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Abstract

Analysis of single-cell RNA sequencing (scRNA-Seq) data often involves filtering out unin-

teresting or poorly measured genes and dimensionality reduction to reduce noise and sim-

plify data visualization. However, techniques such as principal components analysis (PCA)

fail to preserve non-negativity and sparsity structures present in the original matrices, and

the coordinates of projected cells are not easily interpretable. Commonly used thresholding

methods to filter genes avoid those pitfalls, but ignore collinearity and covariance in the origi-

nal matrix. We show that a deterministic column subset selection (DCSS) method pos-

sesses many of the favorable properties of common thresholding methods and PCA, while

avoiding pitfalls from both. We derive new spectral bounds for DCSS. We apply DCSS to

two measures of gene expression from two scRNA-Seq experiments with different cluster-

ing workflows, and compare to three thresholding methods. In each case study, the clusters

based on the small subset of the complete gene expression profile selected by DCSS are

similar to clusters produced from the full set. The resulting clusters are informative for cell

type.

Introduction

Advances in RNA sequencing technology have made it possible to measure the genome-wide

expression profile of single cells [1]. This technology is not without computational and analyti-

cal challenges, some of which include quality control, quantification, normalization, technical

variability, and other confounding factors such as batch effects [2, 3]. More general challenges

stem from the high dimensionality of the expression profiles: for example, the challenge of

selecting informative features from within the expression profiles.

One use for single-cell RNA sequencing (scRNA-Seq) data is the characterization of hetero-

geneity of expression within a population of cells for the discovery of new cell types through

clustering of expression profiles [4]. This note explores the following question: is it possible

reduce the number of features in the expression profile without a large effect on clustering and

classification? This question is inspired by the quality control and technical variability
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challenges of scRNA-Seq. Common techniques for quality control and technical variability

reduction include simple thresholding schemes and principal components analysis (PCA).

One commonly used technique to reduce the number of features in the data matrix

involves selecting columns from the original data matrix A, to form a column submatrix C,

by thresholding the individual columns based on a score. Workflows for scRNA-Seq such as

Seurat [5], Monocle [6], MAST [7], Cell Ranger [8], scater [9], scran [10], and SCANPY [11]

all include at least one such filtering steps. Frequently used scores are based on abundance or

expression level [5, 6, 8–11], detection rates related to frequencies of zero values [6, 9–11],

[7] (filtering described in supplement of [12]), and variance [6, 9]. We call these methods

simple column thresholding methods, because the score for each column i depends only on

column i. Furthermore, within each column i, covariance between the rows (cells) of that

column is not taken into account. By selecting columns using simple column thresholding,

and not linear combinations of columns from A as with PCA, the elements of C will main-

tain the properties of non-negativity, sparsity structure (e.g. the patterns of zeros in the

retained columns), and interpretability. This is an advantage over PCA, but there are no

guarantees that C will have other properties similar to the original data matrix A (e.g. a simi-

lar spectrum).

The rational behind these thresholding steps is that is that the most variable genes are

responsible for the important differences between cells, and low-abundance genes and or

genes with high dropout rates should be filtered out [10]. Currently there does not appear to

be consensus in the literature on the best way to define a score for highly variable genes (see

discussion in [10]). Scores to identify highly variable genes are based upon the coefficient of

variation [13] or dispersion [5, 8, 11]. Some analysis workflows arrive at highly variable gene

scores using heuristics such as binning in concert with thresholding [5, 8, 11], or modeling

relationships between quantities such as the mean and variance [10]. It has also been argued

that genes should be selected based on modeling the relationship between mean and dropout-

rate [14]. These heuristics do not qualify as simple column thresholding and also do not come

with guarantees.

Replacing the original data matrix of scRNA-Seq expression profiles with a rank-k PCA

truncation of the profiles is another commonly used technique to reduce the number of fea-

tures and the technical variability [3]. To understand the PCA truncation, we must establish

some matrix notation that we will use throughout this note. We orient the original data matrix

A so that the n rows are cells and d columns are features, where n< d. For PCA, singular value

decomposition (SVD) is performed on the column-mean centered matrix ~A ¼ A � 1μT ,

where 1 is an n × 1 column vector and μ ¼ 1
nA

T1 is a d × 1 column vector of column-means.

The sum of the spectrum of eigenvalues of ~A ~AT is proportional to the total empirical variance

of A. The rank-k PCA truncation of A, which we call ~Tk, is the rank-k SVD truncation of ~A.

SVD is reviewed in Section B in S1 File, and the formula for ~Tk is provided there. As a conse-

quence of the SVD, the spectrum of the square of the rank-k PCA truncation ~Tk is identical to

the spectrum of the square of the mean-centered data matrix ~A up to rank k; PCA gives a

rank-k approximation to the mean-centered data ~A that preserves the maximum empirical

variance of A. PCA is performed to reduce technical variability under the assumption that the

technical variation is primarily captured by the non-leading eigenvalues and eigenvectors of

~A ~AT . The technical variability due to dropout requires additional sophistication to address,

such as SCDE/PAGODA [15], ZIFA [16], or CIDR [17]. The drawback of replacing the original

data matrix with the rank-k PCA truncation of the data that it fails to preserve non-negativity

and sparsity structures present in the original data matrix, and the coordinates of projected
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cells are not interpretable in terms of single features. PCA alone does not provide a column

subset.

The goal of column subset selection (CSS) is to extract from a matrix A a column submatrix

C that conserves favorable properties, such as conditions on the spectrum of the column sub-

matrix C [18]. Like the simple column thresholding methods, CSS maintains the properties of

non-negativity, sparsity structure, and interpretability, and like PCA, CSS conserves favorable

matrix properties. Similar to the simple column thresholding methods discussed above, each

column has a score, however in CSS algorithms, the score for each column i also depends on

all of the other columns. This dependence is what allows C to retain favorable properties not

guaranteed by simple column thresholding or other heuristics. We will consider rank-k sub-

space leverage scores in this note. Leverage scores have been considered for regression diag-

nostics and outlier detection in statistics [19, 20] and were brought to prominence more

recently in the context of randomized matrix algorithms [21]. The rank-k subspace leverage

score τi(Ak) for the ith column of A is,

tiðAkÞ ¼ aT
i ðAkA

T
k Þ
þai; ð1Þ

where the ith column of A is an (n × 1)-vector denoted by ai, M+ denotes Moore-Penrose pseu-

doinverse of M, and Ak is the rank-k SVD approximation to A, defined in Section B in S1 File.

The leverage score τi(Ak) can also be written as the solution to the following optimization

problem,

tiðAkÞ ¼ min jjx̂jj2
2

s:t: x̂ ¼ argminjjAkx � aijj
2

2
; x 2 Rd

: ð2Þ

where jjxjj2
2

refers to the Euclidean (L2) norm of the vector x (see Section C in S1 File for the

proof). The vector x measures how easily the column ai can be written as a linear combination

of the columns of Ak. Eq 2 shows that leverage scores capture the importance of each column

ai in the column space of Ak and are sensitive to collinearity between columns. We illustrate

this point with a toy example in Section The DCSS algorithm [22].

CSS algorithms select columns either with a random sampling procedure (such as in [21])

or a deterministic procedure. We showcase the deterministic CSS (DCSS) algorithm intro-

duced by [22]. [22] show that for datasets with power-law decay in τi(Ak), DCSS will select a

least-squares approximation for A, CC+ A, requiring fewer columns with the same accuracy

than random sampling methods. One of the contributions of this note is a new bound for the

spectrum of the square of C selected by DCSS projected onto the rank-k subspace that best

approximates A (Eq 9). This bound means that, once both C and A are projected onto the

rank-k subspace that best approximates A, CCT is “close” to AAT. Or, in other words, CCT can

be thought of as an approximation to AkA
T
k , in a way made precise in Section New bounds for

DCSS. Another consequence is that the Frobenius norm of C is bounded (Eq 10). The Frobe-

nius norm is a measure of the “size” of a matrix, so this bound provides confidence that the

DCSS column matrix C is also similar in “size” to A and Ak. In the event that DCSS is per-

formed on a mean-centered matrix ~A, the Frobenius norm provides a measure of empirical

variance. We also show a similar bound holds for random sampling (Eq 11), and under the

assumption of power-law decay, DCSS requires fewer columns for the same error than ran-

dom sampling.

In addition to the spectral bound, we present two case studies on two different scRNA-Seq

experimental and analysis workflows to illustrate empirically the effect of thresholding features

with DCSS compared to read count, variance, and index of dispersion (empirical variance/

mean) on clustering and classification. The comparison to these three interpretable simple

DCSS for scRNA-Seq
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column thresholding schemes provides insight into the features selected by DCSS. To the best

of our knowledge, this is the first time DCSS has been applied to scRNA-Seq data. Our interest

is in principled column subset selection, so we do not empirically compare DCSS to SVD,

PCA, or other commonly used dimensionality reduction techniques such as t-distributed

stochastic neighbor embedding (t-SNE) [23] because, while these methods do provide

dimensionality reduction, they do not select column submatrices.

The first case study is the genome-wide expression profiles of 3, 005 cells from the mouse

cortex and hippocampus [4] and the clustering workflow of [24]. The second case is the

genome-wide expression profiles of 4, 423 cells from mouse bone marrow [25] and the trajec-

tory workflow of [26]. We showcase our method on two different experimental and analysis

workflows to illustrate the general utility of our method. The expression profile features in the

first case study are derived from a partition of reads intermediate to gene expression quantifi-

cation; the expression profile features in the second case study are gene unique molecular iden-

tifier (UMI) counts (see Section Results for DCSS for further discussion). These two different

expression profile feature types have different collinearity and covariance properties, and so

we illustrate the DCSS method with both types. For this note, we use previously studied analy-

sis and clustering workflows that were tailored for the datasets at hand, since our purpose is to

study the effects of DCSS and thresholding on clustering, and not to evaluate many different

clustering algorithms or analysis workflows. Clustering is both an art and a science, and there

are many different algorithms and workflows for clustering single-cell data; others not consid-

ered here include CIDR [17] and SIMLR [27].

In both case studies, DCSS reduces the low abundance genes and maintains many of the

most variable and over-dispersed genes. This shows that DCSS shares the best features of the

simple column thresholding methods and, like PCA, comes with additional bounds on the

spectrum. This supports our conclusion that DCSS can be used instead of the simple column

thresholding methods for quality control and to reduce technical variability, in addition to

selecting informative features. In both case studies, only a small fraction of the features are nec-

essary to obtain clusters reflecting cell types, consistent with results in [28]. We show that

there is high similarity between the clustering assignments computed with the complete

expression profile and the reduced expression profile.

Methods

The aim of this note is to explore the effect of thresholding features (in our setting, measure-

ments of gene expression) with DCSS. We compare DCSS to simple column thresholding

methods and also to the complete data. These thresholding methods are often the first step in

the pre-processing workflow. In this section, we include the DCSS algorithm for completeness,

and we describe the new bounds for DCSS.

The DCSS algorithm [22]

Algorithm 1. The DCSS algorithm selects for the submatrix C all columns i with a rank-k sub-
space leverage score τi(Ak) above a threshold θ, determined by the error tolerance � and the rank,
k. The algorithm is as follows.

1. Choose the rank, k, and the error tolerance, �.

2. For every column i, calculate the rank-k subspace leverage scores τi(Ak) (Eq 1).

3. Sort the columns by τi(Ak), from largest to smallest. The sorted column indices are πi.

DCSS for scRNA-Seq
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4. Define an empty setΘ = {}. Starting with the largest sorted column index π0, add the corre-
sponding column index i to the setΘ, in decreasing order, until,

X

i2Y

tiðAkÞ > k � �; ð3Þ

and then stop. Note that k ¼
Pd

i¼1
tiðAkÞ. It will be useful to define ~� ¼

P
i=2YtiðAkÞ. Eq 3 can

equivalently be written as � > ~�.

5. If the set size |Θ| < k, continue adding columns in decreasing order until |Θ| = k.

6. The leverage score τi(Ak) of the last column i included inΘ defines the leverage score threshold
θ.

7. Introduce a rectangular selection matrix S of size d × |Θ|. If the column indexed by (i, πi) is in
Θ, then Si;pi

¼ 1. Si;pi
¼ 0 otherwise. The DCSS submatrix is C = AS.

This algorithm requires Oðmin ðn; dÞndÞ arithmetic operations, and there are modifications
to the algorithm that improve the runtime [22].

Theorem 3 of [22] states that when the rank-k subspace leverage scores exhibit a power-law

decay in the sorted column index πi,

tpi
ðAkÞ ¼ p

� a
i tp0
ðAkÞ a > 1; ð4Þ

the number of sample columns selected by DCSS is,

jYj ¼ max 2k
�

� �1
a � 1; 2k

ða� 1Þ�

� � 1
a� 1

� 1; k
� �

: ð5Þ

[22] demonstrate the power-law decay behavior of many real-world datasets; we show that this

behavior is a reasonable assumption for the scRNA-Seq applications in Section Results.

For a statistical interpretation of DCSS, consider the data ai, i = 1, . . ., d to be identically

and independently distributed (i.i.d.) according to the degenerate multivariate distribution

N ð0;AkA
T
k Þ. See [29] pg. 527-528 for a discussion of the degenerate multivariate distribution.

Then the total likelihood of the data matrix A is,

LðAÞ ¼
1

ð2pÞ
1
2
kdQk

j¼1
jsjj

d
exp �

1
2

Xd

i¼1

aT
i ðAkA

T
k Þ
þai

 !

¼
1

ð2pÞ
1
2
kdQk

i¼j jsjj
d
exp �

1

2

Xd

i¼1

tiðAkÞ

 !

;

ð6Þ

where |σj| are the k largest singular values of Ak. In contrast, the total likelihood of the DCSS
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matrix C is,

LðCÞ ¼
1

ð2pÞ
1
2
kjYjQk

j¼1
jsjj

jYj
exp �

1

2

X

i2Y

tiðAkÞ

 !

¼
1

ð2pÞ
1
2
kjYjQk

j¼1
jsjj

jYj
exp �

1

2

X

i2Y

tiðAkÞ �
1

2

X

i=2Y

tiðAkÞ þ
1

2
~�

 !

¼ LðAÞ exp 1

2
~�

� �
ð2pÞ

1
2
kðd� jYjÞ

Yk

j¼1

jsjj
d� jYj

:

ð7Þ

This shows that the DCSS matrix C preserves the total likelihood of the data up to a factor

of exp 1

2
~�
� �

< exp 1

2
�
� �

and a normalization constant, under the assumption that the data is

i.i.d. according to N ð0;AkA
T
k Þ. Any other selection set Θ0 of the same number of columns

(|Θ0| = |Θ|) will have equal or greater error (�� �0). This interpretation illustrates that DCSS

accounts for covariance AkA
T
k between rows (cells).

The DCSS method has two parameters, k, � which jointly determine the number of columns

|Θ| in the DCSS column submatrix C. The parameter k determines the rank of interest of the

SVD approximation to A. The tuning parameter � is a measure of the error tolerance in the

“size” of C compared to Ak. Given k, the desired error tolerance � determines the number of

columns |Θ|; completely equivalently, one could instead select the desired number of columns

|Θ| and determine the resulting error tolerance �. The parameters k, �, and |Θ| will be different

for different datasets and workflows. The selection of these parameters is a model selection

problem, and in concert with a loss function, one could select these parameters using one’s

preferred model selection method (e.g. cross-validation). The aim of this note, to compare

clustering performed with the complete data matrix and a column submatrix, does not have a

well-defined loss function, and so we use the heuristic “elbow” method for selecting k [30], and

we choose � to be 0.1 or 0.05, depending on the biological application.

As a toy example to illustrate how DCSS differs from the simple column thresholding meth-

ods, consider the following toy data matrix,

A ¼
40 20 10

20 10 15

� �

: ð8Þ

If the goal is to select a column submatrix with two columns, it is easy to check that simple

column thresholding by mean, variance, and index of dispersion all select the first and second

columns. However, the resulting column submatrix is only rank 1, because the first and second

columns are linearly dependent. In contrast, DCSS with (k = 2, � > 0.2) will select the first and

third columns, and the resulting DCSS column submatrix will be rank 2. Unlike the first three

methods, DCSS takes into account the collinearity between columns in the selection proce-

dure. If the DCSS error tolerance for this toy example is less than 0.2, DCSS will select all three

columns.

We also mention two asides: first, in applications where the number of cells is far greater

than the number of gene features (n> d), the method can instead be applied to AT instead of

A to filter cells instead gene features; second, the method can be modified to select columns

for any rank-k subspace defined by k singular vectors of A, and not just the leading-k subspace

(e.g. drop component 1 but include component 2). This could be useful when some of the lead-

ing singular vectors are highly correlated with batch, dropout, or other confounding effects.
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New bounds for DCSS

We derive a new spectral approximation bound (Eq 9) for the square of the submatrix C

selected with DCSS and projected onto the rank-k subspace that best approximates A.

Theorem 1. Let A 2 Rn�d be a matrix of at least rank k and τi(Ak) be defined as in Eq 1. Con-
struct C following the DCSS algorithm described in Section The DCSS algorithm [22]. Then C

satisfies,

ð1 � �ÞAkA
T
k � UkU

T
kCC

TUkU
T
k � AkA

T
k : ð9Þ

Uk is the matrix of left singular vectors from the rank-k SVD approximation to A, defined in Sec-
tion B in S1 File. The symbol� denotes the Loewner partial ordering which is reviewed in Section
B in S1 File. Conceptually, the Loewner ordering is the generalization of the ordering of real num-
bers (e.g. 1< 1.5) to Hermitian matrices.

This bound means that after projection onto the rank-k subspace that best approximates A,

CCT is “close” to AAT on that subspace. Statements of Loewner ordering are quite powerful;

important consequences include inequalities for the eigenvalues and Euclidean distances.

Some of the consequences of the Loewner ordering are reviewed in Section B in S1 File. Eq 9

and the fact that CCT� AAT implies a bound on the Frobenius norm of C, a measure of the

Fig 1. Eigenvalues for AAT, where A is the data matrix from the mouse cortex scRNA-Seq experiment [4] and the clustering workflow of

[24]. The first “elbow” occurs at the fifth largest eigenvalue. We choose k = 5 for the DCSS workflow.

https://doi.org/10.1371/journal.pone.0210571.g001
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Fig 2. Power-law decay of k = 5 subspace leverage scores with sorted index for each column in A, where A is the data matrix from the

mouse cortex scRNA-Seq experiment [4] and the clustering workflow of [24]. The fit is to Score = b × (Index)a. This shows that power-law

decay is a reasonable assumption for this dataset.

https://doi.org/10.1371/journal.pone.0210571.g002

Table 1. PANTHER overrepresentation test (release 20160715) with the GO ontology database (release 2016-08-

22) for the submatrix C selected from the data matrix A from the mouse cortex scRNA-Seq experiment [4] and

the clustering workflow of [24] using DCSS with k = 5, � = 0.1. The 862 DCSS-selected ECs of C are mapped to 1,

642 genes for the PANTHER overrepresentation test.

Type Gene ontology (GO) term Bonferroni p-value

Biological process cellular component organization (GO:0016043) 1.12E-02

Biological process cellular component organization or biogenesis (GO:0071840) 8.01E-03

Biological process localization (GO:0051179) 4.37E-02

Cellular component neuron projection (GO:0043005) 4.52E-04

Cellular component neuron part (GO:0097458) 8.24E-05

Cellular component cell projection (GO:0042995) 8.36E-03

Cellular component cytoplasm (GO:0005737) 1.59E-02

Cellular component intracellular part (GO:0044424) 4.89E-02

Molecular function enzyme binding (GO:0019899) 3.35E-02

Molecular function olfactory receptor activity (GO:0004984) 1.30E-02

https://doi.org/10.1371/journal.pone.0210571.t001
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“size” of a matrix,

ð1 � �ÞjjAkjj
2

F � jjCjj2F � jjAjj
2

F: ð10Þ

In the event that A is mean-centered, Eq 10 means that the total empirical variance of C is

bounded from below by (1 − �) the variance in Ak and bounded from above by the total vari-

ance of A, similar to PCA (discussed in Section Introduction). The proof of Eqs 9 and 10 is

included in Section D in S1 File. To develop further intuition for these bounds, consider a

mean-centered A. Consider also the PCA truncation ~Tk (defined in Section B in S1 File)

instead of a column matrix C in Eqs 9 and 10. The PCA truncation ~Tk also satisfies both

bounds.

One simple consequence of Eq 9 is the following bound,

ð1 � �ÞAkA
T
k � UkU

T
k CC

TUkU
T
k � ð1þ �ÞAkA

T
k : ð11Þ

Eq 11 also holds for C selected by random sampling methods with t columns (see Section E

in S1 File for the theorem and proof). Thus, DCSS selects fewer columns with the same

Fig 3. Count-variance plot for each column of A, where A is the data matrix from the mouse cortex scRNA-Seq experiment [4] and the

clustering workflow of [24]. The color for each column represents whether the column is selected or not by k = 5, � = 0.1 DCSS. The plot also

shows the thresholds for count, variance, and index of dispersion with same number of selected columns as DCSS. The columns selected by

DCSS are highly variable and have large counts.

https://doi.org/10.1371/journal.pone.0210571.g003
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accuracy � in Eq 11 for power-law decay in the rank-k subspace leverage scores when,

jYj ¼ max 2k
�

� �1
a � 1; 2k

ða� 1Þ�

� � 1
a� 1

� 1; k
� �

< 2

�2
ðkþmgÞ 1þ 1

3
�

� �
ln 16k

d

� �
� t: ð12Þ

In this expression, m is the number of columns with zero rank-k subspace leverage score, γ
is the minimum non-zero leverage score, and δ is the probability that Eq 11 fails to hold under

random sampling.

Results

We present two case studies where we compare DCSS to the simple column thresholding

methods of variance, count, and index of dispersion. We analyze the overlap in the selected

columns. We also illustrate the effect of DCSS compared to the complete data for single-cell

clustering.

Fig 4. Venn diagram comparing the overlap between selected columns between k = 5, � = 0.1 DCSS, count, variance, and

index of dispersion thresholding on the data matrix from the mouse cortex scRNA-Seq experiment [4] and the clustering

workflow of [24]. The four methods select many of the same columns. Recall from the toy example in Eq 8 that changing only one

column can significantly change properties of the submatrix. Figure tool credit: [33].

https://doi.org/10.1371/journal.pone.0210571.g004
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Mouse cortex and hippocampus single-cell gene expression

As a concrete illustration of the DCSS method, we focus on the genome-wide expression pro-

files of 3005 cells from the mouse somatosensory cortex and hippocampal CA1 region [4] and

the clustering workflow of [24]. The main contribution of [24] is to perform clustering directly

on the partition of reads into equivalence classes (ECs) rather than on a full quantification of

reads into gene expression. ECs are a partition of reads into distinct classes, such that every

read in a class maps to exactly the same set of transcripts [31]. This method is computationally

scalable, comparable across scRNA-Seq experiments, and can be more accurate than clustering

performed on a full quantification of reads into gene expression profiles [24].

The [24] data matrix A is 3, 005 cells × 246, 981 EC counts. By the elbow method, we choose

k = 5 for the DCSS workflow (Fig 1). We select an error tolerance of � = 0.1. The DCSS algo-

rithm ran in less than a minute. The rank-5 subspace leverage scores and the power-law fit for

the top-scored 10, 000 ECs are shown in Fig 2. The column submatrix C has only 862 ECs, or

approximately 0.3% of the total ECs. These ECs contain 42.3% of the reads. These 862 ECs

map to 2, 748 transcripts and to 1, 642 genes. Table 1 contains the gene ontology term enrich-

ment analysis [32] on the genes corresponding to the DCSS (k = 5, � = 0.1) ECs. Enrichments

relevant for the brain include neuron part, neuron projection, and olfactory receptor activity.

Fig 5. Average spectral clustering ARI for two clusters for DCSS, count, variance, and index of dispersion thresholding on the data matrix

from the mouse cortex scRNA-Seq experiment [4] and the clustering workflow of [24]. Perfect agreement between cluster assignments has

an ARI of 1. We vary the error tolerance � with k = 5 for DCSS. Increasing the error tolerance decreases the agreement between clusters.

https://doi.org/10.1371/journal.pone.0210571.g005

DCSS for scRNA-Seq

PLOS ONE | https://doi.org/10.1371/journal.pone.0210571 January 25, 2019 11 / 21

https://doi.org/10.1371/journal.pone.0210571.g005
https://doi.org/10.1371/journal.pone.0210571


The enrichment analysis has an important caveat: because we map ECs to transcripts without

positing an error model, there could be a high rate of false positives in the resulting transcripts

and genes.

We are interested in how differently selected subsets of columns of the same size compare,

so we compare DCSS to the three simple column thresholding methods with the same number

of columns in Figs 3 and 4. These figures show the similarities and differences in columns

selected by the four thresholding methods. The simple column thresholding methods have

sharp boundaries in Fig 3, while the DCSS boundary is not linearly separable. The DCSS

boundary approximately interpolates between the count and variance boundaries, and is most

distinct from the index of dispersion boundary. Fig 4 summarizes the overlap between selected

columns in a Venn diagram. These figures illustrate that the DCSS method selects columns

that are highly variable, have large counts, and frequently are over-dispersed; as such, the

DCSS method is prescribed for quality control and to control technical variability.

The [24] workflow for the [4] dataset is to perform spectral clustering on pairwise Jensen-

Shannon (JS) distances derived from the partition of reads into ECs. The spectral clustering

algorithm used is standard; the algorithm is to perform k-means clustering on the k-dimen-

sional SVD projection of the normalized Laplacian of the symmetric similarity matrix S. The

Fig 6. Average spectral clustering ARI for two clusters for DCSS, count, variance, and index of dispersion thresholding on the data matrix

from the mouse cortex scRNA-Seq experiment [4] and the clustering workflow of [24]. We vary the dimension k with fixed error tolerance

� = 0.1 for DCSS. Increasing the dimension increases the agreement between clusters.

https://doi.org/10.1371/journal.pone.0210571.g006
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similarity matrix used for spectral clustering is S(p, q) = 1 − DJS(p, q), where DJS(p, q) is the JS

distance between two probability mass functions p; q 2 Rd. JS distances are well-suited to

high-dimensional data, and provide more accurate clustering than L2 distances on scRNA-Seq

data [24]. For the [4] data, the probability mass function for each cell is the vector of EC

counts, normalized to sum to one. For the four thresholded workflows (DCSS, count, variance,

and index of dispersion), the probability mass function for each cell is the subset vector of EC

counts, normalized to one.

We evaluate the spectral clustering classification similarity using the adjusted Rand index

(ARI) [34]. The ARI is a symmetric measure of similarity between two clustering assignments

that counts the number of pairwise agreements between the two assignments, adjusted for

chance. It takes values between −1 and 1. Perfect agreement between assignments has an ARI

of 1, and random assignments have an expected ARI of 0. We compare the average ARI

between the complete data and thresholded workflows, regarding the complete data workflow

as the ground-truth. This is an imperfect measure, since the complete data has both noise and

signal, but it is a reasonable measure for real biological data, since one does not have access to

the ground-truth. Since spectral clustering requires a random initialization for k-means, the

average is over T = 10 random initializations. Figs 5 and 6 show the average spectral clustering

ARI for two spectral clusters for the workflow with the matrix A and the workflow with the

column submatrix C for various k, �. The S1 File contains similar figures for nine clusters (Figs

A and B in S1 File). The different cells were curated into 47 subtypes by [4], but we evaluate

our method on coarser-grained classifications because we have higher confidence in the

Fig 7. Eigenvalues for AAT, where A is the data matrix from the mouse bone marrow scRNA-Seq experiment [25] and the analysis

workflow of [26]. “Elbows” are not as apparent as in Fig 1. The wishbone algorithm begins with a 15-dimensional PCA projection, so we

choose the closest “elbow” at k = 14.

https://doi.org/10.1371/journal.pone.0210571.g007
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spectral clustering ground-truth. Two spectral clusters identify neurons and non-neurons,

while nine spectral clusters only loosely correspond to the nine major cell types. We also

include the average ARI for the three simple column thresholding methods with the same

number of columns as the DCSS method. We find that 0.3% of the total ECs give an average

ARI of 0.93 compared to the complete data for two clusters for k = 5, � = 0.1 DCSS; only a

small fraction of the gene expression profiles currently produced in scRNA-Seq experiments

may be necessary to obtain the clusters reflecting cell types.

Mouse bone marrow single-cell gene expression

As a second application of the DCSS method, we focus on the genome-wide mRNA expression

profiles of 4, 423 cells from mouse bone marrow myeloid progenitors [25], and the wishbone
trajectory workflow of [26]. The contribution of [26] to scRNA-Seq is to use diffusion maps to

identify components related to the development and maturation of cells, specifically myeloid

and erythroid progenitors from hematopoietic stem and progenitor cells (HSPCs).

The [26] data matrix for the [25] dataset is A is 4, 423 cells × 14, 955 gene unique molecular

identifier (UMI) counts. The [26] workflow is quite involved. In brief, the wishbone algorithm

creates a nearest-neighbor Euclidean distance graph. This graph is used to estimate all of the

shortest path distances between a set of randomly sampled cells and the rest of the cells, and

the shortest path distances are used to make the trajectory and branch assignments. The wish-
bone algorithm acts on a set of diffusion components which are selected for immune cell differ-

entiation through a gene-set enrichment analysis. The diffusion components are calculated

Fig 8. Power-law decay of k = 14 subspace leverage scores with sorted index for each column in A, where A is the data matrix from

the mouse bone marrow scRNA-Seq experiment [25] and the analysis workflow of [26]. The fit is toScore = b × (Index)a. This shows

that power-law decay is also a reasonable assumption for this dataset.

https://doi.org/10.1371/journal.pone.0210571.g008
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from the diffusion map of the similarity matrix derived from the Gaussian kernel of the

10-nearest-neighbor Euclidean distance matrix from the 15-dimensional PCA projection of

the normalized UMI gene counts [26].

We choose k = 14 for the DCSS workflow by a combination of prior selection by the wish-
bone algorithm and the elbow method (Fig 7). The wishbone algorithm begins with a

15-dimensional PCA projection, and k = 14 is the closest (albeit slight) elbow to k = 15. We

select an error tolerance of � = 0.05. The DCSS algorithm ran in less than a minute. The rank-

14 subspace leverage scores and the power-law fit for the top-scored 5, 000 genes are shown in

Fig 8. The column submatrix C has 4, 693 genes, or approximately 31.4% of the total genes.

These genes contain 90.4% of the UMI counts.

We compare DCSS thresholding with k = 14, � = 0.05 to the three simple column threshold-

ing methods with the same number of columns in Figs 9 and 10. The distribution of columns

on the count-variance plots are qualitatively different between the mouse brain data (Fig 9)

and the mouse bone marrow data (Fig 3). This difference is expected due to the differences

between ECs and gene UMI counts. Although the index of dispersion method is more differ-

entiated from the other methods on the mouse bone marrow dataset, the behavior of the

DCSS method in relation to the simple column thresholding methods is similar between the

datasets.

We calculate the average wishbone classification ARI between the two workflows, again

regarding the complete data workflow as the ground-truth. Since the wishbone algorithm

Fig 9. Count-variance plot for each column of A, where A is the data matrix from the mouse bone marrow scRNA-Seq experiment

[25] and the analysis workflow of [26]. The color for each column represents whether the column is selected or not by k = 14, � = 0.05

DCSS. The plot also shows the thresholds for count, variance, and index of dispersion with same number of selected columns as DCSS.

The columns selected by DCSS are highly variable and have large counts, similar to Fig 3.

https://doi.org/10.1371/journal.pone.0210571.g009
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utilizes random sampling, the average is over T = 10 wishbone branch assignments. The origi-

nal wishbone analysis included only diffusion components 1 and 2. We additionally include

diffusion component 4, since it is enriched for T cell differentiation according to the GSEA

(see Table 2). For the mouse bone marrow dataset, wishbone assigns cells to three branches.

[26] used the behavior of four markers (CD34, Gata1, Gata2, and Mpo) to verify that the three

branches correspond to HSPCs, myeloid progenitors, and erythroid progenitors, and the

behavior does not change with the inclusion of component 4. Figs 11 and 12 show the average

branch assignment classification ARI for the workflow with the matrix A and the workflow

with the column submatrix C for various k, �, and also the three simple column thresholding

methods with the same number of columns as the DCSS method for each k, � point. Not all the

thresholding methods successfully complete the wishbone workflow at large �, due to the sensi-

tivity of the diffusion component GSEA enrichment analysis, which we perform with keyword

Fig 10. Venn diagram comparing the overlap between selected columns between k = 14, � = 0.05 DCSS, count, variance, and index of

dispersion thresholding on the data matrix from the mouse bone marrow scRNA-Seq experiment [25] and the analysis workflow of [26].

Figure tool credit: [33].

https://doi.org/10.1371/journal.pone.0210571.g010
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string matching. We find that for the k = 14, � = 0.05 DCSS, 31.4% of the total genes give an

average ARI of 0.91 for three branch assignments compared to the complete data; this supports

our conclusion that only a small fraction of the gene expression profile from scRNA-Seq exper-

iments may be necessary to obtain meaningful cell-type classifications.

Table 2. wishbone diffusion component 4, calculated from the complete data workflow, is enriched for T cell dif-

ferentiation, according to the wishbone GSEA.

Gene ontology (GO) term FDR q-value

Component 4, positive enrichment scores

ribosome biogenesis (GO:0042254) 0.0

ribonucleoprotein complex biogenesis (GO:0022613) 0.0

rRNA processing (GO:0006364) 0.0

ncRNA metabolic process (GO:0034660) 0.0

rRNA metabolic process (GO:0016072) 0.0

Component 4, negative enrichment scores

T cell differentiation (GO:0030217) 4.73E-03

second-messenger-mediated signaling (GO:0019932) 5.52E-03

regulation of actin cytoskeleton organization (GO:0032956) 5.76E-03

taxis (GO:0042330) 4.32E-03

regulation of actin filament-based process (GO:0032970) 5.04E-03

https://doi.org/10.1371/journal.pone.0210571.t002

Fig 11. Average branch assignment ARI, varying the error tolerance � with k = 14 for DCSS for the [25] and [26] dataset. We also threshold

according to count, variance, and index of dispersion. The trend between error tolerance and average ARI is not as clear as in Fig 5.

https://doi.org/10.1371/journal.pone.0210571.g011
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Discussion

scRNA-Seq experiments allow researchers to probe the cell-specific heterogeneity in gene

expression. Quality control and technical variability are significant challenges for scRNA-Seq

experiments, and additionally the whole-genome expression profile is high-dimensional. In

this note, we explore three simple column thresholding schemes– count, variance, and index

of dispersion– and propose a novel application of a thresholding scheme—DCSS– to select

informative features and control quality and technical variability. We prove a novel bound on

the “closeness” of the DCSS data submatrix to the complete data matrix (Eq 9). This bound

enlarges upon the existing set of error guarantees for DCSS [22] and provides a theoretical

advantage over the three simple column thresholding schemes which have no similar guaran-

tees. Other advantages of DCSS over simple column thresholding include sensitivity to collin-

earity of features and covariance of cells. Since scRNA-Seq experiments are frequently used to

cluster and classify cells, we choose to evaluate these thresholding schemes for clustering and

classification compared to the complete data and using the ARI.

We present two case studies, the first on mouse cortex and hippocampus scRNA-Seq [4,

24], and the second on mouse bone marrow scRNA-Seq [25, 26]. For the mouse brain, the

data matrix is cells × ECs, and only an incredibly small fraction of the ECs are necessary to

obtain neuron and non-neuron cell clusters. For the mouse bone marrow, the data matrix is

cells × genes, and only a small fraction of the genes are necessary to obtain HSPC, myeloid pro-

genitor, and erythroid progenitor branch assignments. For both case studies, DCSS performs

similarly to the simple column thresholding schemes with the same number of columns, in

that it reduces the low abundance genes, maintains the most variable and over-dispersed

Fig 12. Average branch assignment ARI, varying the dimension k with fixed error tolerance � = 0.05 for DCSS for the [25] and [26]

dataset. We also threshold according to count, variance, and index of dispersion. The trend between dimension and average ARI is not as clear

as in Fig 6.

https://doi.org/10.1371/journal.pone.0210571.g012
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genes, and provides the additional benefit of theoretical guarantees. This supports our recom-

mendation to use DCSS to control quality and technical variability. In both case studies, there

is high similarity between the clustering computed with the complete expression profile and

the reduced expression profile, suggesting that the clustering algorithms rely on a small subset

of informative features.

Supporting information
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