
sensors

Communication

Ion Chromatographic Fingerprinting of STC-1
Cellular Response for Taste Sensing

Marcin Zabadaj 1 , Aleksandra Szuplewska 1, Maria Balcerzak 2, Michał Chudy 1 and
Patrycja Ciosek-Skibińska 1,*
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Abstract: Taste sensing is of great importance in both the pharmaceutical and foodstuff industries,
and is currently mainly based on human sensory evaluation. Many approaches based on chemical
sensors have been proposed, leading to the development of various electronic tongue systems.
However, this approach is limited by the applied recognition methods, which do not consider natural
receptors. Biorecognition elements such as taste receptor proteins or whole cells can be involved in the
development of taste sensing biosensors usually equipped with various electrochemical transducers.
Here, we propose a new approach: intestinal secretin tumor cell line (STC-1) chemosensory cells
were applied for taste recognition, and their taste-specific cellular response was decoded from ion
chromatographic fingerprints with the use of multivariate data processing by partial least squares
discriminant analysis (PLS-DA). This approach could be useful for the development of various
non-invasive taste sensing assays, as well as for studying taste transduction mechanisms in vitro.

Keywords: taste sensing; bioelectronic tongue; STC-1 cells; ion chromatography; chromatographic
fingerprints; PLS-DA

1. Introduction

Gustation is one of the most meaningful physiological functions of mammalian organisms.
This function greatly assists the choices of animals in terms of food nutrition, e.g., sweet represents
precious energy sources and bitter indicates a wide range of toxic substances. The taste receptors
expressed in animals’ tongue bud cells determine the animals’ taste perception abilities [1–3]. Until now,
it has been challenging to mimic mammalian taste sensing, while it could be very useful for taste
evaluation in both the pharmaceutical and foodstuff industries, where human panels could be replaced
by so-called “electronic tongues” or “taste sensing systems”. Even though many efforts to elaborate
such devices have been presented so far, and commercialized versions are available, it is still believed
that such fingerprinting based on chemical sensor array responses is a quite distant analogy of
mammalian gustation due to limited sensitivity and selectivity linked to insufficient mimicking of the
complex and interconnected downstream signaling cascades involved in taste sensing [4–8].

Therefore, an alternative approach was proposed, based not on chemical sensors, but biological
sensing elements, namely taste receptor cells (TRCs) [3,5,9–11]. TRCs are widely recognized as
biological functional elements that may be applied for the evaluation of responses to basic taste
stimuli. To date, there are two classes of cells available for the fabrication of bioanalytical tools,
namely natural taste receptor cells with native taste receptors [12] and bioengineered taste receptor
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cells [13]. Bioengineered cells are a category of functional cells treated specially to be used as
effective and sensitive elements for bioanalytical procedures. They can respond to the tastants or
the specific compounds [14–17]. On the other hand, natural cells are derived from biological taste
systems, which maintain their natural morphologies and properties. An example of the cells used
as a tasting system model are chemosensory cells, isolated from, e.g., murine intestine [5,13,18,19].
Under physiological conditions, chemosensing is involved in the digestion and absorption of nutrients
through neurohormonal control. Gut hormones mediate nutrient signals through the vagus nerve
from the gut directly to the brain. The secretion of gut hormones is stimulated by dietary components
through the activation of nutrient sensors.

Various cell-based systems or human taste receptors have been involved to datein the development
of sensors or assays capable of detecting and discriminating tastes with human-like performance.
Such bioelectronic tongues are comprised of various recognition elements: taste receptors or their
ligand binding domains [20–22], whole cells [6,7,18], or tissues [10]. They were immobilized
mainly at various electrochemical transducers, i.e., electrodes, field effect transistors (FETs) [7,21,22]
or light-addressable potentiometric sensors (LAPS) [6,12]. An alternative was proposed in [23],
where a quartz crystal microbalance (QCM) sensor was applied as a mass-sensing transducer for
bitterness sensing.

In this study, we proposed a novel strategy of taste sensing. We monitored the responses of
intestinal secretin tumor cell line (STC-1) cells, which are derived from the musculus gut and are
sensitive to bitter, sweet, and umami taste [5,24], to five basic tastants via ion chromatographic
fingerprinting (experimental workflow presented in the Supplementary Materials, Figure S1).

Ion chromatography (IC) presents a sequential multielemental determination capability, satisfying
selectivity and reproducibility, a stable separation system, and speed of analysis, allowing the
determination of biologically-important elements, e.g., calcium in the form of Ca2+ [19]. IC combined
with conductometric detection, a well-established separation technique for the determination of a wide
range of inorganic as well as organic ions, were applied to the cells to obtain ion chromatographic
fingerprints of the cell culture media after treatment with five basic tastants: sodium chloride (salty
taste), citric acid (sour taste), caffeine citrate (bitter taste), aspartame (sweet taste), and sodium
glutamate (umami taste). Due to the secretion and fluxes of various ions [6,7,25], after the exposure of
the cells to the tastants, we expected changes in the chromatographic profiles of the cell culture media.
Ion chromatographic fingerprints, which are characteristic cellular responses to different taste stimuli,
were the subject of classification used to reveal the possibility of taste identification. Such transduction
of taste information, based on our best knowledge, is presented here for the first time, allowing for the
possibility of non-invasive taste research and the study of taste mechanisms in vitro.

2. Materials and Methods

2.1. Samples Preparation

The STC-1 cell line (Mus musculus intestinal neuroendocrine tumor cells; American Type Culture
Collection (ATCC)) was chosen as the research model. The cells were cultured in complete DMEM
medium (Dulbecco’s Modified Eagle Medium, Sigma-Aldrich, Saint Louis, USA) supplemented with
10% (v/v) fetal bovine serum (FBS, Sigma-Aldrich), 1% of penicillin and streptomycin (Sigma-Aldrich)
(v/v), and 1% of L-glutamine (Sigma-Aldrich) (v/v). Cells were maintained under 5% CO2 at 37 ◦C
and 95% humidity and passaged once a week.

In order to prepare the samples for ion chromatographic analysis, the cells were seeded in the
standard Petri dishes (60 mm of diameter, Nest) in a density of 2 × 106 cells per dish. When the
cells’ adhesion to the culturing surface was observed, the medium was removed and replaced with
Dulbecco-modified phosphate buffered saline (DPBS: 200 mg/L KCl, 200 mg/L KH2PO4, 8 g/L NaCl,
2.16 g/L Na2HPO4·7H2O; Sigma-Aldrich) containing 1 mM of various tastants (sodium L-glutamate,
caffeine citrate, aspartame, citric acid, sodium chloride; 10 mL per dish). Controls were carried out in
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the absence of the tested flavor substances (cell culture was incubated with the proper fresh buffer
only). After 1 min of incubation under 5 % CO2 at 37 ◦C, the taste substance solutions were replaced
with fresh DPBS (10 mL per dish). The samples of fresh DPBS were subsequently collected and frozen
for further analysis. Directly before the injection on the column, samples were filtered using 0.22 µm
nylon syringe filters (Metrohm) and C-18 microcolumns (Metrohm). Each sample was prepared in at
least three independent replications.

2.2. Ion Chromatographic (IC) Analysis

The 761 Compact IC System, Metrohm AG (Herisau, Switzerland) with a conductometric detector,
and the IC Net 2.3 Metrodata (Metrohm) software for data acquisition and evaluation of chromatograms
were used. It was equipped with a Metrosep C 4 (150/4.0 (6.1050.420), Metrohm) column. The mobile
phase consisted of 1.7 mM HNO3 (Fluka) and 0.7 mM dipicolinic acid (DPA, Fluka). Elution was
performed in the isocratic mode for a total of 22 min. The flow rate was 900 µL per min, and the
injection volume was 200 µL. The temperature of the column was 25 ◦C.

The method was validated in terms of its sensitivity, accuracy, precision, specificity, and linearity.
The limits of quantification (LOQ) and limits of detection (LOD), respectively, a measure of a method’s
sensitivity, were established based on the lowest spiked concentration. The relative standard deviation
(RSD) calculated for each population of the results was below 11% [26].

2.3. STC-1 Cells’ Viability Evaluation

The biological activity of the tested tastants against the STC-1 cell line was evaluated by measuring
the cells’ viability after their exposure to the studied substances in the concentration of 1 mM.
Cell viability was evaluated using an MTT test—a colorimetric assay for assessing cell metabolic
activity. NAD(P)H-dependent cellular oxidoreductase enzymes may, under defined conditions,
reflect the percentage of cellular viability. These enzymes are capable of reducing the tetrazolium
dye MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to the insoluble in water
media formazan, which is purple. Cells were seeded in the standard 96-well plates in a density of
1.5 × 104 cells per well. Subsequently, the cells were incubated to assure the adhesion to the culturing
surface. Then, the medium was removed and replaced with proper fresh medium containing 1 mM of
various tastants (100 µL per well). Controls were carried out in the absence of tested flavor substances
(cell culture was incubated with the proper fresh medium only). The cell viability was measured after
24 h of incubation under 5% CO2 at 37 ◦C. The experiment was conducted at least twice independently.
In order to verify the influence of the tested compounds on the cell culture, cells were treated with
MTT (Sigma-Aldrich) solution (0.5 mg mL-1 in phosphate buffered saline (PBS) (Sigma; 100 µL per
well). Cells were incubated with MTT solution for the next 4 h and protected from light. Then,
the supernatant was carefully removed and the formed violet formazan crystals were dissolved in
dimethyl sulfoxide (DMSO, Sigma-Aldrich; 100 µL per well). The absorbance of the formazan solutions
was measured at 570 nm using a Multiwell Plate Reader (Biotek Cytation 3). The results were expressed
as a percentage of viability in comparison to the control groups, according to the formula below.

Cells’ viability = Ai/Ac × 100%, (1)

where Ai—average absorbance of tested group; Ac—average absorbance of control group.

2.4. Data Analysis

The chemometric analysis was performed using the SOLO® software (Eigenvector Research Inc.,
Manson, WA, USA) supplemented by in-house-written codes for Matlab (Mathworks Inc., Natick, MA,
USA). Autoscalling and the SIMPLS regression algorithm were applied. Figures were generated using
Origin ver. 9.0 (OriginLab Corporation, Northampton, MA, USA).
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3. Results and Discussion

In this study, we monitored the responses of STC-1 cells (derived from musculus gut; sensitive to
bitter, sweet and umami taste [5,24]) to five basic tastants by measuring the ionic cellular response in
cell culture media, compared to controls. The STC-1 cells’ responses to tastant stimuli were determined
using ion chromatography (IC) combined with conductometric detection, which is a well-established
method in routine analysis for determination of a wide range of inorganic as well as organic ions.

3.1. Chromatograms of STC-1 Cellular Response Towards Taste Stimuli

The DPBS samples were collected after the cell cultures were exposed for 1 min to selected taste
substances in the concentration of 1 mM. This concentration was chosen based on the fact that it
corresponds to human recognition thresholds (from parts of millimols in the case of citric and acetic
acid, through to a few millimols in the case of monosodium glutamate, to even 20–30 millimols in
the case of sucrose or NaCl) [27]. The obtained chromatograms are shown in Figure 1. The wide,
unseparated signal (between 2 and 8 min) as well as the potassium-cation peak (retention time circa
8 min) are visible on each chromatogram. The probable cause of the problems with the signal separation
was the presence of the small organic molecules (e.g., amino acids, fatty acids) in sample matrix in
too high concentrations, thereby obstructing their efficient removal using C-18 microcolumns and
peak separation during further analysis [28]. Generally, a large dispersion of the results for the groups
stimulated with tastants and controls was visible and smaller differences in the chromatogram shapes
could be observed after the incubation of the cell cultures with aspartame only. In contrast, treating
the cells with other taste substances caused changes in retention time and peak heights. Additionally,
the dispersion of the results obtained for the samples after exposing the cell to sodium L-glutamate
and sodium chloride precluded the easy contradistinction of those treated populations from the
control groups (see Figure 3A). However, such preliminary observations must be treated carefully,
and validation must be performed based on many replicates comparing with many controls to reveal
possible statistically significant differences between the obtained chromatograms. The discrimination
between the stimulated cells and controls is based on two effects simultaneously: the total variability of
the signals, and variability within the groups. Therefore, our goal was to use chemometric calculations
to recognize the potential alterations between the controls and stimulated groups on the basis of the
whole shapes of the obtained chromatograms rather than based on individual, well separated peaks.
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Figure 1. Examples of chromatograms (red) of Dulbecco-modified phosphate buffered saline (DPBS)
added to intestinal secretin tumor cell line (STC-1) cells after the treatment with 1 mM solutions
of: (a) aspartame, (b) citric acid, (c) caffeine citrate, (d) sodium L-glutamate, (e) sodium chloride.
Black—control groups. Controls were carried out in the absence of taste substances.

3.2. Viability Study

In order to ensure that the studied differences were not an artifact caused by cytotoxic effect
in the studied cell cultures, the influence of tastants on the viability of chemosensory cells was also
checked (see Figure 2). The cytotoxicity analysis was performed after 24 h of incubation of the
cells with taste substances. The cell viability was determined using the standard MTT protocol.
An MTT assay is based on tetrazolium salt thiazolyl blue reduction by the activity of the mitochondrial
dehydrogenases present in living cells [29]. The purple product of the reaction is subsequently
determined spectrophotometrically. As Figure 2 shows, the lack of obvious cytotoxic effects after 24 h
of the exposure of chemosensory cells to the aspartame, sodium l-glutamate and citric acid could be
noted. Statistically significant decrease after exposure to caffeine citrate and sodium chloride was
observed. However, in these cases the cells maintained up to 70% viability after the 24 h incubation,
which was sufficient to also regard these two tastants as non-toxic to the cells (the concentration
of the tested compound can be described as non-toxic if the cell viability remains above 70% [30]).
The obtained results suggest the higher sensitivity of STC-1 cells to caffeine citrate and sodium chloride
as the probable cause of the observed effect. Nevertheless, the possible cytotoxic action of taste
stimulants at millimolar concentrations and at the timespan of the taste experiment can be regarded
as negligible.
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Figure 2. Cell viability after 24 h of exposure to 1 mM solutions of various taste substances (n = 3;
n—number of independent experiments).
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3.3. Taste Recognition Using PLS-DA

Using the obtained chromatograms, quantitative data analysis was impossible, due to poor peak
separation. Despite this, the obtained data can be useful, because full chromatograms are specific
and unique fingerprints of the investigated samples, although they demand multivariate analysis for
information decoding. We attempted ion chromatographic fingerprint classification by means of the
partial least squares discriminant analysis (PLS-DA) method. The aim of the study was to discriminate
media samples from the cell cultures exposed to the five basic tastants and from controls, therefore
0–1 coding was applied to assign the samples to six classes for the formation of a target matrix.
The raw chromatographic curves, seen in Figure 1, were differentiated using the Savitzky–Golay
algorithm, after careful optimization of the parameters (details in [31]) and the obtained vectors for
each sample served as inputs for the PLS-DA (multivariate target matrix, PLS2 algorithm, number of
LVs determined by minimization of the Root Mean Squared Error of Cross Validation RMSECV value,
and cross-validation performed using venetian blinds). The result of the discrimination of the six
classes was presented on a 3D-PLS score plot (Figure 3A). The best separation of clusters was visible
for sweet and bitter taste (cells treated with aspartame and caffeine citrate, respectively), while the
controls seemed to overlap for the other three tastes (cells exposed to NaCl, citric acid and sodium
glutamate). A setailed investigation of this effect—discrimination between the controls and these
three tastants, was made on the basis of one column classification for each taste. This revealed that
the umami taste was easily discernable from the controls, while the resting ionic tastants (NaCl and
citric acid) caused an insignificant change in the ion chromatographic fingerprints of cellular responses
(Supplementary Materials, Figure S2). This finding is of great importance, since it correlates well with
the natural taste sensing ability of STC-1 cells, which respond to sweet, bitter and umami stimuli [5,24].

To confirm our observations, ion chromatographic fingerprints representing five tastants and
controls were subjected to PLS-DA classification, and class affinities for each studied sample were
summarized in a confusion matrix (Figure 3B). The cellular responses towards sweet, bitter and
umami stimuli must have been significant, because these classes were perfectly recognized and not
misclassified with controls in all cases (100% accuracy for these three tastes). The sour tastant was
correctly identified only in four out of nine cases—as many as five times it was regarded as a control.
The lack of discrimination from controls was even more visible in the case of the salty taste, the
chromatographic fingerprints of which were assigned incorrectly in almost all cases. The controls were
also misclassified for the ionic tastants (NaCl and citric acid) in five out of 45 cases.

Taking into account STC-1 cells’ natural ability to sense only three non-ionic tastes, ion
chromatographic fingerprints were classified using the PLS-DA model considering only four classes of
cellular response, one for each non-ionic taste: sweet, bitter and umami, and the “no taste” samples
(Figure 3C). This last class included all controls (cells not exposed to any of the stimuli) and two ionic
tastants that should also have been indiscriminative for the studied chemosensory cells. The confusion
matrix summarizing the recognition capability of this PLS-DA model revealed the almost perfect
identification of the respective ion chromatographic fingerprints of the cellular responses. The accuracy
of the classification increased from 80.0 to 98.9%, showing the almost perfect identification of all
non-ionic tastes that can be sensed by STC-1 cells. This result confirms that the ability of STC-1
cells to sense three basic tastants can be coupled with ion chromatographic fingerprinting of the
cellular response to provide effective taste recognition in in vitro conditions. The presented taste
sensing strategy could find possible applications in all taste research, with great importance in the
pharmaceutical and foodstuff industries. Moreover, chromatographic fingerprinting of the cellular
response, not only for chemosensory cells, could be useful in all cell-signaling studies, as an alternative
approach to traditionally applied methods.
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Sensors 2019, 19, 1062 8 of 10

4. Conclusions

We proposed a new method for in vitro taste recognition based on the ion chromatographic
fingerprinting of chemosensory cells’ response to various taste stimuli. Ion chromatographic
fingerprints were classified using PLS-DA, showing good discrimination of bitter, sweet and umami
tastes compared to controls, and worse discrimination in the case of two other tastants, which is in
good accordance with the natural ability of the applied STC-1 cells to taste sensing. The presented
results are important for all studies related to the development of taste sensing systems, since natural
recognition elements are involved, the chemosensory functioning of which is capable of mimicking
natural taste sensation in mammals. Moreover, it was shown that ion chromatographic fingerprinting
can be a good transduction method for revealing and decoding taste-specific cellular response. To the
best of our knowledge, such a strategy for receiving and processing taste sensing information is
presented here for the first time.

This article presents preliminary research. In the future, the correlation of ion chromatographic
fingerprints with various concentration levels of taste stimulants should be studied. The more
challenging task would be a comparison of the similarity of the fingerprints of the cellular response to
taste stimulants with differing chemical structures, but similar taste properties. This is the subject of
our ongoing research.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/5/
1062/s1, Figure S1: Experimental workflow, Figure S2: Responses of the PLS-DA models for chromatographic
fingerprints analysis in the case of (A) sour; (B) salty; (C) umami taste.
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Performance of hybrid electronic tongue and HPLC coupled with chemometric analysis for the monitoring
of yeast biotransformation. Chemom. Intell. Lab. Syst. 2017, 167, 69–77. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.iso.org/standard/36406.html
http://dx.doi.org/10.1016/j.chemolab.2017.05.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Samples Preparation 
	Ion Chromatographic (IC) Analysis 
	STC-1 Cells’ Viability Evaluation 
	Data Analysis 

	Results and Discussion 
	Chromatograms of STC-1 Cellular Response Towards Taste Stimuli 
	Viability Study 
	Taste Recognition Using PLS-DA 

	Conclusions 
	References

