiveness and costs (Olivares et al., 2008; Isla-Tejera et al.,
2013; Tsai et al., 2018; Chan et al., 2020). As we discussed above,
the lack of these methods could bring biases to results, and it is
difficult to inform decision-making by deterministic results alone
(Briggs, 2000; Parody-Rúa et al., 2020). Furthermore, in long-
term CEA studies without the model, most of them were not
discounted. Some of these studies even used a life-long time
horizon (Liao et al., 2017; Wei et al., 2017). Without the
discounting for the long-term of effectiveness and costs might
overestimate the cumulative effectiveness and costs and might

FIGURE 6 | Differences in cost sources between real-world cost-effectiveness analysis with or without decision-analytic model.

FIGURE 7 | Quality assessment for the included studies.
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bias in ICER depends on a greater impact of the discounting on
costs or effectiveness (Gravelle and Smith, 2001). In addition, we
used the QHES to identify the quality of the included studies.
Compared to the CHEERS, the QHES items have a better
specificity, and QHES has a scoring system, which could
facilitate the comparison of different studies (Ofman et al.,
2003; Husereau et al., 2013). We found that the score of the
studies included was higher than 75 regardless of whether the
model was used or not, indicating a high quality of the studies.

In addition to the specific issues of using RWD, we also found
some common problems related to CEA in the included research.
The vast majority of CEA studies that adopted a social perspective
included indirect costs. However, there were still several studies
from a societal perspective that did not include indirect costs
(Aarnio et al., 2015; van Leent et al., 2015; Dor et al., 2018; de Jong
et al., 2019a; de Jong et al., 2019b; Voermans et al., 2019).
Although none of these studies focusing on malignant diseases
that can cause serious damage to the patient’s productivity or
infectious diseases that can infect others (Aarnio et al., 2015; van
Leent et al., 2015; Dor et al., 2018; de Jong et al., 2019a; de Jong
et al., 2019b; Voermans et al., 2019), ignoring indirect costs to
some extent underestimates the total costs and the benefits of
productivity that could accrue to patients from more effective
interventions (Drummond and McGuire, 2005). When using
society as a research perspective of cost, opportunity cost
instead of acquisition cost should be measured as the cost of
interventions or programs. However, in all the studies that we
included using society as the perspective, the costs were directly
used acquisition costs, and there was no discussion why these
costs were not adjusted into opportunity costs (Lindgren et al.,
2009; Lekander et al., 2010; Yang et al., 2010; Lekander et al.,
2013; Aarnio et al., 2015; Zhao et al., 2016; Tanaka et al., 2017;
Vassall et al., 2017; Dor et al., 2018; de Jong et al., 2019a; de Jong
et al., 2019b; Behan et al., 2019; Lin et al., 2019; Voermans et al.,
2019; Wang et al., 2019; Arrobas et al., 2021). This might lead to
the overestimation of costs and ICER. In addition, we found that
most of the utilities used in the studies using decision-analytic
models were derived from literature review, which might not suit
the model population and result in potential biases. Although this
limitation is widespread in research using decision-analytic
models and not only limited to those studies using RWD,
such a limitation should also be circumvented in order to
improve the validity of the study.

However, in this study we found that less big data is used in CEA.
When searching for literature, in order to avoid the inclusion of the
studies only using RWD as one minor part of the data sources, we
used a more rigorous search strategy. This might lead to a reduction
in the scope of our included studies and might excluded some CEA
studies that used big data. However, because many studies might
have multiple data sources, especially the CEA studies using the
decision-analytic model. Including all the studies where RWD were
used might lead to too much literature and reduce the feasibility of
the study. Given the potentials of big data, we encourage future CEA
studies to use big data to support decision-making (Wordsworth
et al., 2018). Big data are featured by high volume, high velocity, high
variety, high value, and high veracity (Mehta and Pandit, 2018).
Beyond the economic evaluation of diseases or interventions based

on a cohort, big data can act as an important role in personalized
precision health economics and outcomes research (p-HEOR)
(Chen et al., 2020). Advanced predictive algorithms of applying
big data such as natural language processing (NLP) and machine
learning (ML) should be used more in CEA studies and other
economic evaluations (Fahr et al., 2019). Given the potentials of big
data, we encourage future CEA studies to use big data to support
decision-making.

According to the trend in the publications, the number of CEA
studies using RWD is likely to continue increasing over the next
decades. The 21st Century Cures Act passed in 2016 emphasized
the use of RWD to support regulatory decision making, including
the approval of new indications for approved drugs, and a series
of guidance was launched later (Hudson and Collins, 2017). It is
not difficult to imagine that over the next decades, more andmore
CEA studies will use RWD. In the case of big data, over the next
decades, relevant CEA research using big data is likely to emerge,
but not on a large scale, given that few mature algorithms and
related methods are available (Fahr et al., 2019). Big data have far-
reaching potential for prediction and could be used in some long-
term CEA studies to replace some of the current methods to
predict long-term effectiveness and costs (Fahr et al., 2019; Chen
et al., 2020).

Although there is no systematic guideline on the use of RWE
in CEA, there is some guidelines about using RWD from certain
sources. Deidda et al. published a framework on the use of natural
experiments, and some of the items contained therein are similar
to the problems we found, which might be helpful to guide future
CEA research using natural experiments as RWD sources to
avoid methodology problems (Deidda et al., 2019). However,
considering that there are more and more researches using RWD,
there is still a need for systematic guidance on using RWD.

Some study limitations are worth mentioning. First, although
the searching strategies used various terms, only a restricted set of
synonyms was utilized within the systematic search. However, the
terms used in the searching strategies are comparable to other
reviews regarding the cost-effectiveness analysis. Second, since
many diseases, as well as interventions, were included in the
study, we did not compare the result of CEA studies based on
big data and RWD to that of CEA studies based on RCT, because
there were too much CEA literature using RCT data or mixed data
for each disease or intervention, and it was difficult to ensure that
all the literature can be fully included, for which the results of
comparing might be biased. In future research, it is needed to
conduct systematic reviews comparing the result of CEA studies
based on big data and RWD to that of CEA studies based on RCT
for a specific disease or intervention, in which the published
literature can be covered completely. Third, the searching terms
were restricted in the title, abstract, and keywords. Some studies
based on big data and RWD but not mentioned in each respective
field might have been missed. In addition, although our research
found that there were eight studies with a sample size of more than
10,000, according to our definition of big data, these were not
classified as studies using big data. When doing this research, there
was no specific definition of big data in the HTA. Therefore, during
the search process, we used definitions that if two or more RWD
were combined in a single parameter, or if any artificial intelligent
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methods were used to process the data, which might limit the
economic evaluation that we can include on the use of big data to a
certain extent. Future research specifically on big data is still needed
to enrich the review of this type of research. Fourth, this study only
focused on CEA studies, and did include CBA studies, because we
were concerned that if CBA was included, there might be some
differences from CEA when extracting methodology or results.
Future studies are needed for CBA studies using RWD. Finally,
only full-text studies in English were included in the review,
resulting in the disqualification of published studies that met
other inclusion criteria.

CONCLUSION

A total of 70 studies were identified in this systematic literature
review regarding cost-effectiveness analysis based on big data
and real-world data. The review shows that big data and RWD
have been increasingly applied in conducting the cost-
effectiveness analysis. However, few CEA studies are based
on big data characterized by 5Vs. The characteristics and
methodologies were described and compared between the
studies with decision-analytic models as well as the ones
without the model. In future CEA studies using big data and
RWD, it is encouraged to control confounders and to discount

in long-term research when decision-analytic models are
not used.
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