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Classification of colorectal tissue 
images from high throughput 
tissue microarrays by ensemble 
deep learning methods
Huu‑Giao Nguyen1, Annika Blank1,2, Heather E. Dawson1, Alessandro Lugli1 & Inti Zlobec1*

Tissue microarray (TMA) core images are a treasure trove for artificial intelligence applications. 
However, a common problem of TMAs is multiple sectioning, which can change the content of the 
intended tissue core and requires re-labelling. Here, we investigate different ensemble methods 
for colorectal tissue classification using high-throughput TMAs. Hematoxylin and Eosin (H&E) core 
images of 0.6 mm or 1.0 mm diameter from three international cohorts were extracted from 54 
digital slides (n = 15,150 cores). After TMA core extraction and color enhancement, five different 
flows of independent and ensemble deep learning were applied. Training and testing data with 
2144 and 13,006 cores included three classes: tumor, normal or “other” tissue. Ground-truth data 
were collected from 30 ngTMA slides (n = 8689 cores). A test augmentation is applied to reduce the 
uncertain prediction. Predictive accuracy of the best method, namely Soft Voting Ensemble of one 
VGG and one CapsNet models was 0.982, 0.947 and 0.939 for normal, “other” and tumor, which 
outperformed to independent or ensemble learning with one base-estimator. Our high-accuracy 
algorithm for colorectal tissue classification in high-throughput TMAs is amenable to images from 
different institutions, core sizes and stain intensity. It helps to reduce error in TMA core evaluations 
with previously given labels.

Over the last decades, Tissue Microarrays (TMAs) have become synonymous with translational research. Not 
only used as a high-throughput screening tool for different tissue biomarkers (protein, RNA or DNA)1, they can 
also be generated in ways to study tissue heterogeneity2,3, as well as to establish new antibodies or set up new 
experimental methods (e.g. CODEX)4,5. TMAs are important components of clinical trials and biobanks, and 
together with detailed clinicopathological patient data can be a sustainable research tool.

With digital pathology at our doorstep, TMA archives can now also be used as a way of generating training 
and testing data for computational algorithms. Well-labeled TMAs with both image and patient annotations can 
potentially provide a hugely valuable resource for downstream algorithm development6. Additionally, TMAs 
generated on the basis of digital scans can allow users to label histopathological areas of interest directly on the 
images using various annotation tools (sizes and diameters)7. The annotated scans can then be aligned to the 
corresponding tissue blocks, which are cored out and transferred to a recipient TMA block. From the compu-
tational point-of-view, the advantage of TMA construction using this approach are many. Not only are targeted 
tissue areas cored out, allowing researchers to investigate even small or complex histopathological areas across 
hundreds of patient samples effectively (e.g. tumor budding)8 but whole slide images are immediately annotated 
by the experts, thus creating high-quality labels, which can be exploited in further analysis. Moreover, TMA cores 
will be assigned labels of the expected tissue core content, based on the whole slide image annotation. The use 
of digital scans to target specific research questions is an integral component of the so-called “next-generation 
Tissue Microarray (ngTMA)” approach, which has been used by our research group since 20127. Since then, a 
massive archive of tumor/normal tissue ngTMAs has been generated along with their corresponding single-core 
images after H&E or immunohistochemistry staining.

Despite these advantages, TMAs are not without some drawbacks9: serial sectioning of the TMA block will 
inevitably lead to shifts in the expected tissue content within each core. For example, a TMA constructed to 
contain only cancer of a certain type may, after numerous sections contain fewer cores with tumor epithelium 
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and many more with only stroma, or normal tissue. This is a usual “side effect” of TMAs due to the three-dimen-
sionality of the tissue core and may be more or less severe depending on tissue type, tissue thickness and number 
of times the TMA block was sectioned. The shift in tissue content through this “z-axis” requires re-labelling of 
each tissue core in order to avoid any error carried through into next steps, a task which can be tedious, especially 
with high-throughput TMA sets containing thousands of tissue cores.

Colorectal cancers (CRC) are excellent candidates for construction of such high-throughput TMA. CRCs are 
heterogeneous on the histopathological and molecular level10,11. They exhibit a complex microenvironment of 
tumor-stroma interactions/components linked to the aggressiveness of the cancer12. The sum of these parts is to 
a large degree represented by the histopathological image. From a clinical perspective, CRC remains a significant 
burden with low 5-year survival rates13. A “personalized medicine” approach to CRC treatment is still largely 
missing. With computational methods, the image itself has the potential to become a new “biomarker” and TMA 
archives containing well-labeled CRC tissues and corresponding patient data may provide the necessary input 
to unravel the complexities of this disease.

The aim of this study is to develop a colorectal tissue classifier discriminating between colorectal tumor tis-
sue, normal tissue and other tissue types, applied to high-throughput tissue microarrays. This TMA pipeline 
allows one to re-label colorectal tissue cores for future biomarker analysis. To this end, we use three different 
international cohorts, totaling 54 ngTMA slides and more than 15′000 tissue cores stained with H&E as well as 
a computational approach with different ensemble CNN methods.

Methods
Patient cohorts.  Seven hundred and seventy patients from three different cohorts were entered into this 
study including 410 patients from Switzerland, 89 patients from Germany and 271 patients from Canada. All 
patients were diagnosed with primary CRC: cohorts from Switzerland and Germany were stage I-IV, while that 
from Canada included only patients with stage II disease. Patient characteristics have previously been described 
and are found in Supplemental Table 1.

Tissue microarray collection.  ngTMAs from all cohorts have previously been constructed14. Using archi-
val formalin-fixed paraffin-embedded tissue blocks from corresponding pathology archives, freshly cut H&E 
or pan-cytokeratin stained slides were digitally scanned. Using a tissue microarray annotation tool, areas of 
tumor center, invasion front, tumor stroma, and normal colonic tissue were marked on the digital image using 
a 0.6  mm (Switzerland and Canada) and 1.0  mm (Germany) diameter annotation tool. Multiple areas were 
marked for each primary CRC. Using a TMA Grandmaster instrument (3DHistech), tissue blocks and digital 
scan were aligned and the correspondin g annotated areas punched out and transferred into a recipient ngTMA 
block. The details of optical parameters used for scanning the slides of all three cohorts is shown in Supplemental 
Table 2. For the Swiss cohort, triplicates of all ngTMA blocks were made. For all ngTMAs, an H&E section was 
generated and scanned. This resulted in 54 different ngTMA slides totaling 15,150 tissue cores for analysis in this 
project. The use of patient data and tissue have previously been approved by the Ethics Committee of the Can-
ton of Bern, Switzerland (KEK2017-01783) and other corresponding ethics committees. All relevant guidelines 
of the Institute of Pathology, University of Bern, Canton of Bern, Switzerland were followed for the study. The 
informed consent was obtained from all subjects or, if subjects are under 18, from a parent and/or legal guard-
ian. At the time of ngTMA construction, similar tissue types, i.e. normal epithelium, tumor epithelium or tumor 
stroma, were pooled onto the same TMA recipient block, therefore prior knowledge with regard to the expected 
content of the tissue punch was available.

ngTMA H&E tissue core extraction.  In order to produce a single image from the larger ngTMA scan, we 
find the contour of the TMA core at lowest level of image resolution by applying a gray intensity threshold on the 
Gaussian blurring and smoothing image. The bounding box of these contours locates the core in the image. The 
“control” cores, which are typically placed inside the TMA block are removed based on their locations and the 
number of cores in the TMA row. In our dataset, each TMA image contains an average 289 cores detected by this 
solution. Supplemental Fig. 1 shows an example of the TMA tissue core extraction process.

Color enhancement.  Because of the diversity of the image dataset (different institutes of pathology, differ-
ent pre-analytical variables and slide scanners/versions), the quality of images was variable in terms of bright-
ness/darkness. For example, the images of the Canadian cohort are of high average brightness and give a much 
lighter image compared to Swiss and German cohorts. Practically, traditional approaches try to normalize the 
color space of data by estimating a color deconvolution matrix to identify the underlying stains15,16 or generat-
ing the new color using deep learning itself17. In this study, we want to keep the realistic variations of data and 
apply color augmentation to avoid the neural network generalization error in brightness, contrast perturbation. 
We consider the adaptive gamma correction for image contrast enhancement based on cumulative distribution 
function (CDF) of the pixel gray levels with in image itself18. An example of color enhancement can be seen in 
Supplemental Fig. 2.

Ensemble methods for TMA core classification with two effective architectures: VGG16 and 
CapsNet.  Image extraction and augmentation.  The input of these neural networks is the TMA core at level 
l of image resolution. We then extract the overlapping tiles with size of 224 × 224 and an overlap factor f. To 
provide the experiment results in this study, our choices are l = 3 and f = 0.3 by optimizing hyperparameters with 
random search. Then, we apply data augmentation including rotation, shift, shear, zoom, flip as well as color to 
increase variability and reduce over-fitting of data. Each neural network independently classifies the 224 × 224 
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H&E staining image tiles into the three tissue classes: tumor, normal epithelium or other tissues (including: fat, 
stroma, muscle, blood, artifacts, etc.).

CNN architectures.  In practice, CNN architectures have been explored by reformulating different activation 
and loss functions, parameter optimization, regularization, and structural innovations19. In this study, we tried 
to hand-tune for finding the right configuration with our specific data and requirements. We considered the 
classical VGG16 architecture20 which has achieved excellent performance in image classification by directly 
learning useful features from the training image patches and optimising the loss function21–23. It consisted of 
13 convolutional layers, 5 max pooling, dropout and 3 fully-connected layers. The main drawback of the CNN-
based architecture is that it does not take into account the location and spatial relations between the entities in 
images because of max-pooling operations. But the relation of small objects in histopathology images plays an 
important role. Therefore, we consider the capsule network with dynamic routine proposed by Hinton et al.24. 
Theoretically, a capsule is a nested set of neural layers which outputs a vector (not a scalar likes VGG16) to rep-
resent various properties of objects such as position, orientation, skewness, scaling, orientation, translation and 
so on inside an image to define the probability of some entity’s existence. The most significant characteristic of 
CapsNet is routing by agreement (instead of using max-pooling layer of VGG16), i.e. the capsule makes the pre-
diction of the capsules in higher hierarchical levels and then these parent capsules will be activated. It consisted 
of 4 layers: a feature extraction with conventional layer followed by ReLU activation, a primary capsule layer with 
’squash’ activation, a capsule layer with routing by agreement algorithm, a reconstruction layer used to predict 
the output. Here, the hyperparameter of both neural network architectures: VGG16 and CapsNet were selected 
by random search.

Five classification flows.  Figure  1 shows the scheme of TMA tissue core classification using the deep 
learning techniques. We consider 5 different flows for the classification prediction with two single models and 
three types of ensemble models. An augmentation for test image using RTS is applied for all of these flows. In 
the two-first classification flows, each neural network (VGG16 and CapsNet) independently trains and makes 
the prediction for all tiles extracted from the TMA image. Three other classification flows are based on ensemble 
methods to train multiple models and combine their predictions. The key benefit of ensemble learning is in 
improving the performance of predictions by limiting the sensitivity of specific training data, of training scheme, 
and the serendipity of a single model. Flow 3 (and Flow 4) work with a base-estimator VGG16 (respectively, 
CapsNet) using Snapshot Ensemble25. Flow 5 applies Soft Voting Ensemble26 to reduce the error rate by training 
different base-estimators (VGG and CapsNet).

Ensemble methods.  Many techniques for ensemble methods have been proposed in the literature, for 
example Bagging27, Adaboosting28, negative correlation learning29,30 and their variants. These methods have 
become very prominent by ensuring the reliability and stability of the predictions of models. However, a limita-
tion of ensemble deep learning methods is that it often requires the large computational cost of training with big 

Figure 1.   The scheme for TMA core classification considered in this study with five different flows for 
independent and ensemble learning with VGG16 and CapsNet methods. The inputs of these flows are the tiles 
extracted from each TMA core with data augmentation. We apply Random Transformation Sampling (RTS) to 
refine the uncertain cases of deep learning methods.
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data and multiple models. Therefore, we consider the Snapshot ensemble method developed by Huang et al.25. 
Essentially, the idea of Snapshot Ensemble is to train multiple model snapshots during a single training run and 
combine their predictions to make an ensemble prediction. In practice, we use a training budget of 200 epochs; 
i.e. 5 model snapshots of 40 epochs. Instead of training many neural networks from scratch, a Snapshot Ensem-
bling has an optimization process which visits several local minima before converging to a final solution, saving 
the weights and adding the corresponding network to ensemble. A Snapshot Ensembling uses the cosine anneal-
ing schedule as an aggressive learning rate schedule. The learning rate of the first training epoch of a cycle starts 
with the maximum value (set to 0.1) and is dropped relatively rapidly to a minimum value near zero before reset 
again in the next cycle to escape the current local minima and attenpt to find another possibly better one. At test 
time, the prediction is based on the average of the last 2 model’s softmax outputs. On the other hand, we apply 
Soft Voting Ensemble26 for multi base-estimators (here, one VGG and one CapsNet) in order to balance out their 
individual weaknesses using the average probabilities over predictions from all base estimators.

Uncertain cases and decision making in histopathology images.  VGG16 and Capsnet can provide 
a powerful mapping for the visual features of input image to an output prediction with both types of learning: 
single and ensemble. However, because the test data contains a diversity of unseen tumor types and artifacts with 
the staining and scanning differences, the measure of uncertainty is a need for classification decision making31. 
We apply RTS for uncertainty quantification to the test images in an inference step. A set of random transfor-
mations with brightness, color, contrast, sharpness, rotation, shift, shear, zoom in/out, and translate X/Y was 
added on test images. Each transformed image is processed to obtain a prediction. Considering all outputs f  of 
t  random transformations φ , the mean µ and the variance σ provides the refined prediction and the uncertainty 
score of a test image x which is classifed into a class j as follow:

For each TMA core, we extract the overlapping n tiles. For all of five deep learning classification flows, the 
output information of a TMA core for each class j includes:

•	 the number of best classification prediction: BPj = countni=1(j == argmax(µ1,µ2,µ3))
•	 the average of prediction score: PSj = 1

n

∑n
i=1(µj)

•	 the average of uncertainty score: USj = 1
n

∑n
i=1(σj)

The classification decision of each TMA core is based on the class with the largest BPj score over all its tiles. 
If there are two classes with similar scores, we will compare the second criteria: PSj score (bigger is better) and 
then the third criteria: USj score (smaller is better). In practice, we set a threshold for the differences of PSj score 
( ε1 = 1%) and USj score ( ε2 = 0.1) among the classes. If these three criteria can not provide a clasification deci-
sion for a TMA score using deep learning, we call the uncertain classification result. This decision-making rule 
is directly applied for the ngTMA slides with mixed contents of the punch. Here, the German cohort of our data 
has not the general label. As mentioned, ngTMA slides were often constructed with an assigned general label of 
the expected tissue core content based on the whole slide image annotation, such as tumor center, tumor front, 
stroma and normal tissue. All of TMA slides of Swiss and Canadian cohorts have this prior innformation. The 
final classification decision for these cohorts is the class where the deep learning flow provides the prediction as 
similar information with prior content of the punch. Otherwise, we also call the uncertain classification result. 
Supplemental Fig. 3 shows some examples of uncertain cases. All of these uncertain cases will be highlighted 
and should be re-checked by pathologist experts in the validation step. The steps of this study are outlined in 
Supplemental Fig. 4.

Study design
Ground‑truth annotation.  The class annotation of each TMA core image was checked by two patholo-
gists (AB, AL). Almost all TMA cores were easily classified into three classes: tumor, normal, and other tissues. 
However, a subgroup of tissue cores caused difficulty in the classification by our pathologists and these cores 
were eliminated from any analysis (n = 496; 3.2%). In total, 15,150 TMA cores with annotation were used for 
training, validation and testing.

Training, validation and testing data.  We balanced this data into training set and testing set, using 
three ngTMAs labeled for normal epithelium, two expected to contain stromal areas and three containing tumor 
epithelium from the center or invasion front, resulting in eight ngTMAs for training and validation (n = 2144 
cores, 14.15% of all available cores). For training of the algorithm, we split 25% of the data for validation, 75% for 
training. The remaining images were used for testing (46 slides with 13,006 cores, 85.85% of all available cores). 
We use two different scenarios for the evaluation of the classification performance:

•	 Evaluation A: We evaluate the best algorithm (SVEVC) using the manual verification of pathologists. We 
asked both pathologists to randomly select 16 slides (totaling 4317 cores) from 46 testing slides for this 
evaluation.

•	 Evaluation B: We used the remaining 30 slides of testing dataset for the comparison of the algorithms to the 
ground truth.

µj =
1

t

t
∑

i=1

(

fj(φi(x))
)

σj =
1

t

t
∑

i=1

(

fj(φi(x))− µj
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The more detail of number of slides and cores of each cohort using for training and two evaluation scenarios 
is in Supplemental Table 3.

Evaluation metrics.  For quantitative evaluation of the classification, we counted the output prediction of 
each class for each method compare with ground-truth: True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN). Then, we computed some basic statistical measures as follow:

•	 Recall = TP
TP+FN

•	 Precision =
TP

TP+FP

•	 F1Score = 2∗TP
2∗TP+FP+FN

•	 Accuracy =
TP+TN

TP+TN+FP+FN

For quantitative evaluation of the paired differences between the output of deep learning flows on same 
test images, we apply the non-parametric Wilcoxon signed-rank test. In addition, an adjustment for multiple 
hypothesis testing using the Bonferroni method was used. Considering eight tests, only p values < 0.00625 are 
found to be statistically significant. All tests were two-sided.

Results
Considering the evaluation B: comparison of the algorithms to the ground truth, we applied all five deep learn-
ing flows on a further 8689 TMA cores from 30 slides, where 21 slides, 4 slides and 5 slides were punched in the 
area of tumor center, of normal colonic tissue and of tumor stroma, respectively. We compared the classification 
prediction output with the grouth-truth. Figure 2 shows some examples of correct prediction outputs.

Comparison of different TMA tissue classes.  Table 1 shows the result detail of evaluation B for True 
Positive, False Positive, True Negative, False Negative and Recall, Precision, F1-score, Accuracy of each tissue 
classes for all of five flows proposed: IV (Independent learning with VGG16), IC (Independent learning with 
CapsNet), SEV (Snapshot Ensemble learning with VGG-based), SEC (Snapshot Ensemble learning with Cap-
sNet), SVEVC (Soft Voting Ensemble learning with one VGG-based and one CapsNet). Considering accuracy 
values, the class of normal tissues with SVEVC obtains the highest score with 0.982 compared to 0.939 and 0.947 
of tumor and other tissues, where the overall of accuracy of SVEVC is 0.956. Figure 3 highlights the confusion 
matrix of classification, which helps to understand which tissue is being mistaken for another tissue-type. We 

Figure 2.   Examples of correct classification for each tissue classes.
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Table 1.   The detail of statistical measures of five proposed deep learing classifications reported with 30 slides 
in evaluation B. We highlight (in bold) the best results of: Recall, Precision, F1-score and Accuracy grouped 
by tissue classes and average of all classes. It shows that the SVEVC method obtains the best classification 
performance.

TP FP TN FN Recall Precision F1-score Accuracy

Tumor

IV 5615 186 2199 548 0.911 0.967 0.938 0.914

IC 5766 198 2184 491 0.921 0.966 0.943 0.920

SEV 5755 162 2234 480 0.923 0.972 0.947 0.925

SEC 5879 174 2210 438 0.930 0.971 0.950 0.929

SVEVC 5909 142 2252 386 0.938 0.976 0.957 0.939

Normal

IV 820 137 7432 159 0.837 0.856 0.847 0.965

IC 806 83 7585 165 0.830 0.906 0.866 0.971

SEV 831 149 7503 148 0.848 0.847 0.848 0.965

SEC 807 105 7632 157 0.837 0.884 0.860 0.969

SVEVC 842 23 7692 132 0.864 0.973 0.915 0.982

Other

IV 1283 507 6635 123 0.912 0.716 0.802 0.926

IC 1301 485 6743 110 0.922 0.728 0.813 0.931

SEV 1313 422 6792 104 0.926 0.756 0.833 0.939

SEC 1329 408 6873 91 0.935 0.765 0.841 0.942

SVEVC 1370 403 6866 50 0.964 0.772 0.858 0.947

Overall Average

IV 7718 830 16,266 830 0.887 0.847 0.862 0.935

IC 7873 766 16,512 766 0.891 0.867 0.874 0.940

SEV 7898 733 16,529 733 0.899 0.859 0.876 0.943

SEC 8014 687 16,715 687 0.901 0.873 0.884 0.947

SVEVC 8121 568 16,810 568 0.922 0.907 0.910 0.956

Figure 3.   Confusion matrix showing misclassification errors across tissue types using SVEVC method in 
evaluation B.
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observe the highest error rates are in two cases: Case 1: 374 tumor cores were predicted as other and Case 2: 97 
normal cores were predicted as tumor (Fig. 4). Almost all prediction errors in Case 1 are explained by the low 
composition of tumor tissue compared to the area of other tissues or by some complex tumor stroma tissues 
unseen in training. In Case 2, we observe polyp cases wrongly classified into the tumor class.  

Comparison of independent and ensemble learning.  Figure 5 shows the detail of the accuracy classi-
fication of all five learning flows: IV, IC, SEV, SEV, and SVEVC on each TMA slide for all type of tissues. Overall, 
our proposed SVEVC approach reaches up to 93%± 4. 3 of accuracy classification with a great improvement 
of around 2.5% (and 3.5%) compared with single learning IC (and IV) with 90.53%± 4.89 (and 89.61%± 4.59 
respectively), also of around 1.5% (and 2%) compared, with ensemble learning using one base-estimator SEC 
(and SEV) with 91.56%± 4.59 (and 90.92%± 4.36 respectively). Supplemental Fig. 5 shows the detail of the 
number of correct classifications of each tissue type using the five learning flows. Table 2 shows the statistical 
p-value of nonparametric Wilcoxon signed-rank test. Considering these two single learning flows (IV versus 
IC), there is no significant improvement between them for all of the classes. When we applied ensemble learn-
ing, our findings highlight the improved predictions for tumor and other classes compared to independent 
learning method, with pIVvs.SEV = 4.15e− 05 and pICvs.SEC = 8.35e− 06 for Tumor class; pIVvs.SEV = 0.0036 
and pICvs.SEC = 0.0020 for “other” class. Taken together across five learning flows, we obtain an outperformance 
classification using the SVEVC versus three other methods: IV, IC, SEV for tumor class and versus all of four 
others (IV, IC, SEV, SEC) for “other” class. However, there is no difference observed for the very structured class, 
i.e.: normal tissue, when we consider the statistical p-value between different learning methods in this study.

Figure 4.   Example of some error classification where: (a) the case of small tumor area (yellow arrow) was 
predicted as other, (b) unseen tissue of complex tumor stroma was predicted as other, (c) adenoma case was 
predicted as tumor.

Figure 5.   The detail result of the accuracy classification of five proposed flows on each TMA slide in evaluation 
B. The measures of mean and standard deviation per each method for 30 slides are given.
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Uncertain cases evaluation.  Figure  6 shows the detail of the number of uncertain cores reviewed by 
pathologist experts and predicted with five deep learning flows, including the SVEVC method without apply-
ing the RTS method in evaluation B. Here, without RTS method, a test image of SVEVC method will provide 
only one prediction score. Therefore, the final decision of a TMA core is based on two criteria: the number of 
best classification prediction ( BPj ) and then the average prediction score ( PSj with same threshold of difference 
ε1 = 1% ) over all tiles of this TMA core. If there are two classes with similar scores for these two criteria, we call 
the uncertain classification result. The SVEVC method with RTS significantly reduces the number of uncertain 
predictions with p = 5.23E − 05 compared to the SVEVC method without RTS. The SVEVC method (with RTS) 
is the best method to limit the uncertain case in the classification decision compared to all other deep learn-
ing flows. In Table 2, we obtain the improvement for the detection of uncertain cases between the independent 
learning methods and ensemble learning methods with pIVvs.SEV = 8.75e− 05 , pICvs.SVEVC = 3.82e− 05 and 
pICvs.SVEVC = 0.0048.

Verification measurement by pathologists.  Considering the evaluation A, we asked both pathologists 
to verify the classification prediction of the best performance learning flow SVEVC for 4317 TMA cores from 
16 slides of Swiss cohort and German cohort (see Supplemental Table 3). Knowing that each TMA slide should 
contain a tissue type of interest, they see in one glance the incorrectly predicted individual TMA cores. These 
cores correspond either to cases that are wrongly classified (error cases) or cases with not enough information 
for a decision (uncertain cases) from their point-of-view. Other cases are considered correctly classified (Fig. 2). 
Supplemental Fig. 6 shows the pathologists’ decisions in detail. Considering the classification grouped by the 
different classes, the mean and standard deviation of classification accuracy using SVEVC method per slide is 
91.96% + 2.07; 94.33%± 3.13 and 94.88%± 1.27 for normal tissues, tumor tissues, and other tissues respectively. 
Overall, the accuracy of classification using our SVEVC algorithm is 92.71%± 3.51.

Table 2.   The statistical p-value after testing the null hypothesis between different learning flows: IV, IC, SEV, 
SEC, and SVEVC considering three classes of TMA tissues and uncertain predictions in evaluation B. Using p 
values < 0.00625 as the statistically significant level of difference, we highlight the improvement of prediction 
cases in bold.

Tumor Normal Other Uncertain cases

IV versus IC 0.0156 0.2932 0.625 0.0235

IV versus SEV 4.15e−05 0.3711 0.0036 8.75e−05

IC versus SEC 8.35e−06 1 0.0020 3.82e−05

SEV versus SEC 0.0031 0.1422 0.4636 0.0227

IV versus SVEVC 4.52e−05 0.2807 0.0002 0.0048

IC versus SVEVC 1.89e−05 0.0421 0.0001 0.0133

SEV versus SVEVC 0.0007 0.5896 0.0033 0.0707

SEC versus SVEVC 0.1103 0.0417 0.0030 0.3448

Figure 6.   The number of uncertain cores of each slide confirmed by pathologists and predicted using five 
ensemble learning flows and the SVEVC methods without applying RTS method in evaluation B.
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Comparison of different cohorts.  Grouping the result by different cohorts for the whole testing data-
tset (46 slides, 13,006 TMA cores), we report here the mean and standard deviation of correct classification 
of SVEVC method per slide. The  Swiss cohort reaches up to 93.46%± 2.92 , compared to 90.13%± 1.25 for 
the Canadian cohort, while the German cohort has the classification performance of 90.97% with 1 slide. The 
number of error prediction cores is 848, 102, and 14 for Swiss, Canadian, and German cohort, respectively.

Discussion
In this study, we have generated a pipeline for the classification of colorectal tissues (tumor, normal or stroma/
others) on high-throughput TMAs using ensemble deep learning methods with two neural network architectures 
(VGG16, CapsNet). We achieve an accuracy of 93–98% for all classes and demonstrate the outperformance of 
ensemble learning with two base-estimators SVEVC compared to an independent learning method.

A major aim of this study was the classification of tumor versus normal tissues and other tissue types, such as 
muscle, or stroma on high-throughput colorectal TMAs. Similar work has been performed by others for detection 
of different tissue types within CRC images. For example, using whole slide images (WSI), Kather and colleagues 
have generated a publicly available dataset of images including nine different tissue classes with corresponding 
labels from a set of 500 stage I–IV patients22. Shapcott and colleagues extracted images of CRC from the TCGA 
dataset and determined that sampling of smaller patch images from the larger whole slide results in similar 
features or clinicopathological associations whilst reducing computation time32. Yue et al. used unsupervised 
discriminative patch selection and the convergence of cluster level trained CNNs to infer prognosis of patients 
with stage I–II CRC​33. Working on molecular subtyping, the group of Koelzer using deep learning methods for 
the identification of Consensus Molecular Subtypes (CMS) on H&E WSI. Their work establishes the H&E image 
as a surrogate for the CMS group34.

We focus here, however on TMAs. Such studies, especially in CRC using deep learning are still few. In CRC, 
Bychkov and colleagues performed a CNN-based analysis of 420 patients in order to stratify prognostic risk and 
show their result goes beyond what could be achieved using standard histopathology assessment21. In prostate 
cancer, TMA cores were used to train algorithms for Gleason pattern detection35, while in breast cancer, TMA 
samples were obtained to train an unsupervised classifier for survival (low versus high digital risk scores) com-
pared to human evaluation of other features36. Finally, Fuchs and colleagues used TMAs to train random forest 
classifiers to detect cell nuclei in renal cell cancer and demonstrate the performance of a computational approach 
as compared to human evaluation37. Here, we go one step further: we used a large patient cohort and image 
number (> 15,000) to train, test and validate an algorithm for detection of colorectal tissue from extracted single 
TMA core images originating from different institutes at different times and prepared with different punch sizes.

It is common practice to perform a “second look principle” to confirm a diagnosis of cancer, as in our own 
pathology institute. Therefore, when building an AI system for histopathology analysis, using ensemble learn-
ing of different deep learning methods mimics this process and helps to avoid the risk for decision making of 
a single AI system. Here, we took advantage on the one hand of the power of traditional CNN for image clas-
sification (here, VGG16). The VGG16 method processes a group of pixels and learns to represent it in different 
layers to understand the objects in the image around a specific location. However, the direction of the object 
and spatial relations between the objects are missing when applying CNN-based approaches. Therefore, in some 
cases, VGG16 cannot deal with the ambiguity of different viewpoints. For example, it may have an image of CRC 
normal gland where the lumen is around pixels [x, y], the goblet cells are around this lumen, and the nucleus are 
around outside creating the boundary of a gland. A CNN can easily identify the images that have similar structure 
features in similar locations. However, if there are any transformation or rotation (not in the same direction or 
degree) of these elements, for example considering the gland at different grades of CRC (dysplasia), the struc-
ture of the lumen, globet cells and nucleus are changed and each element is transformed in different ways and 
orientations, which may be a considerable challenge for CNN approaches. CapsNet encapsulates all information 
of object features detected in a vector form as output. The orientation of this capsule vector encodes the pose 
information of the object and its length indicates the likelihood that the object is present in the image. Due to 
the hierarchical architecture, CapsNet can learn the deep context of different level features making it different 
from VGG16 with more confidence in classification and no restriction on a specific viewpoint.

We considered ensemble learning of VGG-based and CapsNet methods here for decision-making and show 
an outperformance to independent learning with these methods. With the best ensemble method SVEVC, we 
reach an accuracy of > 93% for all classes. Our SVEVC classifier is amenable to tissues originating from differ-
ent institutions that may vary based on age of tissue blocks, and other pre-analytical variables. Using the color 
enhancement technique proposed by Cao and colleagues18 differences in brightness or darkness were augmented 
and adjusted to allow for color differences to be incorporated into the algorithm. Beside of data augmentation for 
training dataset, we also applied RTS method for the augmentation of test data to reduce the uncertain cases of 
prediction. These augmentation techniques ensure that there is no difference in algorithm performance for the 
ngTMAs with different core sizes (0.6 and 1.0 mm). In addition, the RTS uses an average technique to provide 
an uncertainty measurement that may be informative within histopathology images. It reduces the errors of 
decision making when there are two classes with similar quantitative information: the number of best predic-
tion and the average of classification score considering for all tiles of a TMA score. After applying RTS method, 
we obtained a group of uncertain decision where the RTS can not make the decision for the TMA core with two 
similar scores or the final decsion is different the prior information of the slide. All of uncertain cases will be 
checked by pathologist experts in the validation step.

The most common misclassification errors, were the prediction of tumor cores as other tissues and prediction 
of normal cores as tumor. By evaluating the incorrectly labeled tissue cores, the reasons for this misclassification 
are easily recognized. In the first case, tissue cores with only a few remaining cancer cells do not provide enough 
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information for a classification of tumor. In real-life, this is not so problematic, as such tissue cores would very 
likely excluded from an analysis of biomarkers; such cores are considered uninformative. In 1.12% of cases, so-
called “normal” cores were labeled as tumor. In most of these cases, dysplastic glands are recognized as “tumor”, 
despite not representing invasive cancer. In our experience, even on whole slide images, this is an extremely 
challenging issue, namely the differentiation between dysplastic glands found in adenomas/ precursor lesions 
and, especially, well-differentiated carcinomas. There have been publications investigating differences in adenoma 
type38,39, however the distinction between dysplastic lesions and cancers still remains a considerable challenge.

To summarize, the novel aspects of this study are as follows:

•	 We have established an automatic and effective pipeline for the classification of colorectal tissue images from 
high-throughput TMAs. Our method can be used after multiple sectioning of TMAs to re-assign correct 
labels to individual cores. It should be noted that TMA archives with well-labeled tissues and corresponding 
patient data may provide extensive information to help understand the biology of CRC.

•	 The proposed method includes a pre-processing step with tissue core extraction, color augmentation to 
detect and adapt the TMA core with the effect of unwanted variations due to the staining and scanning dif-
ferences. Our proposed solution was applied for H&E staining image but it can be also easily extended to 
other immunohistochemistry stains.

•	 The core module of classification is based on ensemble learning methods with two differentiate neural net-
work architectures VGG16 and CapsNet. It takes advantages of both classical VGG16 with max-pooling and 
hierarchical Capsnet combined with prior information about the punch location to provide a high accuracy 
classification algorithm. Beside of classical augmentation techniques for training dataset, we also applied the 
RTS for augmentation of test images in inference step to reduce the uncertain predictions.

•	 A large and heterogeneous real-world dataset of thousands of TMA images stained with H&E and con-
structed from material of 770 CRC patients diagnosed at three different institutes were used for evaluation 
and performance compared using different approaches. This study provides a solid reliable solution for CRC 
detection and a tissue screening/re-classification tool for TMA.

We will focus our future work on auto machine learning methods for the automatic selection of the different 
methods and hyperparameter optimization40, a new effective strategy for the combination of multiple models of 
deep learning ensemble with diverse architechtures41 that can be explainable classification solutions integrated 
with the expertise knowledge of pathologists42.
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