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Abstract: Inflammatory bowel disease (IBD), comprising Crohn’s disease (CD) and ulcerative colitis
(UC), is a chronic inflammatory condition of the gastrointestinal tract. Since the treatment of IBD
is still an unresolved issue, we designed our study to investigate the effect of a novel therapeutic
target, sigma-1 receptor (σ1R), considering its ability to activate antioxidant molecules. As a model,
2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to induce colitis in Wistar–Harlan male rats.
To test the beneficial effects of σ1R, animals were treated intracolonically (i.c.): (1) separately with an
agonist (fluvoxamine (FLV)), (2) with an antagonist of the receptor (BD1063), or (3) as a co-treatment.
Our results showed that FLV significantly decreased the severity of inflammation and increased the
body weight of the animals. On the contrary, simultaneous treatment of FLV with BD1063 diminished
the beneficial effects of FLV. Furthermore, FLV significantly enhanced the levels of glutathione (GSH)
and peroxiredoxin 1 (PRDX1) and caused a significant reduction in 3-nitrotyrosine (3-NT) levels,
the effects of which were abolished by co-treatment with BD1063. Taken together, our results suggest
that the activation of σ1R in TNBS-induced colitis through FLV may be a promising therapeutic
strategy, and its protective effect seems to involve the antioxidant pathway system.

Keywords: antioxidants; Sigma-1 receptor; inflammation; IBD (inflammatory bowel disease); peroxiredoxin

1. Introduction

Inflammatory bowel disease (IBD) is a chronic, remitting, and relapsing ailment of the
gastrointestinal (GI) tract. Two main forms of IBD are Crohn’s disease (CD) and ulcerative colitis
(UC), which are distinguished according to the area and the severity of inflammation in the GI tract.
CD causes a transmural serious inflammatory damage, while UC is superficial [1]. The therapy of this
disease is well-studied and several treatment options have been developed; however, a simple and
effective treatment is yet to be discovered [2].

Even though the pathogenesis of IBD is complicated, several studies have demonstrated that
excessive biomolecules, cytokines, chemokines, enzymes, and biochemical pathways are involved
in the progression of IBD [3]. Basically, CD is considered as a Th1-driven and UC thought to be
a Th2-cell-driven disease [4]; however, the latest research suggests the involvement of Th17 cells
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in both forms of IBD. It has been shown that Th17 inhibition causes a reduction in inflammation,
thus contributing to an attenuation of acute colitis [5]. Furthermore, it is increasingly clear that oxidative
stress plays a crucial role in the pathogenesis of IBD and in its relapse stage [6].

Several experimental models [7] and clinical studies [8] indicate that oxidative stress has a role in the
development of IBD. Prolonged oxidative stress impairs the mucosal layer, resulting in higher bacterial
invasion and contributing to the pathogenesis of IBD [6]. Reactive oxygen species (ROSs) primarily
refer to free radicals, such as superoxide (O2

•−), hydroxyl radicals (HO−), and reactive non-radical
compounds including singlet oxygen (O2) [9]. Reactive nitrogen species (RNSs) mainly consist of
nitric oxide (NO), nitrogen dioxide (NO2), and peroxynitrite (ONOO−) [10]. Observing oxidative
stress mechanisms, 3-nitrotyrosine (3-NT), a protein modification on tyrosine residues, is considered
an effective oxidative stress marker of ONOO− [11]. The endogenous antioxidant system, which can
counteract the detrimental effects of ROSs, mainly consists of intracellular enzymatic antioxidants,
such as superoxide dismutases (SODs), glutathione peroxidase (GPX), and catalase (CAT), as well as
intracellular, non-enzymatic antioxidants, including glutathione (GSH) [12]. GSH is a thiol-containing
substance with high antioxidant properties [13]. SOD is one of the primary enzymes that convert
O2
− to H2O2, while peroxiredoxins (PRDXs) are responsible for further deactivation of H2O2 to H2O

and the elimination of peroxynitrite to nitrite [14]. The PRDX enzyme family consists of six isoforms
(PRDX1-6) [15]. Of these, PRDX1 [16], -2 [17], -4 [18], and -6 [19] are suggested to be factors in IBD.
Since oxidative stress is presumably important in the pathogenesis of IBD, enhancement of antioxidant
defense has potential benefits in fighting IBD.

Sigma-1 receptor (σ1R) was discovered in 1976 by Martin et al. [20], who proposed it as an opioid
receptor. Now, σ1R is confirmed to be a non-opioid receptor that binds highly diverse ligands [21].
σ1R is located in the mitochondria-associated Endoplasmic reticulum (ER) membrane (MAM) and
has an impact on Ca2+ homeostasis [22]. In response to cellular stress or in the presence of its agonist,
σ1R translocates to the plasma membrane and nuclear membrane and modulates ion channels such
as the K+ channel, NMDA receptors, and IP3 receptors [21]. Interestingly, extremely diverse ligand
classes show a high affinity for σ1R, including benzomorphans, antipsychomimetics, antihistamines,
antidepressants, and antifungal agents [23]. Therefore, this diversity may cause difficulties in a study
of the effects of σ1R, because the various ligands may provoke various side effects. Currently, as an
agonist, fluvoxamine (FLV, an antidepressant) [24] and cutamesine dihydrochloride (SA4503) are
widely applied [25], while BD1063 [26] and NE-100 are frequently used as σ1R antagonists [21].

σ1R is widely studied in the brain and in neurodegenerative diseases, and is currently
being suggested as a novel potential therapeutic target against inflammatory conditions [27].
Furthermore, based on our previous findings, the activation of the receptor through the administration
of its agonist FLV produces a protective effect in a chemically induced rat model of IBD [28].
Moreover, σ1R has been shown to protect against ER stress and oxidative stress, suggesting a potential
therapeutic target against oxidative stress-related diseases [26].

In our present study, we presumed that the protective effect of σ1R in 2,4,6-trinitrobenzenesulfonic
acid (TNBS)-induced colitis may arise from activation of antioxidant signaling pathways, primarily via
GSH and the peroxiredoxin system. To the best of our knowledge, this paper is the first to study the
connection between σ1R and PRDXs in IBD. Our data indicate that FLV significantly increases levels of
GSH and PRDX1 antioxidants, and significantly decreases levels of 3-NT. For further confirmation,
our combined treatment shows that the presence of the antagonist, BD1063, abolishes the protection
exerted by FLV in the colon.

2. Materials and Methods

2.1. Drug Preparations

As a model of colitis, 2,4,6-trinitrobenzenesulfonic acid (TNBS) (Sigma-Aldrich, Budapest,
Hungary) was prepared in 50% ethanol and distilled water mixture. Fluvoxamine (fluvoxamine maleate,
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Sigma-Aldrich, Budapest, Hungary) was dissolved in 3% dimethyl sulfoxide (DMSO). BD1063,
purchased from Tocris (Bio-Techne R&D Systems Kft., Budapest, Hungary), was dissolved in
physiological saline (0.9%). The anesthetic agent thiopental (Tiobarbital Braun, 0.5 g, B. Braun
Medical SA, Barcelona, Spain) was dissolved in saline (0.9%).

2.2. Experimental Animals for the Induction of Colitis

All experiments were performed in accordance with the standards of the European Community
guidelines for the Care and Use of Laboratory Animals, and were approved by the Institutional Ethics
Committee (XX./4799/2015, 15 December 2015) at the University of Szeged.

Male Wistar–Harlan rats (225–250 g) were purchased from Toxicoop Ltd. (Dunakeszi, Hungary)
and were housed in a room with an acclimatized temperature under 12 h day/night cycles with food and
water ad libitum. Animals were randomly divided into three groups: absolute control (no treatment,
n = 12), 50% EtOH (ethanol enema, n = 12), and TNBS (10 mg dissolved in 50% ethanol, n = 48).
Colitis was assessed following Morris’ method [29]. Briefly, animals fasted overnight and a TNBS
enema was administered intracolonically (i.c.) with an 8-cm long polyethylene tube through the anus
under mild anesthesia (thiopental, i.p. 40 mg/kg). Next, animals from the TNBS-administered group
were divided into six groups (n = 6–12/group) and further treated once a day with the following drugs
under mild anesthesia (thiopental, i.p. 40 mg/kg): fluvoxamine (FLV, σ1R agonist) i.c. administration
at the previously tested effective dose 1 mg/kg dissolved in 3% DMSO); BD1063 (σ1R antagonist)
0.1 mg/kg (dissolved in physiological saline (0.9%)); FLV + BD1063 (combined administration of the two
effective doses (FLV 1 mg/kg + BD1063 0.1 mg/kg)); saline (vehicle of BD1063); DMSO (3%, vehicle of
FLV). The selection of the doses was done according to our previous findings in the same animal
model [28]. Animals fasted for 5 h each day before i.c. treatments, which were performed at the same
time each day throughout the experiment. The weights of the animals were monitored on the first and
third day of the experiment.

After 72 h of TNBS administration, all animals were euthanized (thiopental, i.p. 100 mg/kg),
and the last 8-cm portion of the colon was removed, gently opened, rinsed in physiological saline
and photographed for further macroscopic analysis. Finally, the colon segments were frozen in
liquid nitrogen, powdered using a porcelain mortar and pestle, and kept at −80 ◦C until needed for
biochemical measurements.

2.3. Damage Score and Measurement of the Lesions

The extent of macroscopically apparent inflammation, ulceration, and tissue disruption was
analyzed in a randomized manner from the images, using a proprietary computerized planimetry
software that was developed in our laboratory (Stat_2_1_1, Szeged, Hungary) and was based on
planimetrics. The area of macroscopically visible mucosal damage was calculated and expressed as
a percentage of the total studied 8-cm colonic segment.

2.4. Determination of 3-NT, PRDX1, -2, -4, and -6 Levels in the Colon by ELISA

To determine the tissue levels of 3-NT, PRDX1, -2, -4, and -6 in the colon, we used
double-antibody sandwich ELISA kits. The 3-NT kit was purchased from Bioassay Technology
Laboratory (Shanghai, China), and PRDX1, -2, -4, and -6 were purchased from GenAsia Biotech
Co., Ltd. (Shanghai, China). Samples were homogenized in Phosphate Buffer Saline (PBS), pH 7.4,
through the same homogenization procedure (Benchmark Scientific Handheld homogenizer D1000
(Benchmark Scientific, New Jersey, MA, USA); 2 × 10 s, centrifugation = 3000 rpm, 20 min, 4 ◦C).
The whole sample preparation procedure was done on ice. Parameters were measured according to
the manufacturer’s instructions and protocols, and optical densities (ODs) were assayed at λ = 450 nm.
Results are expressed in nmol/L (3-NT), pg/g protein (PRDX1, -2, -4, -6).
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2.5. Determination of SOD Activity in the Colon

SOD activity was measured with a kit purchased from Abcam (Cambridge, UK, ab65354).
Samples were homogenized in ice-cold homogenization buffer (0.1M Tris/HCl, 0.5% Triton X-100, 5 mM
β-ME, 0.1 mg/mL PMSF, pH 7.4). Homogenization was done using a Benchmark Scientific Handheld
homogenizer D1000 (Benchmark Scientific, New Jersey, MA, USA); 2× 10 sec, centrifugation = 14,000× g,
5 min, 4 ◦C. Supernatants were collected and the enzyme activity in the colon samples was measured
according to the manufacturer’s instructions, and ODs were determined at λ = 450 nm. From the
OD values, the activity of SOD was calculated by an equation listed in the instructions and below,
and expressed in inhibition %. In the equation, A = absorbance of Blank1 = 20 µL dH2O + Enzyme
working solution; Blank2 = 20 µL sample; Blank3 = 20 µL dH2O; Sample well = 20 µL sample.

SOD Activity (inhibition rate %) =
(Ablank1−Ablank3) − (Asample−Ablank2) × 100

(Ablank1−Ablank3)
(1)

2.6. Determination of the Total GSH in the Colon

In order to measure total glutathione levels in the colon, samples were homogenized in 0.25 M
sucrose, 20 mM Tris, and 1 mM dithiothreitol (DTT), and centrifuged at 15,000× g for 30 min at 4 ◦C.
Supernatants were collected and incubated in a mixture of 0.1 M CaCl2, 0.25 M sucrose, 20 mM
Tris, and 1 mM DTT at 0 ◦C for 30 min. After incubation, centrifugation was done at 21,450× g for
60 min at 4 ◦C and the cytosolic fraction was used for further analyses. A solution of 125 mM Na
phosphate and 6.0 mM EDTA was used as a diluent buffer for the stock solution of glutathione
(GSH), glutathione reductase, 5,5′-dithio-bis-2-nitrobenzoic acid (DTNB) and β-nicotinamide adenine
dinucleotide phosphate (β-NADPH). A total volume of 40 µL of each blank, standard, or colon sample,
and an equal amount of DTNB stock solution (20 µL) and β-NADPH (140 µL) were added to each
well, and then incubated for 5 min at 25 ◦C. To initiate the reaction, 10 µL of glutathione reductase
was added and the absorbance was measured at 405 nm in a microplate reader after 10 min from the
initiation. In the spectrophotometric assay for total GSH, GSH was sequentially oxidized by DTNB and
reduced by NADPH in the presence of glutathione reductase. Total glutathione values were expressed
as nmol/mg protein.

2.7. Protein Determination

Protein concentration was measured by the Bradford method. Aliquots of 20 µL of the diluted
samples (30× or 40×with distilled water) were taken and mixed with 980 µL distilled water. To each
sample 200 µL of Bradford reagent was added, then samples were gently mixed and incubated for
10 min. Spectrophotometric measurements were taken at 595 nm and compared to a bovine serum
albumin standard.

2.8. Data Representation and Statistical Analysis

All data are presented as mean ± SEM. Statistical analysis was performed using one-way ANOVA
followed by a Holm–Sidak post hoc test (SigmaPlot 12, Systat Software Inc., San Jose, CA, USA) for all
measurements. Differences were considered significant when the p values were less than 0.05.

3. Results

3.1. Severity of Inflammation Due to Sigma-1 Receptor Associated Treatments in TNBS-Induced Rat Colitis

As a colitis model, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was dissolved in 50% ethanol (EtOH)
and given intracolonically to rats after 12 h fasting. The dissolvent EtOH caused inflammation,
ulceration, and necrotic cell death in the colon, but the colonic ulcerations due to TNBS instillation
were much more pronounced. In our previous experiment, we determined the effective doses of
fluvoxamine (FLV) (1 mg/kg) and BD1063 (0.1 mg/kg) in respect to testing the anti-inflammatory
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effect of the sigma-1 receptor (σ1R) [28]. Here, we found that the effective dose of the σ1R agonist,
FLV significantly reduced the severity of inflammation compared to the TNBS group (30.32% ± 2.46%
vs. 64.53% ± 1.68%). Intracolonic administration of BD1063, a σ1R antagonist, exacerbated the colonic
inflammation compared to TNBS (79.42% ± 2.46% vs. 64.53% ± 1.68%). To further establish whether
this anti-ulcerative effect was a consequence of σ1R activation, we investigated the effect of FLV in the
presence of the σ1R antagonist. We found that the presence of BD1063 abolished the anti-inflammatory
effect of the agonist, suggesting that the anti-inflammatory action was driven by σ1R activation.
We examined the effects of the solvents of FLV (3% DMSO) and BD1063 (physiological saline) and
found that solvents of the σ1R ligands did not affect the severity of inflammation compared to the
TNBS group (Figure 1).
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Figure 1. (a) Effect of the sigma-1 receptor (σ1R) ligands on the severity of inflammation in 2,4,6-
trinitrobenzenesulfonic acid (TNBS)-induced colitis. Representative images of the colonic damage:
(b) absolute control (no treatment); (c) 50% ethanol (EtOH enema); (d) TNBS enema; (e) TNBS
enema + 1 mg/kg fluvoxamine (FLV); (f) TNBS enema + 0.1 mg/kg BD1063; (g) TNBS enema + 1 mg/kg
FLV + 0.1 mg/kg BD1063; (h) TNBS enema + Saline; (i) TNBS enema + 3% DMSO. Data representation:
mean ± SEM; n = 5–12/group; *** p < 0.001 TNBS vs. TNBS + treatment; ### p < 0.001 absolute control
vs. TNBS; &&& p < 0.001 EtOH vs. TNBS.
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3.2. Body Weight Change of the Animals

The body weight change of the animals was monitored throughout our experiments. Due to
colonic ulceration and therefore impaired colonic absorption, TNBS instillation was found to cause
a significant body weight reduction compared to the weight change of absolute control (91.43% ± 1.77%
vs. 99.46% ± 0.51%). Treatment with the σ1R agonist FLV significantly reduced the body weight loss of
the animals compared to TNBS (99.40% ± 0.35% vs. 91.43% ± 1.77%). The body weights of the animals
treated with FLV were similar to the absolute control group. In our combined treatment, we found
that the presence of the antagonist abolished the beneficial effect of FLV according to weight loss.
Furthermore, we determined that treatment with the solvents of the σ1R ligands caused no change in
body weight loss compared to TNBS alone (Figure 2).
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Figure 2. Alterations in the body weight change of the animals throughout our experiment. Body weight
change is represented by % between the first and third days of the TNBS procedure. Abs. control
(no treatment), 50% EtOH (50% ethanol enema), TNBS (2,4,6-trinitrobenzenesulfonic acid enema),
FLV (TNBS enema + 1 mg/kg fluvoxamine (FLV)), BD1063 (TNBS enema + 0.1 mg/kg BD1063),
FLV + BD1063 (TNBS enema + 1 mg/kg FLV + 0.1 mg/kg BD1063), Saline (TNBS enema + 0.9%
physiological saline), DMSO (TNBS enema + 3% dimethyl sulfoxide). Data representation: mean± SEM;
n = 5–12/group; * p < 0.01 TNBS vs. TNBS + treatment; # p < 0.05 absolute control vs. TNBS.

3.3. Sigma-1 Receptor Agonist FLV Decreased the Levels of 3-NT in TNBS Colitis

As shown in Figure 3, the level of the oxidative stress marker 3-NT was significantly increased
in the TNBS group compared to non-treated absolute control (114.24 ± 4.29 vs. 73.93 ± 5.38 nmol/L).
FLV treatment significantly decreased 3-NT levels compared to TNBS (79.17± 5.5 vs. 114.24 ± 4.29 nmol/L),
and BD1063 antagonist slightly enhanced the levels of this parameter. To test the involvement of
σ1R in the changes of 3-NT levels, we treated the animals with a combination of the agonist and
antagonist and found that the presence of the antagonist abolished the beneficial effect of the agonist
on 3-NT levels.
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Figure 3. Effects of the sigma-1 receptor on the levels of 3-nitrotyrosin (3-NT) in the colon. Abs.
control (no treatment), 50% EtOH (50% ethanol enema), TNBS (2,4,6-trinitrobenzenesulfonic acid
enema), FLV (TNBS enema + 1 mg/kg fluvoxamine (FLV)), BD1063 (TNBS enema + 0.1 mg/kg BD1063),
FLV + BD1063 (TNBS enema + 1 mg/kg FLV + 0.1 mg/kg BD1063). Data representation: mean ± SEM;
n = 5–9/group; * p < 0.05 TNBS vs. TNBS + treatment; # p < 0.05 absolute control vs. TNBS.

3.4. Effects of the Sigma-1 Receptor on the Levels of GSH in TNBS-Induced Colitis

We found that the 50% EtOH enema significantly decreased the levels of GSH compared to
absolute control group (76.24 ± 6.35 vs. 106.85 ± 6.94 nmol/mg protein). TNBS significantly reduced
the levels of GSH compared to EtOH (47.74 ± 2.68 vs. 76.24 ± 6.35 nmol/mg protein) compared to the
absolute control group (47.74 ± 2.68 vs. 106.85 ± 6.94 nmol/mg protein). Compared to the TNBS group,
the effective dose of the σ1R agonist FLV significantly elevated the levels of GSH (47.74 ± 2.68 vs.
70.19 ± 7.62 nmol/mg protein). GSH levels were decreased by the administration of BD1063, and also
reduced due to the combination of FLV and BD1063 (Figure 4).
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Figure 4. Effects of the activation and antagonism of sigma-1 receptor on the levels of GSH in TNBS-induced
colitis. Abs. control (no treatment), 50% EtOH (50% ethanol enema), TNBS (2,4,6-trinitrobenzenesulfonic
acid enema), FLV (TNBS enema + 1 mg/kg fluvoxamine (FLV)), BD1063 (TNBS enema + 0.1 mg/kg BD1063),
FLV + BD1063 (TNBS enema + 1 mg/kg FLV + 0.1 mg/kg BD1063). Data representation: mean ± SEM;
n = 5–10/group; * p < 0.05 TNBS vs. TNBS + treatment; # p < 0.05 absolute control vs. TNBS; & p < 0.05
EtOH vs. TNBS; a p < 0.05 Abs. control vs. EtOH.
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3.5. Determination of SOD Activity in Sigma-1 Receptor Ligand Treated Rat Colitis

We determined the activity of the antioxidant SOD enzyme in the colon. The induction of colitis by
TNBS decreased the activity of SOD compared to the absolute control group but without significance.
Treatment with FLV increased SOD activity, and BD1063 alone or in a combination with the agonist did
not change SOD activity compared to the TNBS group, but our results were not statistically significant
(Figure 5).
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3.6. Changes in the Levels of PRDX1, -2, -4 and -6 Due to Sigma-1 Receptor Ligand Administration in
Rat Colitis

As shown in Figure 6, we measured the levels of four isoforms of the peroxiredoxin enzyme
family (PRDX1, -2, -4, -6) in the colon. Intracolonically administered EtOH significantly decreased the
levels of PRDX2, -4, and -6 compared to the absolute control group (638.69 ± 79.75 vs. 297.15 ± 27.62;
1494.18 ± 39.69 vs. 545.66 ± 53.03; 106.12 ± 12.61 vs. 53.88 ± 6.33 pg/g protein). TNBS administration
significantly decreased the levels of all of the measured PRDX isoforms (0.4 ± 0.03 vs. 0.19 ± 0.01;
638.69 ± 79.75 vs. 292.08 ± 31.7; 1494.18 ± 39.69 vs. 554.57 ± 79.86; 106.12 ± 12.61 vs. 48.02 5.79 pg/g
protein); however, daily treatment with FLV significantly increased only the levels of PRDX1 compared
to the TNBS group (0.19 ± 0.01 vs. 0.33 ± 0.05 pg/g protein). Furthermore, FLV increased the levels
of PRDX2 and PRDX6 without statistical significance, but did not affect PRDX4 compared to TNBS.
BD1063 had no impact on the levels of PRDXs in the colon compared to TNBS and, in the case of
PRDX1, our combined treatment with the agonist and antagonist showed that the presence of BD1063
abolished the beneficial effect of FLV. This suggests that σ1R has a role in regulating the levels of PRDX1
and possibly modulates PRDX2 and PRDX6.
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control (no treatment), 50% EtOH (50% ethanol enema), TNBS (2,4,6-trinitrobenzenesulfonic acid
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n = 5–12/group; * p < 0.05 TNBS vs. TNBS + treatment; # p < 0.05 absolute control vs. TNBS; a p < 0.05
Abs. control vs. EtOH.

4. Discussion

This study suggests that σ1R activation through the administration of an agonist is protective in
a chemically induced rat model of IBD, and the protective effect partially relies on the improvement
of the antioxidant-oxidative stress balance. These findings are in line with the previous study of
our group [28], which suggest an anti-inflammatory action of σ1R activation by FLV. Our current
results show that intracolonically administered FLV, a σ1R agonist, decreases the levels of 3-NT and
significantly increases the levels of GSH and PRDX1 antioxidants. To further confirm our findings,
BD1063 was used as an σ1R antagonist both alone and in a combined treatment with the agonist.
Our data indicate that the presence of BD1063 abolished the beneficial effect of FLV in the case of 3-NT,
GSH, and PRDX1, suggesting an interaction with σ1R.

It has been well established that the activation of σ1R protects against ER stress and oxidative
stress [30,31]. Administration of σ1R agonists induces the translocation of the receptor and the
upregulation of the σ1R itself. Fluvoxamine is one of the frequently used σ1R agonists, and it has
recently been reported by our laboratory that locally administered FLV clearly upregulates σ1R
expression and efficiently alleviates TNBS-induced colitis [28]. FLV is an SSRI, and it presumably
has antioxidant effects through inhibition of the CYP1A2 enzyme [32]; thus, we applied a combined
treatment of FLV with a widely used σ1R antagonist BD1063, and analyzed whether the protective
function of FLV was affected by the presence of the antagonist.

TNBS-induced acute colitis was developed by Morris et al. [29], and since then has been
an extensively used experimental model to burden the pathogenesis of IBD and reveal more
effective therapeutic targets [33]. TNBS mimics a Th1/Th17 cell-characterized acute inflammation with
a phenotype similar to Crohn’s disease. According to Morris et al., to reach the appropriate ulcer
forming feature of TNBS, EtOH is essential. In their study, they found that the administration of EtOH
alone or TNBS dissolved in saline caused a less severe superficial inflammation of the colon. On the
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contrary, TNBS dissolved in EtOH caused a very severe transmural inflammation that was more similar
to CD. After intracolonic induction of the haptenating agent, animals suffer from body weight loss
that is consistent with malabsorption due to developed ulcers. In our current study, we found that
activation of the σ1R, through the administration of FLV, significantly decreased inflammation in rats
suffering from TNBS-induced colitis. In addition, this protection was abolished by the co-treatment
of FLV with BD1063. Body weight loss was improved as a result of FLV treatment compared to
TNBS alone and to combined treatment. Interestingly, Wieczorek et al. [34] found in Zucker rats that
intraperitoneal-administered FLV significantly decreased the body weight of the animals without
affecting food intake. Thus, we suggest that locally administered FLV to the inflammatory site may
act as a healing substance for ulcers through activation of σ1R, which seemed to contribute to an
improvement of animal body weight by restoring absorption in our case.

As an oxidative stress marker, 3-NT was found in our study to increase as a result of TNBS
administration. Pal et al. [26] found in σ1R KO mice that oxidative stress and ROS generation tend to
increase in the livers and lungs of KO mice. Furthermore, it was shown in the same experiment that
BD1063 treatment in a COS-7 cell line significantly increased ROS levels, while pentazocine attenuated
it. Our results are in accordance with this observation, since we detected a reduced 3-NT level due to
FLV treatment and an elevated 3-NT level as an effect of the inactivation of σ1R by BD1063.

GSH is a potent antioxidant substance that protects against oxidative stress. Pal et al. [26] found
that the oxidized GSSG form of glutathione increased in the liver of σ1R KO mice, suggesting that
the decreased availability of σ1R may contribute to elevated oxidative stress, which is consistent with
our current findings on FLV-induced GSH elevation and BD1063-induced GSH depletion. In further
accordance with our data, Dursun et al. [35] found in an indomethacin-induced rat stomach ulcer
model that orally administered FLV in different doses produced anti-ulceration by altering antioxidant
parameters, such as GSH, in a dose-dependent manner. Curiously, Weng et al. [36] found in a σ1R KO
mice brain that the loss of σ1R seems to activate a compensatory pathway that leads to antioxidant
response element (ARE) activation. Conversely, our results indicate that, besides its suggested action
in the central nervous system, σ1R may activate ARE in peripheral tissues. In accordance with this
notion, Pal et al. [26] also found that σ1R KO COS-7 cells showed higher ARE activation and SOD1
expression after σ1R transfection. Further elevations in ARE and SOD1 mRNA levels were found
after pentazocine treatment, along with a decrease due to the administration of σ1R antagonists such
as haloperidol. In our study, we found a marked increase in SOD activity due to FLV treatment in
agreement with Elsaed et al. [37], who reported the same alteration in a stress-induced peptic ulcer
disease (SPUD) rat model. They suggested that orally administered FLV increased SOD expression
and, similar to our results, they also found an attenuation in stomach ulcers due to FLV.

Peroxiredoxins are highly conserved peroxidases with important roles in the elimination, sensation,
and regulation of available H2O2. In mammals, six isoforms are expressed (PRDX1-6), and PRDXs are
suggested as potential targets in IBD therapy [16]. According to Zhang et al. [38], PRDX1 decreased
significantly in rat dorsal root ganglia (DRG) due to TNBS administration, which is consistent with our
current findings. Furthermore, Hsieh et al. [39] found in the colon of severe UC patients that PRDX1
and PRDX2 were downregulated. Additionally, Horie et al. [16] suggested PRDX1 to be a marker of
active UC state and UC-associated carcinogenesis. In PRDX4 KO mice, Pfeuffer et al. [18] found a more
serious inflammatory reaction to orally administered dextran sodium sulfate (DSS), while interestingly
Melhem et al. [19] found that PRDX6 KO mice showed less severe ulceration and a lower rate of
inflammation after DSS administration. According to our results, TNBS significantly decreased all four
of the measured PRDX isoforms; however, only PRDX1, -2, and -6 seem to have been affected by σ1R
alterations. We found that FLV significantly increased the levels of PRDX1 and increased PRDX2 and
-6 isoforms without significance compared to TNBS, the alterations of which were abolished by the
co-treatment with BD1063. To the best of our knowledge, only one published manuscript [26] has dealt
with the possible interaction of σ1R with PRDXs. It was reported that σ1R knockout mice showed
an elevated level of PRDX6, which does not support our current findings completely, since we found
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a decreased PRDX6 level due to BD1063 administration, and a marked elevation as a result of the
presence of FLV. We presume that this discrepancy may arise from the use of different species.

5. Conclusions

Based on the current data, we suggest that the protective, antioxidant effect of σ1R, due to
FLV treatment, seems to rely on the attenuation of oxidative stress. Moreover, it was shown that
FLV treatment is able to activate PRDX1 isoform and GSH. This restored antioxidant balance may
contribute to the anti-inflammatory and protective effect of σ1R activation against TNBS-induced
colitis. Our results may offer a new therapeutic target against this serious health issue and shed light
on the function and role of this enigmatic receptor.
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