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Abstract

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that currently 

has no approved medical therapy to address core symptoms or underling pathophysiological 

processes. Several compounds are under development that address both underlying 

pathophysiological abnormalities and core ASD symptoms. This article reviews one of these 

treatments, d,l-leucovorin calcium (also known as folinic acid) for treatment of folate pathway 

abnormalities in children with ASD. Folate is a water-soluble B vitamin that is essential for 

normal neurodevelopment and abnormalities in the folate and related pathways have been 

identified in children with ASD. One of these abnormalities involves a partial blockage in the 

ability of folate to be transported into the brain utilizing the primary transport mechanism, the 

folate receptor alpha. Autoantibodies which interfere with the function of the folate receptor alpha 

called folate receptor alpha autoantibodies have been identified in 58%-76% of children with ASD 

and independent studies have demonstrated that blood titers of these autoantibodies correlate with 

folate levels in the cerebrospinal fluid. Most significantly, case-series, open-label, and single and 

double-blind placebo-controlled studies suggest that d,l-leucovorin, a reduced folate that can 

bypass the blockage at the folate receptor alpha by using the reduced folate carrier, an alternate 

pathway, can substantially improve particular symptoms in children with ASD, especially those 

positive for folate receptor alpha autoantibodies. This article reviews the current evidence for 

treating core and associated symptoms and underlying pathophysiological mechanisms in children 

with ASD with d,l-leucovorin.
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Introduction

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder defined 

by impairments in social-communication as well as the presence of restricted interests and 

repetitive behaviors1 with the prevalence estimated to be about 1 in 54 children in the United 

States (US).2 Despite early intervention with intensive behavioral therapies combined with 

educational approaches, only a minority of children obtain optimal outcomes3,4 and many 

individuals with ASD require life-long supportive care.5

Medical Therapies Targeting Core Symptoms in Autism Spectrum Disorder

Unfortunately, evidence-based medical treatments for ASD are limited with the 2 

medications approved for ASD by the US Food and Drug Administration only indicated for 

the associated symptom of irritability rather than core symptoms of ASD. Medications 

commonly used for attention-deficit hyperactivity disorder can be effective but have a high 

adverse effects (AEs) burden and are more complicated to use in individuals with ASD and 

comorbid attention-deficit hyperactivity disorder.6–8 Although selective serotonin reuptake 

inhibitors (SSRIs) showed promise in early trials, a Cochrane review found no evidence for 

their efficacy for reducing repetitive thoughts and behavior for individuals with ASD.9 

Pharmaceutical companies have developed medications targeting excitatory-inhibitory 

neurotransmission imbalances identified in animal models of ASD,10 but the first of these 

compounds failed to demonstrate efficacy in a double-blind placebo-controlled (DBPC) trial.
11 Oxytocin, propranolol, and bumetanide show some promise in addressing the important 

core social interaction deficit, but the studies remain preliminary with variable outcomes.12 

Thus, currently there is no approved medical therapy that targets core ASD symptoms or the 

pathophysiological processes that underlie ASD.13

Metabolic Targets for Treating Underlying Pathophysiology in Autism 

Spectrum Disorder

Several compounds which address both underlying pathophysiological abnormalities and 

core ASD symptoms have been developed.14 Such compounds that have undergone DBPC 

trials include L-Carnitine,15,16 tetrahydrobiopterin (BH4)17,18 and sulforaphane,19 but 

findings from these studies remain preliminary. One of the most promising treatable 

pathophysiological targets in ASD is abnormalities in folate metabolism, which we will 

concentrate on in this review.

Abnormalities in Folate Metabolism is Strongly Associated With ASD

Folate is a water-soluble B vitamin (Vitamin B9) that is essential for normal 

neurodevelopment.20,21 Defects in folate metabolism can cause physiological abnormalities 

associated with ASD such as abnormalities in the purine, methylation and redox metabolic 

pathways (Fig. 1).22

Purines are essential for deoxyribonucleic acid (DNA) synthesis, repair and replication. 

Limitations in purine production can result in de novo mutations, chromosomal instability, 
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copy number variation and gross chromosomal abnormalities, all of which are associated 

with ASD.23–25 The purine guanosine 5’-triphosphate is the precursor of BH4 that is 

essential for monoamine neurotransmitter and nitric oxide production, both which have been 

shown to be abnormal in ASD.17,26,27 ASD is associated with polymorphisms in 

dihydrofolate reductase (DHFR in Fig. 1), an enzyme important in converting folate into its 

biologically active form,28 the reduced folate carrier (RFC), an important folate transporter,
29 and methylenetetrahydrofolate reductase (MTHFR in Fig. 1), an enzyme critical for 

efficient functioning of the folate cycle,29–38 particularly in children with ASD and 

behavioral problems.36

ASD is associated with abnormalities in methylation metabolism (See Fig. 1), including 

abnormal concentrations of key methylation metabolites such as methionine, S-adenosyl-L-

methionine (SAM) and S-adenosyl-L-homocysteine (SAH). Deficits in SAM may be 

particularly important, as SAM is the major methyl donor essential for DNA and histone 

methylation, the epigenetic process that regulates gene expression. Postmortem brain studies 

show alterations in DNA methylation in the frontal cortex39 and in other brain areas40,41 in 

individuals with ASD.

Reduced glutathione (GSH) is the major intracellular redox buffer and is essential in free 

radical scavenging, redox homeostasis, maintenance of protein redox conformation and 

regulation of redox sensitive enzyme activity. Abnormalities in GSH metabolism can result 

in oxidative damage to cellular DNA, protein and lipid. GSH abnormalities and markers of 

oxidative damage have been documented in postmortem brain regions involved in speech, 

emotion, and social behavior in individuals with ASD.42,43 In fact, methylation and redox 

abnormalities are so prevalent in ASD, biomarkers of these are proposed to be diagnostic of 

ASD.44,45

Cerebral Folate Deficiency and ASD

Folate transport into the brain may be compromised in ASD. The primary transporter for 

folate across the blood-brain barrier is the folate receptor α (FRα). Through energy 

dependent endocytosis, folate is transported attached to the FRα from the apical to the 

basolateral side of the cell against a concentration gradient (Fig. 2). Active transport is 

necessary because central nervous system folate concentration is several times higher than in 

the serum. About 15 years ago, Dr Quadros and colleagues reported in the New England 
Journal of Medicine a new neurometabolic disorder called cerebral folate deficiency (CFD), 

which is characterized by abnormally low folate levels in the cerebrospinal fluid (CSF) 

despite normal serum folate levels.46,47 CFD is associated with 2 types of FRα 
autoantibodies (FRAAs), blocking and binding, which impair FRα function.47 Serum titers 

of FRAAs have been correlated with CSF folate concentrations in 2 independent studies.
47,48 Mitochondrial disorders, including Kearns-Sayre syndrome49,50 and mutations in the 

DNA polymerase subunit gamma (POLG) gene,49,51,52 are also associated with CFD due to 

a lack of energy for active transportation of folate.

In early case-series of children with CFD, many were described are having ASD symptoms.
47,53 Thus, approximately 10 years ago, Drs Frye, Rossignol and Quadros studied children 
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with ASD to determine whether a significant proportion harbored FRAAs. In our study 

published in Molecular Psychiatry,48 FRAAs were measured in 93 children with ASD using 

the assay development by Dr Quadros.47,54 As shown in Figure 3, 60% of the children with 

ASD had blocking and 44% had binding FRAAs. Overall, 29% were positive for both 

FRAAs, 46% were positive for only one FRAA and 75% were positive for at least one 

FRAA. In a study from Belgium, 47% of ASD children were positive for the blocking 

FRAA as compared to 3.3% of developmentally delayed non-ASD controls.55 In another 

study from Belgium, 2 groups of children with ASD demonstrated a 71.4% (n = 84) and 

75.6% (n = 82) prevalence of at least one FRAA as compared to 3% of healthy children.56 In 

a recent study from France, 58% of children with ASD were positive for at least one FRAA.
57 In a recent study from the New York City Metropolitan area, the prevalence of one or 

more FRAAs was 76% in children with ASD.58 The prevalence of blocking FRAAs in ASD 

is clearly higher than the prevalence in the general population of the US (10%-15%),48 

Spain (7.2%)37,59 and Ireland (12.6%).54

d,l-Leucovorin Improves Symptoms in Children With Cerebral Folate 

Deficiency in Case Studies

Children with CFD demonstrate marked improvement when treated with d,l-leucovorin, a 

reduced folate that can cross the blood-brain barrier using the RFC when the FRα is blocked 

by FRAAs (See Fig. 2). Since the RFC has a lower affinity for folates than the FRα, a high-

dose of a reduced folate is required for treatment. Case-reports60 and series47,61 have 

documented that d,l-leucovorin (0.5-2 mg/kg/day) improves neurological, behavioral and 

cognitive symptoms in children with CFD, including substantial improvements in language 

and communication in many and purported complete recovery in some.47,61

d,l-Leucovorin Improves Verbal Communication in Children With Autism 

Spectrum Disorder and Folate Receptor Alpha Autoantibodies

Given the high prevalence of FRAAs in children with ASD and the effectiveness and safety 

of d,l-leucovorin, Drs Frye and Rossignol conducted a large prospective open-label case-

series in which 44 children with ASD with a positive test for at least one FRAA were treated 

with 2 mg/kg/day (maximum 50 mg daily) of leucovorin in 2 divided doses.48 Intervention 

response and AEs were assessed after a mean follow-up of 4.0 months. Parents rated 

intervention response using a modified Clinical Global Impression Improvement type scale 

called the Parent Rated Autism Symptomatic Change (PRASC) scale. We examined 9 core 

and associated ASD symptoms using the PRASC scale. About two-thirds of the treated 

children manifested some improvement in receptive and expressive language (Fig. 4). Nine 

FRAA positive children with ASD who were waiting for laboratory results and did not make 

any treatment changes served as a wait-list control group. Using Mann-Whitney U tests, 

significantly (P< 0.05) greater improvement was observed in treated as compared to 

untreated children for verbal communication, receptive and expressive language and 

stereotypical behavior.
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The Importance of Targeting Language and Verbal Communication in 

Autism Spectrum Disorder

Our open-label clinical study demonstrated that d,l-leucovorin had a prominent effect on 

verbal communication in children with ASD. Verbal communication is an important 

symptom to target for several reasons. First, improvement in verbal communication can 

promote better social communication. Second, deficits in language processing are associated 

with more severe ASD symptoms. Thus, improving language might decrease ASD symptom 

severity, contribute to more favorable long-term outcomes62–66 and promote improved 

quality of life for the family.67 Finally, improvement in delayed language may also have 

positive effects on brain development.68 Thus, we conducted a DBPC study to examine the 

effect of d,l-leucovorin on verbal communication in children with ASD that was recently 

published in Molecular Psychiatry (described below).69

d,l-Leucovorin Improves Verbal Communication in a Double-Blind Placebo-

Controlled Study

We conducted a DBPC trial on 48 children with ASD.69 Our primary outcome measure was 

Verbal Communication as measured on the most ability appropriate instrument: either the 

Clinical Evaluation of Language Fundamentals or Preschool Language Scale. Secondary 

outcome measures included the Aberrant Behavior Checklist (ABC). Children were 

randomly assigned to receive daily d,l-leucovorin (n = 23) 2 mg/kg/day, max 50 mg/day, in 2 

divided doses or placebo (n = 25) for 12 weeks. AEs were monitored every 3 weeks. All 

other treatments were constant for 2 months prior to entering the trial and were held constant 

throughout the trial. The intensity of behavioral and educational interventions was 

documented as minutes per week. FRAAs were measured at the beginning of the study. A 

linear mixed-model intent-to-treat analysis found a significant improvement in verbal 

communication in the d,l-leucovorin group as compared to the placebo group with a 

medium-to-large effect size (Cohen’s d = 0.70; Fig. 5). Adding a covariate to represent 

speech therapy intensity significantly improved the variance explained by the model (χ2(2) 

= 7.5, P < 0.01) but did not change the effect of d,l-leucovorin. Speech therapy was found to 

have a small effect size (Cohen’s d = 0.05). Most importantly, the absolute estimated effect 

of the d,l-leucovorin exceeded the minimal clinically important difference, suggesting that 

the effect was not only statistically significant but also clinically meaningful.

A responder analysis was performed using logistic regression with treatment response 

defined as an increase of 5 standardized points on the language instrument over 12 weeks. 

Response to treatment was significantly greater in participants treated with d,l-leucovorin as 

compared to placebo (65% vs 24%, P = 0.003). FRAA status (positive vs negative) was 

significantly associated with response to d,l-leucovorin treatment (χ2(1) = 4.92, P= 0.03) 

demonstrating that FRAA status was a strong candidate biomarker for predicting treatment 

response. The effect of d,l-leucovorin treatment in FRAA subgroups was evaluated with the 

mixed-model analysis. For participants that were positive for at least one FRAA, d,l-
leucovorin improved verbal communication with a large effect size (Cohen’s d = 0.91). The 

number needed to treat (NNT) represents the number of patients that need to be treated for 
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one patient to respond. Overall, the NNT was 2.4 but for those positive for one or more 

FRAAs the NNT was 1.8. These results demonstrate the importance of investigating 

biomarkers of folate-related metabolism.

d,l-Leucovorin Could Results in Significant Cost Savings

To demonstrate the practical significance of the d,l-leucovorin treatment, the regression 

coefficients were used to estimate the number of hours of speech therapy that would be 

equivalent to d,l-leucovorin treatment. The cost of speech therapy was estimated to be 

$40/hr. Three months of d,l-leucovorin was found to be equivalent to about 185 hours (about 

$7400) of speech therapy. Three months of d,l-leucovorin costs about $300, resulting in a 

savings of about $7100. The other important consideration is that many children only receive 

a few hours of speech therapy per week, so 185 hours could be equivalent to a year or more 

of speech therapy for most. In addition, this does not account for the additional educational, 

therapeutic and family costs for caring for a lower-functioning child with ASD for a longer 

period of time for those that do not make the gains seen in the treatment group.

d,l-Leucovorin Also Improves Core Symptoms of Autism Spectrum 

Disorder

Our open-label, case-series described above found significant improvement in the core 

symptom of stereotypical behavior in children with ASD who were positive for at least one 

FRAA with d,l-leucovorin treatment.48 In our DBPC study, the mixed-model analysis 

conducted on the secondary outcome measure, the parent-rated ABC aberrant behavior 

checklist, found improvement in Irritability, Social Withdrawal, Stereotypy, Hyperactivity, 

and Inappropriate Speech in the d,l-leucovorin group as compared to the placebo group.69 

The improvement in social withdrawal, stereotyped behavior and inappropriate speech 

exceeded the minimal clinically important difference, demonstrating the clinical relevance of 

the effect. Both social withdrawal and stereotyped behavior are core ASD symptoms.

Two other studies, one open-label and one single-blind placebo-controlled, have investigated 

the effect of d,l-leucovorin on core symptoms of ASD. In an open-label therapeutic trial of 

patients with nonsyndromic infantile ASD, patients were self-selected to undergo a 

comprehensive treatment protocol (n = 82) or remain untreated (n = 84). The treatment 

protocol involved specific treatment for various nutritional deficiencies and treatment with 

d,l-leucovorin at a variable dose from 0.5 to 2 mg/kg/day (maximum 50 mg daily) if the 

child had at least one FRAA. The Childhood Autism Rating Scale (CARS) was completed 

before treatment and after the treatment protocol. Overall, untreated patients, on average, did 

not demonstrate a change in CARS scores whereas children who underwent treatment 

demonstrated a decrease in CARS scores from severe to mild-to-moderate ASD.56 Although 

this study is not specific for treatment with d,l-leucovorin, it does demonstrate that including 

d,l-leucovorin in a comprehensive treatment protocol can improve outcomes in core ASD 

symptoms. In a recent small (n = 19) French study, children with ASD were treated with 5 

mg of d,l-leucovorin twice a day or placebo for 12 weeks under single-blind conditions. The 

global score and the reciprocal social interaction and communication subscores on the 

Autism Diagnostic Observation Schedule (ADOS) improved significantly in those that were 
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treated as compared to those individuals on placebo.57 Thus, 4 studies support the notion 

that treatment with d,l-leucovorin can improve core ASD symptoms.

d,l-Leucovorin Has a Low Frequency of Adverse Effects

In clinical studies, AEs to d,l-leucovorin were minimal. In our open-label study, d,l-
leucovorin was discontinued in 4 children.48 Insomnia and gastroesophageal reflux led to 

discontinuation of d,l-leucovorin in 1 child. Three boys concurrently taking risperidone 

discontinued d,l-leucovorin because of worsening aggression and self-injurious behavior. 

However, one other patient receiving risperidone described no AEs. Although some parents 

rated mood (5%), stereotypical behavior (5%) and hyperactivity (17%) as mildly worse on 

the PRASC in some children (Fig. 4), they did not report these as AEs. The commercial 

form of d,l-leucovorin which contains additives, such as lactose, was used in our open-label 

study. From our clinical experience, we believe that inactive drug additives can cause 

irritable. In our DPBC study, which used a compounded form of d,l-leucovorin without 

additives, there were no significant differences in the prevalence of AEs between the d,l-
leucovorin and placebo groups and no child treated with d,l-leucovorin discontinued the 

study because of AEs. However, the placebo group experienced ~30% more AEs.69 In the 

other 2 recent clinical studies discussed above no AEs were reported.56,57

One AE commonly reported by parents is hyperactivity and agitation with the first few 

weeks of d,l-leucovorin treatment. Because of this, we common recommend slowly 

increasing the d,l-leucovorin dose over the first 2 weeks of treatment. To investigate this AE 

in more detail, we examined the time course of reported excitement and agitation as an AE 

in our DBPC trial.69 As seen is Figure 6, the prevalence of excitement and agitation was 

similar in both the d,l-leucovorin and placebo groups through the first 6 weeks after which it 

is substantially reduced in the treatment group as compared to the placebo group at week 9 

of the 12-week treatment. This clarifies the clinical experience and suggests that excitement 

and agitation improves after several weeks of treatment but is never significantly higher in 

the treatment group as compared to the placebo group at any point in time.

Folate Improves Mitochondrial Function in Children With ASD

As previously mentioned, mitochondria have a role in folate transport into the brain. 

Interestingly, abnormal mitochondrial metabolism has been linked to ASD.70–73 Clinical74 

and basic research studies75 suggest that folate is important in mitochondrial function. In a 

recent study, our group measured the function of several mitochondrial enzymes in children 

with ASD who were receiving various supplements that could influence mitochondrial 

function.76 Folate positively influenced several aspects of mitochondrial function, including 

increasing Complex I activity and strengthened the coupling between Complex I and Citrate 

Synthase. Thus, d,l-leucovorin may have a secondary effect of supporting mitochondrial 

function that can further enhance folate transport into the brain.
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Folate During Gestation and ASD

Folate status during gestation appears to be a critical factor in the development of ASD. A 

large study of Norwegian children found that prenatal folic acid supplementation was 

associated with a 39% decrease in the risk of developing ASD in the offspring.77 Similarly, 

another large study in the US found that mothers of children with ASD had lower dietary 

intake of folic acid during pregnancy. Intake above 600 mcg/day was associated with a 38% 

decrease in the risk of the offspring developing ASD and higher intake further decreased the 

risk.34 Additionally, previous studies have uncovered metabolic deficits in folate-dependent 

pathways, including methylation and glutathione pathways, in mothers of children with 

ASD.78 Most compelling is an animal model of maternal FRAA exposure developed by Dr 

Quadros. Given that the same mechanisms for transporting folate across the blood-brain 

barrier also transports folate across the placenta (See Fig. 2), Dr Quadros and his group 

demonstrated that pregnant dams exposed to FRAAs bore offspring with ASD-like 

behavioral features79 and that treatment of dams with d,l-leucovorin during gestation 

prevented the development of ASD-like behavioral features in the offspring.80 This is 

consistent with the recent observation that children with ASD with mothers who have 

FRAAs have more severe ASD symptoms as rated by the CARS.56

Ongoing and Future Studies Using d,l-Leucovorin in the Treatment of 

Autism Spectrum Disorder

Although d,l-leucovorin is very promising as a treatment for ASD, further studies are needed 

to validate previous findings and expand the application of d,l-leucovorin in the treatment of 

children with ASD. First, although our first DBPC study verified that d,l-leucovorin 

improves verbal communication in children with ASD, we need to validate this finding in a 

multicenter study. A DBPC multicenter study involving Phoenix Children’s Hospital, Emory 

University and the Lurie Center at Mass General Hospital is ongoing to verify previous 

findings and to evaluation the potential for using the FRAA and other biomarkers such as 

single nucleotide polymorphisms known to negatively affect folate metabolism to predict 

response. Given that deficits in early language and social skills are fundamental in driving 

many ASD symptoms and that neuroplasticity is greatest in the first years of life, it is very 

possible that the effect of d,l-leucovorin will be greatest in young children newly diagnosed 

with ASD. Thus, Phoenix Children’s Hospital and State University of New York – 

Downstate are conducting 2 multicenter DPBC trials on very young children with ASD to 

determine if early l-leucovorin treatment could significantly launch recovery towards 

optimal outcomes and result in substantial positive repercussions over their lifetimes. Within 

these latter trials we are using a newly developed instrument, the Brief Observation of Social 

Communication Change (BOSCC) that is based on the ADOS. The BOSCC has been 

developed by the same scientists that developed the ADOS and is designed to be more 

sensitive to change in socialization than the ADOS.81 In addition, we are using advanced 

neuroimaging techniques to identify the change in brain circuits resulting from treatment 

with l-leucovorin. Lastly, in the studies on young children we are investigating the isomer l-
leucovorin which may reduce any potential AEs. Although the long-term use of d,l-
leucovorin and l-leucovorin is believed to be safe and has been used for decades in humans, 
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long-term tolerability and therapeutic effect has not been evaluated. Furthermore, the 

optimal length of treatment is not known. Thus, further studies are needed to identify the 

optimal dosing and treatment schedule for this therapy and its long-term safety.

The Potential Importance of Leucovorin in the Treatment of Autism 

Spectrum Disorder

The studies discussed above suggest that d,l-leucovorin (aka folinic acid) is an efficacious 

and safe treatment for improving both core (social function, communication, stereotyped 

behavior) and associated (irritability, hyperactivity) ASD symptoms. The differential effect 

of treatment response depends on whether a child is positive for the FRAA, reinforcing the 

known biological mechanism of treatment with d,l-leucovorin as well as the ability to 

predict who will respond to the treatment. This opens up the potential for using a 

personalized precision medicine approach for treating children with ASD.82 The 

improvement in an important symptom associated with ASD, irritability, suggests that d,l-
leucovorin may be an alternative to antipsychotic drugs, which have significant short- and 

long-term AEs in children. Additionally, d,l-leucovorin can normalize folate-dependent one-

carbon metabolism by readily entering the folate cycle without being reduced by 

dihydrofolate reductase (DHFR in Fig. 1).83 Early studies on CFD and ASD demonstrated a 

strong positive effect of d,l-leucovorin in young children with ASD on both neurologic and 

cognitive development.22 Given the physiological abnormalities in the folate pathway 

associated with ASD and the potential for d,l-leucovorin to surmount these abnormalities, it 

is possible that d,l-leucovorin and/or l-leucovorin could correct key underlying physiological 

abnormalities driving ASD symptoms and in this sense be disease modifying. Given the 

promising and compelling data, we believe that d,l-leucovorin and/or l-leucovorin have 

tremendous promise in improving the health, cognition and development of children with 

ASD.
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Figure 1. 
The essential role of folate in metabolism. Folate is essential for a wide variety of essential 

metabolic systems, including DNA and RNA synthesis and methylation, redox and 

tetrahydrobiopterin metabolism. ATP, adenosine triphosphate; B12, Vitamin B12 

(cobalamin); BH4, tetrahydrobiopterin; DHFR, dihydrofolate reductase; DNA, 

deoxyribonucleic acid; GTP, guanosine triphosphate; Me, methyl group; MGF, 

monoglutamated folate; MS, Methionine synthase; 5-MTHF, 5-methyltetrahydrofolate; 

MTHFR, methylenetetrahydrofolate reductase; RNA, ribonucleic acid; 5,10-CH2THF, 5,10-

methylenetetrahydrofolate; THF, tetrahydrofolate.
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Figure 2. 
Folate transport across the blood brain barrier and the placenta. ATP, adenosine triphosphate; 

FRα, folate receptor α; PCFT, Proton Coupled Folate Transporter; RFC, reduced folate 

carrier.
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Figure 3. 
Prevalence of the folate receptor α autoantibodies in children with autism spectrum disorder 

in our initial study.48
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Figure 4. 
Improvement ratings on 9 cognitive-behavioral dimensions for folate receptor alpha 

autoantibody positive ASD children (n = 44) treated with d,l-leucovorin.
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Figure 5. 
Leucovorin improves verbal communication more than placebo.
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Figure 6. 
Percentage of families that reported agitation or excitement at each 3-week adverse effect 

check-in

Frye et al. Page 19

Semin Pediatr Neurol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Medical Therapies Targeting Core Symptoms in Autism Spectrum Disorder
	Metabolic Targets for Treating Underlying Pathophysiology in Autism Spectrum Disorder
	Abnormalities in Folate Metabolism is Strongly Associated With ASD
	Cerebral Folate Deficiency and ASD
	d,l-Leucovorin Improves Symptoms in Children With Cerebral Folate Deficiency in Case Studies
	d,l-Leucovorin Improves Verbal Communication in Children With Autism Spectrum Disorder and Folate Receptor Alpha Autoantibodies
	The Importance of Targeting Language and Verbal Communication in Autism Spectrum Disorder
	d,l-Leucovorin Improves Verbal Communication in a Double-Blind Placebo-Controlled Study
	d,l-Leucovorin Could Results in Significant Cost Savings
	d,l-Leucovorin Also Improves Core Symptoms of Autism Spectrum Disorder
	d,l-Leucovorin Has a Low Frequency of Adverse Effects
	Folate Improves Mitochondrial Function in Children With ASD
	Folate During Gestation and ASD
	Ongoing and Future Studies Using d,l-Leucovorin in the Treatment of Autism Spectrum Disorder
	The Potential Importance of Leucovorin in the Treatment of Autism Spectrum Disorder
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

