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1  |  INTRODUCTION: CHANGES IN 
SUSCEPTIBILITY TO GENITAL INFECTIONS AND 
GYNECOLOGICAL CANCER DUE TO AGING

The aged population (>60 years old) is increasing rapidly and pro-
jected to grow to 1.4 billion by 2030, with women accounting for 

approximately 2/3 of individuals in this age group (He et al., 2016). 
With age, genitourinary infections and gynecological cancers in-
crease, with profound effects on the morbidity and mortality of 
women (Gavazzi & Krause, 2002). Epidemiological studies show that 
urinary tract infections (UTI) and sexually transmitted infection (STI) 
rates increase in older women (CDC, 2016a, 2016b), presenting a 
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Abstract
Mucosal	tissues	 in	the	human	female	reproductive	tract	 (FRT)	are	primary	sites	for	
both gynecological cancers and infections by a spectrum of sexually transmitted 
pathogens, including human immunodeficiency virus (HIV), that compromise wom-
en's health. While the regulation of innate and adaptive immune protection in the 
FRT	by	hormonal	cyclic	changes	across	the	menstrual	cycle	and	pregnancy	are	being	
intensely studied, little to nothing is known about the alterations in mucosal immune 
protection	that	occur	throughout	the	FRT	as	women	age	following	menopause.	The	
immune	 system	 in	 the	FRT	has	 two	key	 functions:	 defense	 against	 pathogens	 and	
reproduction.	After	menopause,	natural	 reproductive	function	ends,	and	therefore,	
two overlapping processes contribute to alterations in immune protection in aging 
women: menopause and immunosenescence. The goal of this review is to summarize 
the	multiple	immune	changes	that	occur	in	the	FRT	with	aging,	including	the	impact	
on the function of epithelial cells, immune cells, and stromal fibroblasts. These studies 
indicate	that	major	aspects	of	innate	and	adaptive	immunity	in	the	FRT	are	compro-
mised	in	a	site-	specific	manner	in	the	FRT	as	women	age.	Further,	at	some	FRT	sites,	
immunological compensation occurs. Overall, alterations in mucosal immune protec-
tion contribute to the increased risk of sexually transmitted infections (STI), urogeni-
tal	 infections,	and	gynecological	cancers.	Further	studies	are	essential	 to	provide	a	
foundation for the development of novel therapeutic interventions to restore immune 
protection and reverse conditions that threaten women's lives as they age.
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public health challenge that must be addressed. The incidence of 
STIs	has	increased	by	38%	since	2010	in	the	50–	70	year	age	group	
(CDC, 2016a, 2016b). UTIs are often caused by Escherichia coli (Hu 
et	al.,	2004),	which	colonize	the	FRT	in	older	women	prior	to	spread-
ing to the urinary tract (Ghosh et al., 2014; Hummelen et al., 2011). 
Sexual activity is a risk factor for STIs and some UTIs, the prevalence 
of which is not widely recognized in older adults (CDC, 2016a; Hu 
et	al.,	2004;	Taylor	et	al.,	2017).

In addition to genitourinary infections, aged women have a high 
burden of comorbidities associated with endometrial, ovarian, and 
cervical	cancers	 (CDC,	2019).	Uterine	cancer	 is	 the	most	common	
gynecological cancer worldwide and the sixth most common cause 
of cancer death which occurs primarily in postmenopausal women, 
with	an	average	age	of	diagnosis	of	60	years	(Henley	et	al.,	2020;	Lu	
&	Broaddus,	2020).	Accompanying	this	is	an	increase	in	human	pap-
illomavirus	(HPV)	(types	16	and	18),	the	underlying	cause	of	cervical	
cancer	and	precancerous	lesions	(Chan	et	al.,	2019;	Gonzalez	et	al.,	
2010; Gravitt et al., 2013; Rositch et al., 2012). Despite the burden 
of STIs and gynecological cancer in older women, they are not recog-
nized	as	a	clinical	priority.	Aged	women	are	also	generally	excluded	
from STI prevention trials (Herrera et al., 2010), vaccination recom-
mendations,	and	prevention	advice	(Granville	&	Pregler,	2018).	Thus,	
there is a critical need to understand how, as women age, immune 
protection	against	STIs	and	cancer	changes	in	the	FRT—	the	primary	
mucosal surface where pathology initiates.

2  |  UNIQUENESS OF THE AGING 
PROCESS IN THE FRT:  MENOPAUSE AND 
AGING IN WOMEN

The aging process in women is accompanied by the transition into 
menopause.	Menopause	marks	the	end	of	natural	reproductive	po-
tential with the permanent secession of menstrual cycles, caused by 
the decline in ovarian sex hormone production (estradiol and proges-
terone)	(Maruoka	et	al.,	2014).	Since	the	average	age	at	menopause	
is 50 years (Palacios et al., 2010), and the average life expectancy of 
women	in	the	USA	is	78	years,	women	live	for	30–	40	years	in	a	post-
menopausal environment with low concentrations of sex hormones. 
How this hormone- deprived environment affects immune function 
overtime is of great importance in understanding the mechanisms 
involved in immune protection in older women. Importantly, long- 
term survival after menopause cannot be fully reproduced in animal 
models	 (Walker	&	Herndon,	2008),	highlighting	 the	 importance	of	
studying aging effects with human samples.

Not	widely	 appreciated	 is	 that	 the	 immune	 system	 in	 the	FRT	
is critical for reproductive success. Sex hormones tightly regulate 
immune	function	in	the	premenopausal	FRT	to	ensure	the	balance	
between optimal conditions for pregnancy and protection against 
pathogens (Wira et al., 2015). To achieve this necessary balance, the 
FRT	has	evolved	with	distinct	anatomical	compartments	consisting	
of the fallopian tubes, uterus (endometrium), endo-  and ectocervix, 
and	 vagina	 (Figure	 1).	 As	 reviewed	 elsewhere	 (Wira	 et	 al.,	 2015),	

each compartment contains adaptive and innate immune cells, but 
each site is separate and distinct regarding reproductive function 
and	immune	protection	prior	to	menopause.	Following	menopause,	
immune	cell	populations	and	responses	are	dramatically	altered.	As	
women age, two interrelated processes overlap and contribute to 
changes	 in	 immune	 protection	 in	 the	 FRT:	menopause	 and	 immu-
nosenescence. While much is known about the effects of sex hor-
mones	on	immune	function	in	the	FRT	during	the	menstrual	cycle,	
relatively little is known about the immunosenescent changes that 
occur after menopause and in the years that follow.

In this review, we consider immunosenescence throughout the 
FRT.	We	 focus	 on	 changes	 in	mucosal	 immune	 function	 following	
menopause and how they relate to potential changes on suscepti-
bility	 to	 infections	 and	 the	 risk	 of	 gynecological	 cancers.	 Beyond	
the scope of this review are age- related changes in the ovary, vulva, 
and other anatomically proximal organs, such as bladder and rectum, 
which contribute to morbidity in older women. Overall, following 
menopause, a growing body of evidence indicates that aging signifi-
cantly alters adaptive and innate immunity, in ways that are distinct 
and	site-	specific	throughout	the	FRT.

3  |  CHANGES IN EPITHELIAL CELL S AND 
BARRIER PROTEC TION INDUCED BY AGING

Epithelial	cells	 line	 the	surface	of	 the	FRT	and	are	 the	 first	 line	of	
defense against incoming pathogens. They contribute to immune 
protection by (a) providing a physical barrier that separates the 

F I G U R E  1 Diagram	of	the	human	female	reproductive	tract	
(FRT)	showing	the	major	tissue	compartments.	The	upper	FRT	
includes the fallopian tubes, endometrium, and endocervix, which 
are	lined	with	columnar	epithelial	cells.	The	lower	FRT	consists	of	
the ectocervix and vagina which is lined with squamous epithelial 
cells. The reproductive and immunological functions of each site 
are separate and distinct. Each site functions to optimize conditions 
for successful fertilization and implantation while protecting 
against	sexually	transmitted	pathogens.	Adapted	from	(Wira	et	al.,	
2015)
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internal and external environments; (b) providing a chemical barrier 
composed of mucus, antimicrobials, cytokines, and chemokines that 
directly interact with pathogens and modulate the local immune sys-
tem; and (c) mounting rapid innate immune responses to pathogens 
via	pattern	recognition	receptors	(PRRs).	Little	is	known	about	how	
FRT	epithelial	functions	change	with	age	in	postmenopausal	women,	
since most studies focus on younger reproductive- aged women.

3.1  |  Barrier protection

Epithelial	 cells	 form	 a	 physical	 barrier	 that	 protects	 underlying	 FRT	
tissues and its resident immune cells against potential pathogens and 
injuries. Epithelial cell phenotype varies with anatomical location in the 
FRT.	The	 stratified	 squamous	epithelium	of	 the	 lower	FRT	 (ectocer-
vix	and	vagina)	 is	25–	50	 layers	 thick	with	superficial,	parabasal,	and	
basal	layers	(Patton	et	al.,	2000).	In	contrast,	the	upper	FRT	(endocer-
vix, endometrium, and fallopian tubes) is covered by a single layer of 
columnar epithelial cells. Whether increased barrier thickness corre-
lates	with	increased	protection	against	pathogens	in	the	lower	FRT	is	
unclear. However, cervical ectopy, where columnar epithelium of the 
endocervix extrudes onto the surface of the ectocervix, is associated 
with	increased	transmission	risk	of	HIV	(Moss	et	al.,	1991),	human	pap-
illomavirus (HPV) (Rocha- Zavaleta et al., 2004), Chlamydia trachomatis 
(Lee	et	al.,	2006),	and	cytomegalovirus	(CMV)	(Critchlow	et	al.,	1995).

Epithelial	 atrophy	 is	 common	 following	menopause	 (Anderson	
et	 al.,	 1989;	 Farage	 &	 Maibach,	 2006;	 Losif	 &	 Bekassy,	 1984).	
Postmenopausal women have a thinner vaginal epithelium (21.4 
vs	10.7	 cell	 layers)	 compared	 to	premenopausal	women	 (Thurman	
et	 al.,	 2017),	 suggesting	decreased	barrier	protection	 in	 the	 lower	
FRT.	There	is	also	a	loss	of	hydration	which	leads	to	increased	vagi-
nal	dryness,	irritation,	and	inflammation.	Loss	of	natural	lubrication	
can lead to epithelial damage during sexual intercourse, potentially 
increasing	pathogen	access	 to	 the	underlying	 tissue.	Furthermore,	
epithelial wound healing is compromised following menopause in 
animal	models	 (Ben	Menachem-	Zidon	 et	 al.,	 2020;	 Shveiky	 et	 al.,	
2020),	 at	 other	mucosal	 sites	 (Engeland	et	 al.,	 2009;	Horng	et	 al.,	
2017)	and	in	cell	culture	(Patel,	M.	Unpublished).

Tight junction and adherens junction protein complexes link ad-
jacent epithelial cells and serve as a selectively permeable barrier 
that allows movement of proteins and solute across the epithelium 
(Anderson	&	Van	Itallie,	2009;	Blaskewicz	et	al.,	2011).	Tight	 junc-
tions are primarily composed of ZO- 1, occludin, and multiple clau-
din	proteins,	while	adherens	 junctions	are	composed	of	N-	,	P-		and	
O- cadherin. Tight junctions are precisely regulated throughout 
the menstrual cycle by sex hormones in premenopausal women 
(Fahey	et	al.,	2006;	Gorodeski,	2001a,	2007;	Gorodeski	et	al.,	2005;	
Iwanaga	et	al.,	1985;	Murphy	et	al.,	1992;	Zeng	et	al.,	2004).	While	
the effect of aging on tight and adherens junction expression in 
the	 FRT	 is	 relatively	 unknown,	 vaginal	 epithelial	 E-	cadherin	 levels	
are lower in postmenopausal women than premenopausal women 
(Thurman	et	al.,	2017).	Furthermore,	levels	of	paracellular	permea-
bility and transcellular resistance are lower in ectocervical cultures 

from postmenopausal women compared to premenopausal women 
(Gorodeski, 2001b). Since pathogens such as HIV can also decrease 
tight	junction	integrity	between	endometrial	epithelial	cells	(Mukura	
et	al.,	2017;	Nazli	et	al.,	2010),	aging	may	exacerbate	the	movement	
of pathogens into the underlying tissue. Thus, aging potentially leads 
to	an	overall	decrease	in	FRT	epithelial	barrier	protection	(Figure	2).

3.2  |  Pattern Recognition Receptors (PRRs)

PRRs are essential for the recognition and response to pathogens. 
PRRs	 include	 Toll-	like	 receptors	 (TLR)	 and	 retinoic	 acid	 inducible	
gene	 (RIG)-	like	 receptors	 (RLR),	 which	 recognize	 conserved	moie-
ties	 known	 as	 pathogen-	associated	 molecular	 patterns	 (PAMPs)	
characteristic of broad classes of pathogens. PRR expression var-
ies	within	the	FRT	by	anatomical	location	and	cell	type	(Pioli	et	al.,	
2004; Zarember & Godowski, 2002). Human endometrial epithelial 
cells	express	TLRs1-	9,	with	TLR1,	2,	3,	and	5	being	expressed	at	the	
highest levels (Schaefer et al., 2005). Vaginal epithelial cells express 
TLR1,	3,	5,	and	6,	but	not	TLR4	(Fichorova	et	al.,	2002).	At	the	tissue	
level,	TLR4,	RIG-	I,	MDA5,	NOD1,	and	NOD2	expressions	are	highest	
in	the	upper	FRT	and	decline	in	the	lower	FRT	(Ghosh	et	al.,	2012;	
Pioli	et	al.,	2004).	TLR2	expression	is	highest	in	the	fallopian	tubes	
and cervix but lowest in the endometrium and ectocervix. In con-
trast,	TLR7,	8,	and	9	are	consistently	expressed	from	the	fallopian	
tubes	to	ectocervix	(Hart	et	al.,	2009).

TLR	expression	varies	with	menstrual	cycle	stage	and	is	lower	in	
endometrial tissues at the proliferative phase compared to the se-
cretory phase. Endometrial epithelial immune responses are partially 
regulated	by	sex	hormones.	Estradiol	decreases	secretion	of	IL-	6,	IL-	
8,	 and	MIF	 by	 endometrial	 epithelial	 cells	 in	 response	 to	 TLR3	or	
TLR4	stimulation	(Fahey	et	al.,	2008;	Lesmeister	et	al.,	2005).	How	
the decline in ovarian sex hormones affects epithelial innate immune 
responses to PRR ligands is unclear. In preliminary studies with en-
dometrial epithelial cells, we discovered a trend toward decreased 
TLR3	expression	 in	older	women	(>75	years)	compared	to	younger	
women	(50–	59	years)	(Figure	2).	Since	exposure	to	the	TLR3	agonist	
poly(I:C) induces a proinflammatory antiviral response in endome-
trial	and	vaginal	epithelial	cells	 (Patel	et	al.,	2012,	2018a;	Schaefer	
et	 al.,	 2005;	 Trifonova	 et	 al.,	 2009),	 decreased	 responsiveness	 to	
viral pathogens could compromise epithelial cell- mediated innate 
protection	throughout	the	FRT.	Whether	PRR	expression	in	general	
and	responsiveness	to	TLR	agonists	decreases	with	age	in	the	FRT	is	
unknown.	At	other	sites	in	the	body,	increased	age	is	associated	with	
decreased responsiveness to PRR stimulation (Dunston & Griffiths, 
2010;	Iram	et	al.,	2012;	Panda	et	al.,	1950).

3.3  |  Mucus

FRT	epithelial	cells	produce	a	protective	mucus	 layer	 that	 reduces	
direct contact with pathogens, such as HIV, by trapping them and 
preventing	access	to	the	epithelium	(Lai	et	al.,	2009;	Shukair	et	al.,	
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2013).	Major	constituents	of	mucus	are	the	negatively	charged	gly-
coproteins known as mucins which form a network of protein com-
plexes that can bind incoming pathogens. In premenopausal women, 
mucin	(MUC)	gene	expression	varies	with	menstrual	status	leading	
to changes in the overall properties of mucus including consist-
ency	and	permeability	(Elstein,	1978;	Gipson	et	al.,	1997;	Vigil	et	al.,	
2009).	Following	menopause,	the	expression	of	vaginal	MUC4	and	
MUC5AC	decreases	(Moncla	et	al.,	2016)	potentially	reducing	mucus	
binding capacity and its ability to interact with pathogens.

In	the	 lower	FRT	of	premenopausal	women,	vaginal	mucus	has	
an	acidic	pH	that	reduces	HIV	infectivity	(Tyssen	et	al.,	2018).	Some	
studies show that postmenopausal women have increased vaginal 
pH	 compared	 to	 premenopausal	 women	 (Thurman	 et	 al.,	 2017),	
while others show no difference in pH between the two populations 
(Murphy	et	al.,	2019).	Changes	in	pH	could	be	mediated	via	altered	
composition of the vaginal microbiome in older women that in turn 
increases	vaginal	pH	(Murphy	et	al.,	2019).

3.4  |  Antimicrobials and cytokines

Antimicrobials	and	cytokines	secreted	by	epithelial	cells	are	key	pro-
tective components of cervical- vaginal fluids which bathe the entire 
FRT.	Antimicrobials	interact	with	pathogens	both	prior	to	contact	with	
the epithelium and within the sub- epithelial stromal compartment 
(Fahey	et	al.,	2005;	Wira	et	al.,	2010).	FRT	epithelial	cells	secrete	multi-
ple antimicrobials and cytokines including human β-	defensins	(HBDs),	
SLPI,	 lysozyme,	 tracheal	 antimicrobial	 peptide,	 TNFα,	 IL-	8,	 CCL20,	
elafin,	 and	 cathelicidin	 (Fahey	 et	 al.,	 2008;	 Schaefer	 et	 al.,	 2005;	
Wira et al., 2010, 2011). These have potent antiviral, antibacterial, 

and anti- fungal activity and represent an immunological barrier that 
protects epithelial cells and other cells in the underlying stroma. Sex 
hormones directly regulate the secretion of antimicrobials by epithe-
lial cells in vitro.	Estradiol	stimulates	the	secretion	of	SLPI,	elafin,	and	
HBD2	by	endometrial	epithelial	cells	 (Fahey	et	al.,	2008),	but	 inhib-
its	HBD2	and	elafin	secretion	by	vaginal	epithelial	cells	 (Patel	et	al.,	
2013).	We	showed	that,	due	to	the	absence	of	SLPI	secretion,	apical	
secretions by endometrial epithelial cells in vitro from postmenopau-
sal women are unable to inhibit Staphylococcus aureus growth in cul-
ture	in	contrast	to	those	from	premenopausal	women	(Fahey	&	Wira,	
2002).	Loss	of	antibacterial	activity	via	decreased	expression	of	epi-
thelial antimicrobials could be one mechanism by which older women 
become more susceptible to bacterial infections.

Several studies have investigated how sex hormones affect an-
timicrobial	and	cytokine	secretions	in	the	FRT	(Cortez	et	al.,	2014;	
Fahey	et	al.,	2008;	Patel	et	al.,	2014;	Wira	et	al.,	2010)	using	cervical-	
vaginal	lavage	(CVL)	fluid	that	consists	of	the	combined	secretions	of	
epithelial	cells	and	immune	cells	from	the	upper	and	lower	FRT.	We	
and others have found changes that correlate with stage of the men-
strual	cycle	(Keller	et	al.,	2007;	Wira	et	al.,	2010).	At	midcycle	(days	
13–	14),	IL-	8,	Surfactant	Protein	A,	SLPI,	HBD2,	α-	defensins	1–	3,	and	
lactoferrin	in	cervical-	vaginal	lavage	(CVL)	fluids	are	depressed	and	
remain	so	for	7–	10	days	(Keller	et	al.,	2007).	In	contrast,	total	pro-
tein	levels	and	TGFβ remained unchanged during this time. Similarly, 
Cortez	 et	 al.	 (Cortez	 et	 al.,	 2014)	 demonstrated	 that	 IL-	6,	MIP1α, 
MIP1β,	 TNFα,	GMCSF,	 IFNα2,	 and	 IL-	10	all	 decreased	at	midcycle	
compared to the proliferative and secretory phases.

Changes	in	the	antimicrobial	and	cytokine	profile	in	CVL	after	
menopause	remain	unclear.	Decreased	levels	of	TNFα	 (Jais	et	al.,	
2016;	Thurman	et	al.,	2017),	CCL20	(Ghosh	et	al.,	2019;	Jais	et	al.,	

F I G U R E  2 Regulation	of	epithelial	cell	
and fibroblast function by menopausal 
status. This diagram shows key epithelial 
and stromal fibroblast functions and 
how they are modified after menopause. 
Triangles indicate a decline in cell function 
with	menopause.	A	rectangle	indicates	no	
change following menopause. Effects are 
shown for the endometrium on the upper 
part and for the cervix (endocervix and 
ectocervix) on the lower part of the figure
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2016),	 SLPI	 (Ghosh	 et	 al.,	 2019;	 Jais	 et	 al.,	 2016;	Murphy	 et	 al.,	
2019;	Thurman	et	al.,	2017),	and	HBD2	 (Ghosh	et	al.,	2019;	 Jais	
et	al.,	2016;	Murphy	et	al.,	2019;	Thurman	et	al.,	2017)	were	ob-
served	 in	 multiple	 CVL	 studies	 comparing	 pre-		 and	 postmeno-
pausal women. Despite these differences in antimicrobial and 
cytokine levels, there were no differences in anti- HSV- 2 activ-
ity between pre-  and postmenopausal women (Chappell et al., 
2015;	Thurman	et	al.,	2017).	 Intriguingly,	several	studies	showed	
increased	 anti-	HIV	 activity	 in	 postmenopausal	 CVL	 (Jais	 et	 al.,	
2016;	Murphy	et	al.,	2019),	while	others	showed	no	effect	(Ghosh	
et	al.,	2019;	Thurman	et	al.,	2017).	Similarly,	there	was	no	differ-
ence in Escherichia coli	 inhibition	 (Murphy	et	 al.,	 2019;	Thurman	
et	al.,	2017).	Together,	these	conflicting	studies	demonstrate	the	
complexity	of	epithelial-	mediated	 immune	protection	 in	 the	FRT	
and suggest that the mechanisms of immune protection against 
incoming pathogens vary considerably between pre-  and post-
menopausal women.

4  |  CHANGES IN FIBROBL A STS INDUCED 
BY AGING

Fibroblasts	form	a	dense	 layer	of	cells	 in	the	sub-	epithelial	stroma	
where they surround local immune cells. While primarily considered 
structural cells, they are key players in the innate immune response 
within	the	FRT	(Wira	et	al.,	2015).	Fibroblasts	express	multiple	PRRs,	
including	TLR2,	TLR3,	TLR4,	TLR5,	TLR6,	TLR9,	RIG-	I,	 and	MDA5,	
with endometrium fibroblasts generally expressing higher PRR lev-
els	 than	 other	 sites	 in	 the	 FRT	 (Patel	 et	 al.,	 2018b;	 Patel	 Shen,	&	
Wira,	2018).	They	mount	innate	immune	responses	against	a	broad	
range of incoming pathogens characterized by increased secretion 
of inflammatory cytokines and chemokines, leading to increased 
chemotaxis	of	immune	cells	(Patel	et	al.,	2018b;	Patel	Shen,	&	Wira,	
2018).	FRT	fibroblasts	secrete	Type	I	and	Type	III	interferons	(IFNs)	
and thus induce an antiviral state in adjacent cells (Patel et al., 
2018b;	Patel	Shen,	&	Wira,	2018).	Secretions	from	fibroblasts	can	
also	directly	inhibit	pathogen	survival.	For	example,	ovarian	and	en-
dometrial fibroblast secretions can inhibit HIV infection of target 
cells	(Patel	et	al.,	2018b;	Patel	Shen,	&	Wira,	2018).

Similar	to	other	FRT	cells,	 fibroblasts	are	sensitive	to	the	pres-
ence of sex hormones, particularly in the endometrium. In pre-
menopausal women, endometrial fibroblasts decidualize during the 
secretory phase of the menstrual cycle due to increasing levels of 
progesterone. In vitro, estradiol stimulates the secretion of hepato-
cyte	 growth	 factor	 (HGF)	 and	 stromal-	derived	 factor-	1	 (SDF-	1α) 
(Coleman	et	al.,	2009,	2012)	and	potentiates	the	upregulation	of	IL-	
27	in	response	to	TLR3	stimulation	(Patel	et	al.,	2018a).

The	phenotypic	and	functional	changes	that	FRT	fibroblasts	un-
dergo following menopause with reduced exposure to sex hormones, 
and subsequent aging are relatively unknown. Sensitivity to sex hor-
mones is retained in postmenopausal fibroblasts suggesting that 
exogenous	hormones	can	modulate	the	function	of	FRT	fibroblasts	
as	women	 age	 (Gibson	 et	 al.,	 2018).	 Endometrial	 fibroblasts	 from	

perimenopausal women have an altered transcriptome compared to 
premenopausal women characterized by changes in expression for 
cytoskeleton,	proliferation,	and	survival	genes	(Erikson	et	al.,	2017).	
However, studies with other tissues such as the skin demonstrate 
that with increased age, fibroblasts undergo senescence (Wang & 
Dreesen,	2018),	reduced	proliferative	capacity	(Bentov	et	al.,	2014),	
decreased	wound	healing	(Mahmoudi	et	al.,	2019),	transition	to	an	
activated inflammatory phenotype (Wolf et al., 2012), and promote 
epithelial growth and tumor development (Krtolica et al., 2001) 
(Figure	2).

5  |  CHANGES IN T-  CELL DISTRIBUTION 
AND FUNC TION IN THE FRT

T	 cells	 are	 the	most	 abundant	 leukocytes	 in	 the	 FRT	 of	 pre-		 and	
postmenopausal	women	(Givan	et	al.,	1997;	Rodriguez-	Garcia	et	al.,	
2014; Wira et al., 2015). However, after menopause, T- cell popula-
tions undergo changes in distribution, phenotype, and function in a 
site- specific manner.

5.1  |  CD4+ T cells

More	than	95%	of	CD4+	T	cells	in	the	FRT	have	a	memory	pheno-
type	and	can	be	 found	scattered	 throughout	 the	FRT	 (Saba	et	al.,	
2010;	Yeaman	 et	 al.,	 2001).	CD4+	T	 cells	 recognize	 peptides	 pre-
sented	on	MHC	class	 II	molecules	on	antigen	presenting	cells	and	
play	 a	major	 role	 in	 regulating	 adaptive	 immune	 responses.	CD4+	
T	 cells	 represent	 35%–	50%	of	CD3+	T	 cells	 in	 the	 FRT	 and,	 after	
menopause,	CD4+	T-	cell	presence	is	significantly	reduced	in	the	en-
dometrium compared to the endocervix and ectocervix (Rodriguez- 
Garcia	et	al.,	2014).	Within	the	CD4+	T-	cell	population,	menopause	
alters	Th17	cell	distribution	of	in	the	FRT.	In	premenopausal	women,	
Th17	cells	represent	a	major	proportion	of	the	total	CD4+	T-	cell	pop-
ulation in the endocervix and ectocervix, but are a minor fraction 
in	 the	endometrium	 (Joag	et	al.,	2015;	Ma	et	al.,	2020;	McKinnon	
et	al.,	2011;	Rodriguez-	Garcia	et	al.,	2014).	After	menopause,	Th17	
cells significantly increase in the endometrium, without changes 
in endocervix and ectocervix (Rodriguez- Garcia et al., 2014). This 
compartmentalization	of	Th17	cell	distribution	may	be	relevant	for	
reproductive	 success,	 given	 the	 studies	 indicating	 that	 Th17	 cells	
in human blood and animal models correlate with early pregnancy 
loss	(Abdolmohammadi	Vahid	et	al.,	2019;	Fu	et	al.,	2014;	Lee	et	al.,	
2012;	Wang	et	al.,	2020).	In	addition,	Th17	cells	play	a	central	role	in	
maintenance of epithelial barrier function and protection against ex-
tracellular	bacteria	and	fungi	(Sandquist	&	Kolls,	2018;	Stockinger	&	
Omenetti,	2017).	Changes	in	FRT	Th17	cell	distribution	and	function	
with aging, and the potential consequences for immune protection 
remain unknown.

Another	significant	change	after	menopause	 is	the	 increased	ex-
pression	of	CCR5	on	FRT	CD4+	T	cells.	Increased	CCR5	expression	has	
been	demonstrated	on	CD4+	T	cells	from	the	cervix	and	endometrium,	
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with	CCR5	preferentially	expressed	on	Th17	cells	(Meditz	et	al.,	2012;	
Rodriguez- Garcia et al., 2014; Trifonova et al., 2014). CCR5 is a chemo-
kine receptor with important roles in reproductive function and also 
the coreceptor used by HIV to infect genital tissues (Saba et al., 2010), 
representing a marker for susceptibility to HIV acquisition. Increased 
susceptibility to HIV infection in postmenopausal women has been 
demonstrated in epidemiological studies analyzing sero- discordant 
couples and in ex vivo HIV infection studies using tissue explants 
(European	Study	Group	on	Heterosexual	Transmission	of	HIV,	1992;	
Rollenhagen	&	Asin,	2011;	Thurman	et	al.,	2017).

5.2  |  Tissue- resident memory T cells

Particularly relevant for mucosal surfaces is the presence of tissue- 
resident	memory	 T	 cells	 (TRMs),	 which	 remain	 in	 tissues	 without	
recirculating, thereby providing first line local defense against re-
infection	and	reactivation	(Masopust	&	Soerens,	2019).	TRMs	have	
been involved in protection against genital infections, such as HSV- 2 
and HPV, and cancer in animal models (Cuburu et al., 2012; Shin & 
Iwasaki,	2012;	Shin	et	al.,	2016).	TRMs	can	be	 identified	by	CD69	
and	CD103	expression	 (Gebhardt	 et	 al.,	 2009;	Mueller	&	Mackay,	
2016). We and others have demonstrated that a high proportion 
of	human	FRT	T	cells	express	the	tissue	residency	markers	CD69+	
and	CD103+	 (Cantero-	Perez	 et	 al.,	 2019;	Duluc	 et	 al.,	 2013;	 Joag	
et	al.,	2015;	Ma	et	al.,	2020;	Moylan	et	al.,	2016;	Oja	et	al.,	2017;	
Rodriguez-	Garcia	et	al.,	 ,2017,	2018,	2020).	TRMs	remain	constant	
throughout the life span in multiple organs and mucosal surfaces 
(Thome	et	al.,	2014).	However,	in	the	FRT,	CD103+	T-	cell	presence	
significantly changes with menopause and aging in a site- specific 
manner	(Rodriguez-	Garcia	et	al.,	2018).	Endometrial	CD103+	T	cells	
increase after menopause and remain constant with postmenopau-
sal	aging.	In	contrast,	in	the	cervix,	CD103+	T	cells	progressively	de-
cline after menopause as women age. CD103 can be expressed on 
CD4+	and	CD8+	T	cells	(Rosato	et	al.,	2017);	however,	age-	related	
changes	 in	 the	FRT	are	 specific	 to	CD8+	CD103+	T	cells,	with	no	
modifications	on	CD4+	CD103+	T	cells,	which	represent	 less	than	
10%	of	the	CD103+	T-	cell	population	(Rodriguez-	Garcia	et	al.,	2018).

5.3  |  CD8+ T cells

The	proportion	of	CD8+	T	cells	increases	in	the	endometrium	after	
menopause (Rodriguez- Garcia et al., 2014; Trifonova et al., 2014), 
accompanied by modifications in distribution, phenotype, and func-
tion.	 Cytotoxicity	 is	 a	 key	 function	 of	 CD8+	 T	 cells	 to	 eliminate	
infected	 and	 cancerous	 cells.	 Additionally,	 uniquely	 important	 to	
the	 FRT,	 CD8+	 T	 cells	mediate	 allogeneic	 rejection,	which	 results	
in infertility (Erlebacher, 2013a, 2013b). To prevent rejection of 
the semi- allogeneic blastocyst, still unknown mechanisms control 
T-	cell	 function	 specifically	 in	 the	 endometrium	 to	 suppress	 CD8+	
T-	cell	 cytotoxic	 activity.	 Cytotoxic	 activity	 of	 endometrial	 CD8+T	
cells, including direct killing of allogeneic target cells, is significantly 

suppressed in premenopausal women compared to postmenopausal 
women	 (Rodriguez-	Garcia	et	 al.,	2020;	White	et	 al.,	1997).	Within	
premenopausal women, cytotoxic activity was further suppressed 
during the secretory phase of the menstrual cycle, when implanta-
tion and pregnancy is likely to occur in the endometrium (Rodriguez- 
Garcia	 et	 al.,	 2020;	 White	 et	 al.,	 1997).	 Importantly,	 cytotoxic	
activity is uniquely regulated in the endometrium, with no effect 
of menstrual cycle and menopausal status on cytotoxic activity by 
CD8+	T	cells	from	the	endocervix	or	ectocervix	 (Rodriguez-	Garcia	
et	al.,	2020;	White	et	al.,	1997).

TGFβ, produced by epithelial cells and fibroblasts (Omwandho 
et al., 2010; Wira & Rossoll, 2003), has been shown to suppress cy-
totoxic activity in animal and human experimental models, includ-
ing	 the	 human	 endometrium	 (Lee	&	 Rich,	 1993;	 Rodriguez-	Garcia	
et	 al.,	 2020).	 Interestingly,	 TGFβ specifically suppressed cytotoxic 
function	of	CD8+	T	cells	 from	 the	endometrium	but	not	 from	 the	
cervix and ectocervix. Susceptibility to endometrial suppression by 
TGFβ decreased after menopause, highlighting the complex regula-
tion	of	T	cells	in	the	FRT	(Rodriguez-	Garcia	et	al.,	2020).	Additional	
major	functional	changes	in	CD8+	T	cells	after	menopause	include	
increased degranulation capacity and changes in the profile of gran-
zymes	 produced,	 shifting	 from	 predominant	 granzyme	 B	 to	 gran-
zyme	 A	 production	 in	 response	 to	 stimulation	 (Rodriguez-	Garcia	
et	 al.,	 2020).	 Granzyme	 A	 has	 proinflammatory	 properties	 (Arias	
et	al.,	2017;	Wensink	et	al.,	2015),	and	therefore,	a	modified	gran-
zyme	 A	 predominant	 profile	 after	 menopause	 may	 contribute	 to	
increased genital inflammation. Interestingly, while resident and 
non- resident T cells have differential cytotoxic capacity (in vitro cy-
totoxicity and cytotoxic molecule content), both populations equally 
undergo changes in their granzyme profiles with increased degranu-
lation after menopause (Rodriguez- Garcia et al., 2020). Changes de-
tected	in	T	cells	after	menopause	are	summarized	in	Figure	3.

Sex	hormones	modify	CD8+	T-	cell	 cytotoxic	 activity.	 Estradiol	
acts	 directly	 on	 CD8+	 T	 cells,	 and	 progesterone	 indirectly	 by	 in-
creasing	epithelial	cell	TGFβ production, to suppress cytotoxicity of 
endometrial	CD8+	T	cells	(Shen	et	al.,	2021).	These	findings	suggest	
hormonal suppression of endometrial cytotoxic function, essential 
for	 successful	 implantation	 and	 pregnancy.	 Following	menopause,	
with marked reduction in hormone production, hormonal sup-
pression	is	removed,	and	CD8+	T-	cell	cytotoxicity	may	rebound	to	
provide	protection	throughout	the	FRT.	Potential	changes	in	CD8+	
T- cell cytotoxic activity in the years after menopause are unknown.

6  |  CHANGES IN DISTRIBUTION AND 
FUNC TION OF DC S AND MACROPHAGES IN 
THE FRT

In addition to resident T cells, mucosal surfaces contain multiple 
subsets of resident DCs and macrophages essential for innate im-
mune protection and the induction and maintenance of adaptive 
immune responses (Schlitzer et al., 2015). The phenotype and func-
tion of DCs and macrophages are known to be strongly influenced 
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by	 the	 tissue	environment	 (Schlitzer	et	al.,	2015).	 In	 the	FRT,	DCs	
and macrophages play key roles in reproduction (Dekel et al., 2014; 
Gnainsky et al., 2015), and their presence in the premenopausal en-
dometrium	is	regulated	by	sex	hormone	(Berbic	et	al.,	2009;	Evans	
&	Salamonsen,	2012;	Schulke	et	al.,	2008).	Therefore,	as	reproduc-
tive function ends, DC and macrophage presence and function in the 
FRT	would	be	expected	to	be	modified.

Diverse age- dependent effects have been described for blood 
DCs, including increased secretion of proinflammatory cytokines, 
decreased	 secretion	 of	 type	 I	 and	 III	 IFN,	 increased	 responses	
against	self-	antigens,	and	altered	capacity	to	prime	T	cells	(Agrawal	
et	al.,	2017).	However,	potential	age-	dependent	changes	in	DC	pop-
ulations	 in	human	tissues,	and	particularly	 in	the	FRT,	are	not	well	
understood.

Several	DC	subsets	are	present	throughout	the	FRT,	including	
CD1c+,	CD1a+,	and	CD14+	DCs.	Others	have	compartmentalized	
distribution,	such	as	CD103+	DCs,	found	exclusively	in	the	endo-
metrium,	or	Langerhans	cells	and	epithelial	DCs,	found	in	the	va-
gina	(Bertram	et	al.,	2019;	Duluc	et	al.,	2013;	Hladik	et	al.,	2007;	
Pena-	Cruz	et	al.,	2018;	Rodriguez-	Garcia	et	al.,	2017;	Mariani	et	al.,	

2002).	In	the	FRT,	DCs	are	found	both	in	the	sub-	epithelial	com-
partment	and	within	the	epithelium	(Iijima	et	al.,	2008;	Kaldensjo	
et al., 2011). We recently demonstrated that as women age, there 
is	a	progressive	decline	in	CD11c+	DC	number	throughout	the	FRT	
(Figure	4)	(Rodriguez-	Garcia	et	al.,	2018).	Decreased	presence	of	
CD1a+	 antigen	 presenting	 cells	 have	 also	 been	 described	 in	 the	
vaginal mucosa from postmenopausal compared to premeno-
pausal	women	(Thurman	et	al.,	2017).	The	decline	in	DC	numbers	
observed	 in	the	FRT	contrasts	with	myeloid	DCs	 in	blood	and	 in	
the intestinal and respiratory mucosae, which remain stable with 
age	(Agrawal,	2017;	Granot	et	al.,	2017).	Regarding	phenotype,	a	
trend toward increased maturation with age has been described in 
intestinal	DCs	(Granot	et	al.,	2017),	but	whether	this	also	applies	
to	 FRT	 DCs	 remains	 to	 be	 determined.	 PD-	L1	 expression	 is	 in-
creased on DCs in endometrium and cervix from postmenopausal 
compared	 to	 premenopausal	 women	 (Shen	 et	 al.,	 2016).	 PD-	L1	
increases were specific to DCs and associated with decreased 
PD-	L1	expression	on	CD8+	T	cells.	The	potential	consequences	of	
these changes on T- cell activation and peripheral tolerance remain 
to be determined.

F I G U R E  3 Regulation	of	CD8+	T-	cell	
function	in	the	FRT	by	menopausal	status.	
This diagram indicates key T- cell functions 
that	are	modified	after	menopause.	As	
indicated by the shape of each triangle, 
some functions decline while others 
increase after menopause. Rectangles 
indicate no change. Effects are shown for 
the endometrium on the upper part and 
for the cervix (endocervix and ectocervix) 
on the lower part of the figure
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F I G U R E  4 Regulation	of	DC	
distribution	function	in	the	FRT	by	
menopausal status. This diagram shows 
key DC functions that are modified after 
menopause. Specific functions decline or 
increase after menopause as indicated. 
Rectangles indicate no change; those 
containing a question mark (?) indicate 
that changes are unknown. Effects are 
shown for the endometrium on the upper 
part and for the cervix (endocervix and 
ectocervix) and vagina on the lower part 
of the figure
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A	functional	characteristic	of	DCs	is	the	induction	of	CD103	ex-
pression	on	naïve	CD8+	T	cells,	suggesting	that	DCs	have	the	poten-
tial	to	control	TRM	presence	in	tissues	(Yu	et	al.,	2013).	This	ability	
has	been	demonstrated	with	human	lung	and	FRT	DCs	(Duluc	et	al.,	
2013;	Rodriguez-	Garcia	et	al.,	2018;	Yu	et	al.,	2013).	Importantly,	this	
function is regulated by menopausal status in the endometrium, with 
postmenopausal DCs showing enhanced ability to induce CD103 ex-
pression	on	naïve	CD8+	T	cells	when	compared	to	premenopausal	
DCs	(Rodriguez-	Garcia	et	al.,	2018).	The	mechanism	responsible	for	
CD103	upregulation	on	CD8+	T	cells	is	at	least	partly	related	to	TGFβ 
signaling in a contact- dependent manner (Rodriguez- Garcia et al., 
2018;	Yu	et	al.,	2013).	 Interestingly,	 this	 functional	modification	 is	
highly	 selective,	 as	 it	was	not	 associated	with	 changes	 in	FRT	DC	
capacity to induce T- cell proliferation after menopause (Rodriguez- 
Garcia	et	al.,	2018).	Potential	menopausal	regulation	of	DC	function	
in	other	FRT	compartments	remains	unknown	(Figure	4).

Macrophages	 constitute	 10%–	20%	 of	 leukocytes	 in	 the	 FRT,	
with phenotypic differences between upper and lower tract (Givan 
et	al.,	1997;	Trifonova	et	al.,	2014).	In	the	lower	FRT,	macrophages	
express high CD14 levels, while in the endometrium, macrophages 
express low levels of CD14, with a subset of endometrial macro-
phages	expressing	CD163	(Jensen	et	al.,	2012;	Quillay	et	al.,	2015;	
Shen	 et	 al.,	 2009).	While	 it	 is	well	 known	 that	macrophage	num-
bers increase in the endometrium prior to menstruation (Evans & 
Salamonsen, 2012), little is known about changes after menopause. 
An	 early	 study	 reported	 significant	 differences	 in	 macrophage	
numbers between pre-  and postmenopausal women in the fallo-
pian	 tubes	 (Safwat	 et	 al.,	 2008),	 but	whether	 that	 also	 applies	 to	
the endometrium or lower tract, or whether macrophage functional 
changes occur is unknown.

Functional	changes	in	DC	and	macrophage	throughout	the	FRT	
with aging, and the potential consequences for immune protection 
and induction of mucosal adaptive responses remain unknown.

7  |  CHANGES IN OTHER FRT CELL S

7.1  |  NK cells

	Natural	 Killer	 (NK)	 cells	 represent	 10–	30%	 of	 FRT	 immune	 cells	
(Givan	et	al.,	1997;	Hunt,	1994;	King	et	al.,	1989;	Wira	et	al.,	2005).	
Their numbers in the endometrium change during the menstrual 
cycle,	peaking	prior	to	menstruation	(Givan	et	al.,	1997;	Hunt,	1994;	
King	et	al.,	1989;	Wira	et	al.,	2005).	NK	cell	phenotype	varies	within	
the	 FRT.	 In	 the	 upper	 FRT,	NK	 cells	 are	CD56	 BRIGHT, CD16- , and 
CD94+,	whereas	 in	 the	 lower	 FRT,	NK	 cells	 are	CD56	 DIM	CD16+	
and	CD94-		(Eriksson	et	al.,	2004;	Kopcow	et	al.,	2010;	Mselle	et	al.,	
2007).	FRT	NK	cells	are	essential	for	immune	defense	against	patho-
gens	such	as	HIV	(Mselle	et	al.,	2009;	Quillay	et	al.,	2016),	control	of	
FRT	tumors	(Degos	et	al.,	2019),	and	tissue	remodeling	for	reproduc-
tion	(Jabrane-	Ferrat,	2019)	via	their	cytotoxic	effector	functions	and	
cytokine and chemokine secretion.

The	 extent	 to	 which	 phenotype	 and	 numbers	 of	 FRT	 NK	 cells	
change	 in	 the	 postmenopausal	 FRT	 remains	 unknown;	 however,	
blood	NK	 cells	 undergo	 profound	 changes	with	 aging	 (Hazeldine	&	
Lord,	2013).	Blood	NK	cell	subsets	change	with	age,	with	decreased	
CD56BRIGHT	cells,	 increased	CD56-	CD16+	cells	 (Solana	et	al.,	2014),	
and	 increased	 CD57	 expression,	 a	 marker	 of	 differentiated	 NK	
cells (Gayoso et al., 2011). The percentage and number of blood 
CD3-	CD56+	 NK	 cells	 increases	 with	 age	 (Le	 Garff-	Tavernier	 et	 al.,	
2010;	Lutz	et	al.,	1950,	2005),	but	is	accompanied	by	reduced	prolifer-
ation	capacity	(Solana	et	al.,	1999)	suggesting	accumulation	as	a	result	
of	increased	longevity	(Zhang	et	al.,	2007).	NK	cells	in	postmenopausal	
women retain their sensitivity to sex hormones, since estradiol en-
hances	proliferation	of	blood	NK	cells	(Sho	et	al.,	2017).	With	respect	
to cytotoxicity, the effects of age are unclear in that studies report de-
creased	(Hazeldine	et	al.,	2012),	increased	(Kutza	&	Murasko,	1994),	or	
no	change	(Almeida-	Oliveira	et	al.,	2011)	in	cytotoxic	capacity	of	blood	
NK	cells.	NK	cells	from	younger	women	upregulate	IFNγ,	MIP-	1α, and 
IL-	8	to	a	greater	extent	than	cells	from	older	women	(Borrego	et	al.,	
1999;	Krishnaraj	&	Bhooma,	1996;	Mariani,	Meneghetti,	et	al.,	2002;	
Mariani	et	al.,	2001;	Mariani,	Pulsatelli,	et	al.,	2002;	Solana	et	al.,	1999).

7.2  |  B cells

The	density	and	distribution	of	B	cells	varies	within	 the	premeno-
pausal	 FRT,	with	 IgA-	,	 IgG-	,	 or	 IgM-	producing	 cells	 predominantly	
found in the vagina, ectocervix, endocervix, and fallopian tubes, but 
minimal	numbers	 in	 the	endometrium	and	ovary	 (Crowley-	Nowick	
et	al.,	1995;	Hurlimann	et	al.,	1978;	Kelly	&	Fox,	1979;	Kutteh	et	al.,	
,1988,	1998;	Rebello	et	al.,	1975;	Mariani	et	al.,	2002).	 In	 the	pre-
menopausal	endometrium,	during	secretory	phase,	B	cells	form	the	
central core of endometrial lymphoid aggregates surrounded by 
CD8+	T	cells	(Yeaman	et	al.,	1997),	but	are	undetectable	in	smaller	
aggregates present during the proliferative phase of the menstrual 
cycle.	In	postmenopausal	women,	aggregates	are	absent	and	B	cells	
sparsely distributed throughout endometrial tissue.

Endometrial	 secretions	 contain	 IgG	 and	 IgA,	 with	 IgG	 pres-
ent	at	higher	 levels	(Schumacher	et	al.,	1980).	 IgA1	and	IgA2	are	
present	 in	approximately	equal	proportions	 (Kutteh	et	al.,	1996).	
Endometrial	 secretion	 of	 IgA	 peaks	 shortly	 before	 ovulation	
(Kutteh	et	al.,	1996;	Schumacher	et	al.,	1973,	1977,	1980),	while	
stromal	 IgA	 peaks	 at	 ovulation	 (Kelly	&	 Fox,	 1979).	 IgA	 and	 IgG	
levels in cervical mucus also vary with stage of the menstrual cycle 
and	 are	 lowest	 at	midcycle	 (Schumacher	 et	 al.,	 1973).	 However,	
in	 other	 studies,	 IgA	 and	 IgG	were	 suppressed	 during	 secretory	
phase	 (Keller	 et	 al.,	 2007).	 There	 was	 no	 difference	 in	 IgG	 and	
IgA	 levels	 in	cervico-	vaginal	secretions	between	premenopausal,	
postmenopausal,	 and	 pregnant	 women	 (Jilanti	 &	 Isliker,	 1977).	
In	 postmenopausal	 vaginal	 secretions,	 IgG	 and	 IgA	 levels	 were	
reduced by twofold and 15- fold, respectively, following hyster-
ectomy	(Jilanti	&	Isliker,	1977),	demonstrating	significant	endome-
trial	contributions	to	FRT	IgG	and	IgA	levels.
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Immunoglobulins	present	in	FRT	secretions	are	essential	com-
ponents	 of	 immune	protection.	 IgG	 and	 IgA	neutralize	 incoming	
pathogens	and	prevent	 their	entry	 into	 target	cells	 (Lamm	et	al.,	
,1978,	1995;	Nedrud	et	al.,	1987).	For	example,	anti-	HIV	IgM	re-
duces infection of DCs in cervical- vaginal explant tissues (Devito 
et	al.,	2018)	while	levels	of	anti-	HIV	gp160	IgG	antibodies	in	human	
CVL	samples	correlate	with	anti-	HIV	activity	and	reduce	HIV	 in-
fection of target cells in vitro (Ghosh et al., 2010). Immunoglobulins 
also	bind	to	mucus	in	FRT	secretions	via	mucin	proteins	and	trap	
pathogens	within	 it.	Anti-	HSV-	1	 IgG,	via	 its	Fc	component,	traps	
HSV- 1 in human cervical- vaginal mucus thus preventing contact 
with	 target	cells	 (Wang	et	al.,	2014).	 Intriguingly,	while	both	 IgA	
and IgG bind to cervical mucus, only IgG binds to cervical- vaginal 
mucus	(Fahrbach	et	al.,	2013).	Vaccination	at	peripheral	sites	elic-
its	 antibody-	mediated	mucosal	protection	 in	 the	FRT.	For	exam-
ple, vaccination against HPV16 in premenopausal women leads to 
increased titers of anti- HPV IgG in cervical secretions that varies 
with	menstrual	cycle	stage	 (Nardelli-	Haefliger	et	al.,	2003).	How	
aging affects the contribution of immunoglobulin- mediated pro-
tection	in	the	FRT	is	unknown.

8  |  CONCLUSIONS

The	mucosal	immune	system	in	the	human	FRT	has	uniquely	evolved	
to meet the challenges of an external environment as well as sup-
port	 new	 life.	 Across	multiple	 anatomical	 compartments,	mucosal	
immunity is precisely regulated to protect against sexually transmit-
ted pathogens while accommodating allogeneic spermatozoa and 
an immunologically distinct semi- allogeneic fetus. While much is 
known	about	the	mucosal	immune	system	in	the	FRT	during	the	re-
productive years, little is known about the changes that occur after 
menopause	as	women	age.	Limited	studies	into	innate	and	adaptive	
immune	functions	in	the	FRT	following	menopause	indicate	that	im-
mune protection by epithelial cells, stromal fibroblasts, T cells, and 
DC	in	the	FRT	are	compromised,	with	limited	compensation.	Much	
remains to be learned about the impact of age following menopause 
on	 immune	 protection	 in	 the	 FRT.	 Understanding	 the	 impact	 of	
age	on	mucosal	 immune	protection	 in	 the	FRT	 is	crucial	given	 the	
challenges women face in terms of urogenital infections, exposure 
to sexually transmitted pathogens, and gynecological cancers that 
threaten the lives of women worldwide. This review emphasizes the 
need for additional studies to provide a foundation for the devel-
opment of age- appropriate therapeutic interventions that increase 
protection in older women, the fastest growing segment of the pop-
ulation in developed countries.
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