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Abstract: Microarray gene expression profi ling has been used to distinguish histological subtypes of renal cell carcinoma 
(RCC), and consequently to identify specifi c tumor markers. The analytical procedures currently in use fi nd sets of genes 
whose average differential expression across the two categories differ signifi cantly. In general each of the markers thus 
identifi ed does not distinguish tumor from normal with 100% accuracy, although the group as a whole might be able to do 
so. For the purpose of developing a widely used economically viable diagnostic signature, however, large groups of genes 
are not likely to be useful. Here we use two different methods, one a support vector machine variant, and the other an 
exhaustive search, to reanalyze data previously generated in our Lab (Lenburg et al. 2003). We identify 158 genes, each 
having an expression level that is higher (lower) in every tumor sample than in any normal sample, and each having a 
minimum differential expression across the two categories at a signifi cance of 0.01. The set is highly enriched in cancer 
related genes (p = 1.6 × 10 – 12), containing 43 genes previously associated with either RCC or other types of cancer. Many 
of the biomarkers appear to be associated with the central alterations known to be required for cancer transformation. These 
include the oncogenes JAZF1, AXL, ABL2; tumor suppressors RASD1, PTPRO, TFAP2A, CDKN1C; and genes involved 
in proteolysis or cell-adhesion such as WASF2, and PAPPA.
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1. Introduction
Renal-cell carcinoma (RCC) is the most common kidney neoplasm, comprising 3% of all adult malig-
nancies (Jemal et al. 2003). Its incidence has increased steadily over the past 20 years in the United States 
and Europe; 35,000 new cases and 12,000 deaths now occur annually in the United States alone. Histo-
pathologically, about 60–70% of RCC is clear-cell type (cc-RCC). Small and localized tumors are gener-
ally asymptomatic; pain, fl ank mass, or hematuria, being generally associated with locally advanced or 
metastatic tumors. Diagnosis is confi rmed by imaging, including X-ray and computed-tomography. The 
5-year survival rate of metastatic RCC is less than 10%. Moreover, RCC is one of the most therapy-
resistant carcinomas, responding very poorly or not at all to radiotherapy, hormonal therapy, and chemo-
therapy. All these facts emphasize the importance of developing early diagnostic markers.
Microarray gene expression profi ling has been used by ourselves (Lenburg et al. 2003) and others 
(Young et al. 2001; Boer et al. 2001; Gieseg et al. 2002; Young et al. 2003; Yamazaki et al. 2003; 
Lenburg et al. 2003; Higgins et al. 2003; Takahashi et al. 2003; Sultmann et al. 2005; Jones et al. 2005) 
to distinguish the various histological subtypes of RCC, and consequently to identify novel tumor 
markers. The general procedure identifi es markers in accordance with average differential expression 
level (fold change) and/or some level of signifi cance as measured by the t-test. Lenburg et al. used a 
3-fold difference in expression and a level of signifi cance of 0.03.

Here, we reanalyze the data of Lenburg et al. using a rigorous exhaustive search approach (Dalgin 
and DeLisi, 2005), and a more general, but approximate, approach based on support vector machines. 
We identify, by exhaustive search, 158 genes each of which (i) is consistently over- or under-expressed 
in all tumors and (ii) has a minimum expression level difference at better than 99% confi dence. Sixty 
four of these markers were not identifi ed previously (Lenburg et al. 2003). The set is highly enriched 
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in cancer related genes (p = 1.6 × 10–12), containing 
43 previously associated with either RCC or other 
types of cancer.

Among the set of genes that we identify as being 
related to RCC, some were known from previous 
studies (e.g. ATP6V1B1, EGLN3, SLC25A5, 
TUBB, ALDOA); others had never before been 
associated with RCC, but have been identifi ed with 
other cancers (e.g. ABL2, JAZF1, TFAP2A). We 
identifi ed biological roles of marker genes, and 
found pathways that are dominantly up-regulated 
(83% of immune response genes, all amino acid 
transport genes) or down-regulated (all cation and 
anion transport genes, all OXPHOS genes) which 
are related to kidney function (cation/anion trans-
port genes) and RCC physiology (OXPHOS). 
Finally we constructed a model for RCC through 
functional classifi cation of genes related to changes 
in cellular processes that are critical to initiation 
and progression of cancer.

2. Methods

2.0. Background
Briefl y, (Lenburg et al. 2003) hybridized total RNA 
isolated from 9 clear-cell renal tumors and adjacent 
normal tissue (18 samples) to Affymetrix U133A 
and U133B arrays containing approximately 
45,000 probe-sets. Of these, 27,609, representing 
20,192 unigenes, gave a signal above background. 
Differentially expressed genes were identifi ed by 
t-test and fold change. The average fold change 
was calculated as log2 (C/N) where C and N repre-
sent the average of tumor and normal expression 
values, respectively. Some 1706 probe-sets (1471 
unique genes) were more than three-fold changed 
in renal tumors and had a p-value <0.03. Of these, 
113 had been previously identifi ed in three or more 
studies (Young et al. 2001; Boer et al. 2001; 
Takahashi et al. 2001; Gieseg et al. 2002). An 
obvious limitation of drawing conclusions from 
such a study is the small number of samples per 
category with a relatively large number of potential 
markers. We discuss this in detail below.

2.1. Identifying single gene biomarkers 
by exhaustive search
Here we identify single genes that correctly clas-
sify every sample, by direct comparison of differ-
ential expression in every tumor-normal pair 

(92 comparisons per gene × 20,192 genes). A gene 
whose level of expression in every normal sample 
is always either greater or less than its level in 
every tumor sample, is ranked according to the 
smallest expression level distance across the two 
categories (Perl script is available at http://visant.
bu.edu/skirca/script.pl). The smallest separation 
for a down (up)-regulated gene is the difference 
between the maximum (minimum) expression 
level in the tumor samples, and the minimum 
(maximum) expression level in the normal 
samples. In particular defi ne Em,i as the expression 
level of the ith gene in the mth tumor sample and 
let En,i be similarly defined for the normal 
samples. The minimum distance for the ith gene 
is defi ned as

 di = min |{Em,i – En,i}| (1)

provided all differences have the same sign, where 
m and n range independently over all samples.

We identifi ed 478 probes, corresponding to 466 
unique genes, that separate all tumor from all 
normal tissue. Each gene was then tested for 
signifi cance as follows.

For a given gene we randomly selected 9 tumor 
expression values from all tumor expression 
values (20,192 genes × 9 tumor samples = 181,728 
expression values), and 9 normal values from all 
normal expression values, subject to the constraint 
that all tumor values are greater (less) than all 
normal values. We calculated the minimum 
distance and repeated the procedure 500 times (to 
mimic random selection of 466 genes) to obtain 
a distribution of minimum distances (Figure 1(a)). 
The procedure was repeated 200 times to estimate 
the dispersion in the parameters of the sampling 
distribution. Overall, we obtained skew minimum 
distance distributions with an average mean 
minimum distance 0.0425 (standard deviation 
over 200 simulations = 0.00261) and average 
standard deviation 0.05768 (standard deviation 
over 200 simulations = 0.00531) across all simu-
lations. The p-value for each actual minimum 
distance (d) was calculated using the total random 
data (500 × 200 = 105) as probability of fi nding 
≥d randomly (P(drandom ≥d). Of the initial set of 
466 genes 158 were found to have signifi cant 
minimum distances >0.28 with p-value ≤0.01 
(Figure 1(b)). We refer to these as signifi cant 
single gene biomarkers or simply markers.
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Figure 1. (a) The minimum distances of randomly formed expression profi les in four simulations are shown as representative of other simula-
tions. The x-axis is the minimum distance and y-axis is the number of genes having that distance. (b) The distribution of minimum distances 
for 466 genes. 158 of these genes have minimum distances with p-values ≤0.01, hence identifi ed as signifi cant single gene biomarkers.

2.2. SVM Recursive feature elimination
An alternative strategy for selecting markers is to 
use statistical feature selection techniques to rank 
genes. This can be done in a number of ways. Here 
we use a support vector machine (SVM) (Vapnik, 

1998). which has been used effectively in other 
contexts (Holloway et al. 2005; Holloway et al. 
2006a; Holloway et al. 2006b), and which has a 
well established statistical framework. The idea is 
again to fi nd genes whose distance between tumor/
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normal sample expression values is in some sense 
maximum. Guyon et al. (Guyon et al. 2002) used 
a similar method to identify genes that stratify 
leukemia (Golub et al. 1999), and for distinguishing 
between colon cancer and normal tissue (Alon 
et al. 1999), by dividing the data sets into two equal 
halves for training and testing. They recursively 
discarded the features (genes) with smallest weight 
(see below for detailed discussion) to select genes 
that separate the two classes at a specifi ed accuracy. 
For leukemia they discovered 2 genes that yield 
zero leave-one-out error. For colon cancer, they 
obtained 98% accuracy using 4 genes. The main 
difference here is the introduction of a procedure 
that does not assume the highest ranked gene is 
necessarily more useful than genes that rank 
slightly lower.

An SVM is an effective method for making 
predictions on many types of data including hand-
written text, protein sequence, DNA sequence, and 
microarray profi les, when the number of data attri-
butes for each sample is very large. Briefl y, the 
method seeks to fi nd a maximal separation between 
two training sets (Sholkopf and Smola, 2002), a 
positive set, in this case tumor samples; and a 
negative set, normal samples. Each sample is 
labeled by a set of attributes, here gene expression 
levels, and hence can be represented by a vector 
that can have tens of thousands of components. 
The separation between positive and negative 
vectors (samples) is achieved through an optimiza-
tion which fi nds a hyperplane bisecting the two 
sets. The hyperplane must be as distant as possible 
from the two sets thus creating a maximal-margin 
separator (Holloway et al. 2005).

Most of the attributes are irrelevant to separa-
tion. The SVM algorithm can be used to rank the 
importance of the various attributes by a method 
referred to as recursive feature elimination (RFE), 
and thus identify those genes that are most discrim-
inatory. An important SVM output is a vector of 
learned weights; each component of the vector 
being a weight of an attribute: the higher the weight 
the more useful in separating positives from nega-
tives. The original SVM-RFE algorithm trains an 
SVM, calculates the weight of each attribute, and 
discards a specifi ed number of low weight attri-
butes (Guyon et al. 2002). The process is repeated 
until the desired number of attributes remains. 
Typically half the attributes are removed at each 
iteration until some threshold is reached after 
which only one at a time is removed.

The procedure employed here is different in that 
the entire SVM-RFE ranking is performed many 
times within a leave-one-out cross validation. 
Briefly, the procedure is as follows. Prior to 
applying the SVM, we use a t-test with a loose 
p-value threshold of 0.1 to fi lter the large majority 
of statistically irrelevant genes, leaving 10,479 
genes for further analysis. We then perform SVM-
RFE on n-1 samples, save the results, and repeat 
n times. Thus for the renal cancer dataset with 
n = 18 samples we ranked the performance of each 
gene 18 times (18 cross-validations). Intuitively, 
genes that are repeatedly ranked near the top are 
robust to changes in the training set and are consid-
ered more reliable. The fl uctuation of gene choice 
during cross validation can be seen more clearly 
when examining a list showing the highest ranked 
gene on each training set of the leave-one-out 
procedure. On the 18 possible training sets, 12 
different genes were given a rank of 1 at least once 
(data not shown). Because gene rank can change 
markedly with dataset, choosing consistent genes 
increases the chances that the chosen genes are 
truly reliable markers. This highlights the need to 
choose genes that are consistent across samples, 
as opposed to genes whose average value differs 
signifi cantly across the two categories.

To derive our fi nal gene ranking, we arbitrarily 
selected the top 20 genes from each ranking and 
counted the number of times each gene appears in 
this combined set. The maximum occurrence of 18 
would indicate a very stable biomarker; i.e. one 
that was chosen by each training set. The fi nal list 
represents genes that are stable across sample sets 
and can thus be considered reliable biomarkers.

3. Results

3.1. Single gene markers

Pathway/process enrichment
Of the 158 markers, 73 are annotated in a KEGG 
pathway and another 42 are in a GO process at 
level 5 or higher. The pathways/processes with the 
highest number of classifi ers are shown in Table 1. 
The categories are biologically plausible, having 
already been implicated in cancer transformation 
(e.g. OXPHOS, apoptosis, cell adhesion, MAPK 
signaling) or being potentially important (calcium 
signaling pathway, fatty acid metabolism and 
cation transport) in transformation.



69

Identifi cation and Characterization of Renal Cell Carcinoma Gene Markers

Cancer Informatics 2007:3

Marker Signifi cance
We (Lenburg et al. 2003) previously identifi ed 1471 
genes that were more than three-fold changed in 
renal tumors with a p-value <0.03. The relationship 
between minimum distance determined by exhaus-
tive search, and the average fold change, is shown 
in Figure 2. Of the 158 markers (indicated in red) 
94 (59%) have changed at least 3 fold in tumor with 
a t-test p-value <0.03, and hence overlap with the 
1471 genes identifi ed by (Lenburg et al. 2003).

There are at least two reasons to expect that the 
entire set of markers, including the 64 not previ-
ously identifi ed, are likely to be useful signatures. 
The fi rst, as indicated above, is that they are not 
only uniformly over or under-expressed, but the 
magnitude of the minimum differential expression 
is statistically signifi cant, taking into account of 
the small sample size (see Section 3.3. for further 
analysis). Second, the set (158) and subset (64) are 
both highly enriched in cancer associated genes. 
In particular, of the 158 markers, 43 (27.2%) have 
been previously reported to be cancer associated 
as indicated in the Genetic association database or 
OMIM. In addition, 15 of the 64 are found to be 
cancer associated (23.4%). In comparison with the 
OMIM database, which includes 1351 cancer 
related genes (8.1%) out of 16603 total genes, 158 
classifi er genes are enriched 3.3 times (Fisher’s 
exact test p-value = 1.6 × 10–12 ) with the cancer 
related genes; and 64 genes are enriched 2.9 times 
with p = 1. 6 × 10–4. Both results indicate that the 
enrichment of 158 genes and 64 genes with cancer 
genes is signifi cant with respect to OMIM.

We also performed simulations by randomly 
selecting 158 genes from OMIM, and recorded the 
percentage of cancer associated genes. We tossed 
1000 times, obtained a random distribution, and 
repeated the entire procedure 10 times to estimate 
the dispersion of the parameters of the 10 distribu-
tions. We obtained an average of 6.8% cancer 
related genes with a standard deviation 1.9 (The 
dispersion of both parameters is less than 2%). The 
actual percentage for 158 genes, 27.2%, is 10.7 
standard deviations away from the random mean. 
We performed the same simulations by drawing 
randomly 64 genes, which yielded an average of 
6.85% cancer related genes with a standard 
deviation 3.1. Hence, the actual percentage for 64 
genes (23.2%) is 5.3 standard deviations away from 
the random mean. These results confi rm that the 
percentage of cancer related marker genes are 
signifi cantly different from what would be obtained 
randomly. Of the genes identified previously 
(Lenburg et al. 2003) 220 (16%) are cancer associ-
ated; i.e. the 64 new genes are enriched nearly 50% 
more than the original set.

3.2. Identifying biomarkers by SVM
The number of occurrences of the genes across the 
18 top 20 rankings is given as Supplementary 
Figure 1. Each gene is shown by its rank (the 
highest ranked gene, i.e. gene #1, occurs in the top 
20, 17 out of 18 times; the number 2 ranked genes 
has 16 occurrences, the genes ranked 3 and 4 have 
14 occurrences etc). Examination of the genes most 

Table 1. Top ranked pathways with percentage of signifi cant classifi er genes.

Pathway Number of  Number of classifi er 
 classifi er genes genes/number of genes
  in the pathway (%)
Glycolysis 5 12.5
Antigen processing 4 11.76
Oxidative phosphorylation 5 3.36
Calcium signaling pathway 4 3.13
G-Protein coupled signaling 4 2.99
MAPK signaling pathway 4 2.06
Immune response 14 1.71
Fatty acid metabolism 4 1.53
Cation transport 6 1.19
Apoptosis 6 0.98
Intracellular transport 6 0.95
Regulation of transcription 12 0.58
Cell adhesion 4 0.56
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frequently ranked in the top 20 reveals that they can 
all individually distinguish tumor from normal tissue 
with no error. More importantly, these are the genes 
that are most stable over different choices of training 
set (18 training sets each lacks one sample), 
suggesting that they would be the most likely to make 
accurate predictions in unseen tissue samples.

Genes ranked in the top 20 (Table 2) were all 
identifi ed as classifi ers by the exhaustive search 
(Section 2.1), 17 with a p-value ≤0.01; i.e. 7/20 
(85%) are in our set of 158 markers. Twelve of the 
genes were previously identified by Lenburg 
et al., two genes by four or more other RCC studies 
as well. HUGO (The Human Genome Organiza-
tion) gene symbol (http://www.gene.ucl.ac.uk/
nomenclature/) is used to represent the genes in 
Table 2 and throughout the paper.

Of the 20 genes, 7 had not been previously 
identifi ed as RCC related, of those 5 are identifi ed 

by both methods, and 2 of the fi ve are implicated 
in other cancers.

3.3. Small sample size
Although we confi ned ourselves to perfect separa-
tors with minimum separation distances that are 
highly signifi cant, human polymorphism makes it 
unlikely that perfect separation will continue to 
hold as the population size increases. In an effort 
to gain some insight into this effect we analyzed 
a breast cancer data set (Ma et al. 2003), which 
includes 32 normal samples and 53 breast cancer 
samples (30 ductal carcinoma in situ and 23 inva-
sive ductal carcinoma samples). Raw data is avail-
able for 1940 genes which were found to be 
differentially expressed between normal and 
cancer stages by linear discriminant analysis (Ma 
et al. 2003).

Figure 2. The relationship between minimum distance and average fold change (log2(C/N)). Average fold change was previously calculated 
by Lenburg et al. and the signifi cance was found by t-test. Here, C and N denotes the average expression values in tumor and normal 
samples, respectively. Signifi cant markers (p-value ≤0.01, 158 genes) are indicated as red. 64 genes are shown in between the vertical 
arrows. These genes have an average fold change less than 3 hence were not identifi ed as previously differentially expressed. Yet, these 
genes have been identifi ed as new potential biomarkers by the current algorithm.
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Table 2. Top 20 ranked genes by SVM and their signifi cance as classifi er by exhaustive search.

SVM rank Gene p-value (min dist) Min dist rank Related disease
1 ALDOB** 6.00E-05 23 RCC
2 NDUFA4 2.00E-05 8
3 TFAP2B* 0 1 tumor suppressor
    candidate, melanoma
4 TCTE1L 0.00275 93
5 LOC57821 2.00E-05 11
6 GABARAPL3*† 0.02892 239
7 SLC38A1* 7.00E-05 27
8 POLDIP2 0.00456 124
9 DACH1 0.00033 43
10 GABARAPL1** 2.00E-05 9 RCC
11 HLA-DPA1* 5.00E-05 16 Melanoma
12 ERBB4* 0 2 Breast, ovarian
    cancer
13 HIG1 0.00362 108 hypoxia induced
14 EHD2* 0.00169 74
15 CD81 0.00013 38 Hepatoma
16 PRG-3* 0 3
17 NPHS1* 6.00E-05 19 Non cancerous
    kidney diseases
18 C1QA* 0.00379 112
19 ZNF697† 0.01543 191
20 PIGR*† 0.38576 432
†: minimum distance p-value >0.01
** identifi ed by four or more RCC studies (Young et al. 2001; Boer et al. 2001; Takahashi et al. 2001; Gieseg et al. 2002; 
Lenburg et al. 2003)
* identifi ed by Lenburg et al.

We drew random groups of 18 (9 normal, 9 
tumor) and repeated the analysis of 2.1. The 
significant markers were then tested on the 
remaining samples. The entire procedure was 
repeated 100 times. Denoting tumor samples as 
positives and normal samples as negatives, the 
following performance measures were used for the 
classifi er genes: sensitivity = TP/(TP+FN); speci-
fi city = TN/(TN+FP) and positive predictive value 
(PPV) = TP/(TP+FP) where TP stands for true 
positives, FP for false positives, TN for true nega-
tives and FN for false negatives.

We fi rst compared the performance of the clas-
sifi er genes that have signifi cantly high minimum 
distances (p-value ≤0.05) with all classifiers 
(Table 3). The former group performs only slightly 
better (The simulations performed on different 
initial sample sizes confi rmed this conclusion, data 
not shown) probably because the starting set (1940 
genes) in breast cancer is pre-selected by discrim-
inant analysis. The results suggest that the markers 
inferred using sample numbers comparable to RCC 
would still provide a very high degree of separa-
tion, even when more samples are used.

More direct testing was carried out by selecting 
different initial number of samples to compare the 
performance of the method with 18 samples, to other 
samples sizes, ranging from 8 (4 normal, 4 tumor) 
to 24 samples (12 normal, 12 tumor). In each case, 
we recorded the number of classifi ers, number of 
signifi cant classifi ers (p-value ≤0.05) and the perfor-
mance of the significant classifiers on the test 
samples (samples not selected initially to identify 
classifi er genes). The number of signifi cant genes 
were projected (Supplementary Figure 2(a)) based 
on the results of breast cancer simulations (inset). 

Table 3. Performance of classifi ers on the test samples 
in breast cancer dataset with 18 initial samples.

 Classifi ers with All  
 p-value ≤0.05 classifi ers
% correctly  88% 82%
classifi ed samples
% misclassifi ed 11%  18%
samples
Sensitivity 0.87 0.8
Specifi city 0.92 0.85
PPV 0.96 0.91
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Overall, the number of classifi ers and signifi cant 
classifi ers decreases as the number of samples 
increases. The performance of signifi cant breast 
cancer markers (p ≤ 0.05) is shown in (b) and (c). 
Percentage of correctly classifi ed samples increases 
with the sample size, having a plateau near 18 
samples (b). The values for percentage of misclas-
sifi ed samples and unclassifi ed samples obtained 
for 18 samples are very close to >20 samples, but 
much better with respect to lower sample sizes. 
Sensitivity increases with the sample size, but 
specifi city and PPV of the signifi cant classifi ers are 
independent of the number of samples. Hence, in 
all cases, the signifi cant classifi ers perform well on 
the test samples in terms of sensitivity and PPV 
irrespective of how many samples were used to 
select those classifi ers. Overall, the performance of 
classifi ers obtained with 18 samples is better than 
obtained with smaller number of samples (12, 14 
or 16) and almost the same with larger number of 
samples (≥20 samples).

3.4. RCC substructure
We organized the markers into genetic networks 
using hierarchical clustering (HCL) and principal 
component analysis (PCA). HCL gives the 
distances between nodes (samples or genes) and 
reveals the substructure within nodes; PCA identi-
fi es the primary axes upon which the samples vary 
and how the samples are distributed along these 
axes based on the similarity between their expres-
sion profi les.

3.4.1. HCL
Markers and samples were clustered by average-
linkage hierarchical clustering (Figure 3(a)). Each 
marker is represented as a vector of normalized 
expression values across all samples and Euclidean 
distance between vectors was computed. An 
analogous procedure was used for samples. The 
distance between two clusters is defi ned as the 
distance between pairs of nodes, averaged over all 
pairs, each pair consisting of one node from each 
group. At each stage of clustering, the two clusters 
for which the distance is minimum, are merged. In 
the resulting dendrograms for samples (top) and 
genes (left), the height of vertical/horizontal lines 
are proportional to the degree of similarity between 
samples/genes.

The expression values are normalized for each 
gene by dividing every expression value to the 

mean of normal values for that gene and then 
transforming those values to logarithmic values 
(log2 transformation) to emphasize up or down-
regulation with respect to normal expression 
values. The expression values are color coded such 
that red denotes up-regulation with respect to the 
mean of normal values, green denotes down-
regulation and black denotes the mean of normal 
values. Two big clusters of genes are revealed: 
down-regulated genes in RCC (upper half) and up-
regulated in RCC (bottom half) with respect to the 
normal samples, together with subclusters within 
these groups. We didn’t examine these subclusters, 
but instead analyzed the expression profi les of 
groups of genes that are in the same pathway in 
Section 4.1. The markers cluster the samples well 
into two major groups (Fig. 3a, upper dendrogram). 
It is clear that tumor samples are separated into 
two major sub-clusters according to the grade. The 
only exception is T005 sample (grade I) which 
clusters with high grade samples for which we 
cannot provide a satisfactory biological explana-
tion. Within the normal samples, N032 and N035 
have expression profi les most similar to tumor 
samples. Clustering the data with PCA supports 
these observations as we now explain.

3.4.2. PCA
PCA was applied to the 18 row × 158 column 
matrix of expression values, normalized as 
explained above. The eigenvectors of the fi rst three 
eigenvalues accounted for 86.9% of the variation 
(81.5, 5.4 and 2.2, respectively) in the data. Figure 3 
(b) shows the projection of the samples onto these 
fi rst three principal components (PCs). The fi rst 
PC separates normal samples from tumor samples 
while second PC separates tumor samples with low 
grade (T3, T023, T001, T2 and T4) from those of 
high grade (T011, T032, T035) with the exception 
of T005 sample, as observed with HCL. The third 
principal component separates normal samples 
N032 and N035 from the other normal samples. 
Two of the tumor samples, T3 and T2, are separated 
from other tumors along the second and third axes, 
respectively. Both samples are grade II tumors. As 
expected, PCA suggests that there is more variation 
within tumor samples than within normal samples, 
which points to distinct tumor subgroups, refl ecting 
the heterogeneity in cancer phenotype and may 
have implications for disease progression and 
response to different therapies.
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The separation of N032 and N035 from other 
normal samples was noted previously (Lenburg et al. 
2003) by clustering samples using all 20,192 genes. 
They observed that N035 clustered with tumor 
samples; however, we fi nd that it clusters with 
normal samples as it should. The difference in 
results refl ects our use of markers for clustering. 
The N032 and N035 profi les are more similar, than 
other normals, to tumor sample profi les (Figure 3(a)), 
but still they are more similar to normals than to 
tumor. Both samples are from RCC patients with 
grade III tumors, hence there is a possibility that 
these samples, which were classifi ed as normal by 

standard histology, are actually a mixture of normal 
and cancerous tissue.

4. Discussion

4.1. Pathway associations of markers
Biological roles of 158 markers (Supplementary 
Table 1) were determined using DAVID (Dennis 
et al. 2003) and MatchMiner (Bussey et al. 2003) 
databases. 115 (73%) of the markers (Table 4) are 
annotated in a KEGG pathway or a GO process at 
level 5 or higher. Genes that have been identifi ed 

(a)
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as having noteworthy differential gene expression 
in four or more RCC studies (Young et al. 
2001; Boer et al. 2001; Takahashi et al. 2001; Gieseg 
et al. 2002; Lenburg et al. 2003) are indicated 
with **. The 64 genes implicated in RCC in this 
study that were not reported by Lenburg et al. are 
indicated in italic.

Disease association was obtained from OMIM 
and the Genetic association databases. As summa-
rized in Table 4, 43 are cancer related. The relation 

between the cancer associated markers previously 
identified—as well as those identified by this 
study—and critical physiological changes associ-
ated with tumor development (Hanahan and 
Weinberg, 2000) is also shown in Table 4 (third 
column, also see Figure 5). In particular column 3 
includes (1) genes that were previously implicated 
in cancer e.g. tumor suppressors and oncogenes 
and (2) genes that were not previously found to be 
associated and whose role in transformative 

Figure 3. (a) Clustering of samples and 158 signifi cant markers using hierarchical clustering. The expression values are normalized for each 
gene by dividing every expression value to the mean of normal values for that gene and then transforming those values to logarithmic values 
(log2) to emphasize up or down-regulation with respect to normal expression values. Black represents the mean of normal values, green 
represents down-regulation and red represents up-regulation with respect to the mean. Clustering of genes reveals two big clusters: down-
regulated genes in RCC (upper half) and up-regulated in RCC (bottom half) with respect to the normal samples, together with subclusters 
within these groups. The markers cluster the samples perfectly well into two major groups (Fig 3a, upper dendrogram). It is clear that tumor 
samples are separated into two major sub-clusters according to the grade. The only exception is T005 sample (grade I) which clusters with 
high grade samples. Within the normal samples, N032 and N035 have expression profi les most similar to tumor samples. (b) The projection 
of the samples onto the fi rst three principal components (PC). The eigenvectors of the fi rst three eigenvalues accounted for 86.9% of the 
variation (81.5, 5.4 and 2.2, respectively) in the data. Tumor samples are represented by open circles; normal samples are shown by fi lled 
circles. First principle component separates normal samples from tumor samples while second principle component separates tumor 
samples with low grade (T3, T023, T001, T2 and T4) from high grade (T011, T032, T035) again with the exception of T005 sample. Third 
principal component separates normal samples N032 and N035 from the rest of the normal samples as was observed with HCL.
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Table 4. Biological roles (from KEGG and GO databases) and disease associations of 115 annotated gene 
markers.

Down-regulated genes 
Gene Related disease Weinberg category Pathway
DUSP9   MAPK Signaling/JNK cascade
FGF9 Prostate, ovarian  Self-suffi ciency in  MAPK Signaling/Regulation of  
 cancer growth signals actin cytoskeleton/growth factor
ITPR2  Tissue invasion Calcium Signaling Pathway/Gap 
  and metastasis junction
ERBB4 Breast, ovarian  Insensitivity to  Calcium Signaling Pathway
 cancer anti-growth signals     
SLC25A5 RCC Self-suffi ciency  Calcium Signaling Pathway/
  (Loss of cancer cell  Intracellular transport
  dependence on      
  OXPHOS)
DSCR1   Calcium Signaling Pathway
PTHR1 Chronic kidney failure  G-Protein coupled signaling
RASD1 Suppresses cell  Insensitivity to  G-Protein coupled signaling
 growth in human  anti-growth signals
 breast cancer and
 lung cancer cell lines
SFRP1** RCC, bladder cancer,  Evasion of apoptosis Wnt Signaling Pathway/
 cervical cancer   Apoptosis
CHGB Neuroendocrine tumors  Signaling/hormone
PTPRO Lung cancer Insensitivity to anti-growth  Signaling/tumor suppressor 
  signals candidate
GABARAPL1** RCC  Signaling
ATP6V1G3  Self-suffi ciency  Oxidative phosphorylation
  (Loss of cancer cell 
  dependence on 
  OXPHOS)
ATP6V0A4  Self-suffi ciency  Oxidative phosphorylation
  (Loss of cancer cell 
  dependence on OXPHOS) 
ATP6V1B1** RCC/renal tubular  Self-suffi ciency  Oxidative phosphorylation
 acidosis (Loss of cancer cell 
  dependence on 
  OXPHOS) 
KCTD1   Cation transport
SCNN1B   Cation transport
SLC12A3   Cation transport
SCN3A   Cation transport
EHO1   Cation transport
RHCG   Cation transport
SLC4A1   Anion transport
SLC12A3   Anion transport
SLC22A6   Anion transport
COLEC11   Anion transport/Immune
    response
CLIC5   Anion transport

(Continued)
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Down-regulated genes 
Gene Related disease Weinberg category Pathway

MTP   Intracellular transport
DACH1   Transcription regulation
TFAP2B Char syndrome   Transcription regulation
TFAP2A Melanoma  Insensitivity to anti-growth  Transcription regulation/tumor 
  signals suppressor candidate
VDR RCC  Insensitivity to anti-growth  Transcription regulation
  signals
EHF Prostate, breast, 
 and lung carcinomas Insensitivity to anti-growth  Transcriptional repressor
  signals
LSM3   RNA splicing
RCQ5   DNA repair
HELAD1 Up in colorectal cancer  Limitless replicative  DNA replication
  potential 
PAPPA  Tissue invasion and  Proteolysis
  metastasis
DNAJC12   Protein folding
CNGLN** RCC  Tissue invasion and  Regulation of actin 
  metastasis cytoskeleton 
AIM1 Melanoma  Insensitivity to anti-growth  Cell adhesion/ 
  signals+Tissue invasion  tumor suppressor 
  and metastases candidate
NPHS1 Kidney diseases  Tissue invasion and  Cell adhesion
  metastasis 
SPP1 down-regulated in  Insensitivity to anti-growth  Cell adhesion/
 RCC and intrahepatic  signals Apoptosis/Immune
 cholangiocarcinoma;   response
 up-regulated in breast,
 prostate, colon (and 
 others) carcinomas  
CDKN1C Breast, pancreatic,  Insensitivity to anti-growth  Cell cycle/tumor 
 thyroid cancer signals suppressor gene
UMOD    Immune response
ADH6** RCC   Glycolysis/Fatty acid 
   metabolism
ALDOB** RCC, hepatocellular   Glycolysis
 carcinoma
G3P2    Glycolysis
CYP2B6 Breast cancer   Fatty acid metabolism
GCDH    Fatty acid metabolism
CROT   Fatty acid metabolism
MGC11324   Membrane lipid metabolism
BDH   Synthesis and degradation of
   ketone bodies

(Continued)

(Continued)
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Down-regulated genes 
Gene Related disease Weinberg category Pathway

NDUFA4  Self-suffi ciency  Oxidative phosphorylation
  (Loss of cancer cell 
  dependence on 
  OXPHOS) 
NPHS2 Kidney diseases   Energy metabolism
GCSH   Amino Acid metabolism
GCH1   Amino Acid metabolism
ACPP Reduces cell growth  Insensitivity to anti- Metabolism
 in prostate cancer upon  growth signals
 induction by Vitamin D 
 receptor agonists  
DHRS6   Metabolism
HIG1   Hypoxia induced gene
MT1G** RCC, papillary  Insensitivity to anti-growth Metallothionein gene/tumor 
 thyroid carcinoma,   signals suppressor candidate
 prostate cancer   
MT1F Breast, liver cancer.  Insensitivity to anti-growth  Metallothionein gene
 Suppresses growth  signals 
 of liver cell line 
 HepG2  

Up-regulated genes
Gene Related disease Weinberg category Pathway

CD81 Hepatoma Tissue invasion  MAPK Signaling/Immune 
  and metastasis  response/Membrane lipid 
   metabolism/Cell adhesion
ZAK  Tissue invasion  MAPK Signaling/Tight junction/
  and metastasis  Cell cycle
ADORA3 ADORA3 agonists  Insensitivity to  G-Protein coupled signaling 
 inhibit growth in leukemia  anti-growth signals /Immune response/Hypoxia 
 and breast cancer   induced gene 
 cell lines
WASF2 Wiscott-Aldrich  Tissue invasion  G-Protein coupled signaling/ 
 syndrome  and metastasis  Adherens junction
NCOR2 Suppresses   Insensitivity to  Notch Signaling Pathway /
 antiproliferative targets  anti-growth signals transcriptional repressor
 of VDR in prostate cancer
CSH2   JAK-STAT Signaling Pathway 
LCP2 Wiscott-Aldrich syndrome   Receptor protein Tyr-kinase
   Signaling
INHBB** RCC  Self-suffi ciency  TGF-β Signaling Pathway 
  in growth signals /Immune response/growth 
   factor
STC2 Breast cancer   Signaling/hormone/renal and 
   intestinal calcium and phosphate 
   transport
PRDX4   NF-κB cascade
PLXND1   Signaling

(Continued)

(Continued)
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Up-regulated genes
Gene Related disease Weinberg category Pathway

C1QA   Immune response
C1QG   Immune response
C1QB** RCC   Immune response
SLC38A1   Amino Acid Transport
SLC1A4   Amino Acid Transport
TUBB Ovarian, lung cancer  Evasion of apoptosis Intracellular transport/Apoptosis
TAP2 Type 1 diabetes   Intracellular transport/Antigen 
   processing
FYB Wiscott-Aldrich syndrome   Intracellular transport
RAB4A   Intracellular transport
YEATS2   Transcription regulation
PTRF   Transcription regulation
SP100 Liver diseases    Transcription regulation
JAZF1  Endometrial stromal  Self-suffi ciency  Transcription regulation/ 
 tumors  in growth signals oncogene
IFI16 Head and neck  Insensitivity to  Transcription regulation/ 
 squamous cell carcinomas.  anti-growth signals Antigen processing
 Up-regulation inhibits   
 tumor growth
HLX1    Transcription regulation 
ZNF395    Transcription regulation
RPS5     Protein biosynthesis 
FUT11   Protein biosynthesis 
U5-116KD    RNA splicing
NOL3 Breast cancer  Evasion of apoptosis RNA splicing/anti-apoptotic
SART3 Colorectal cancer   RNA processing
PSMB9 RCC  Tissue invasion  Proteolysis
  and metastasis
MARCH-I  Tissue invasion  Ubiquitin cycle
  and metastasis
ITGB2  Tissue invasion  Cell adhesion/Immune 
  and metastasis response
ABL2 Gastric  Self-suffi ciency  Focal adhesion/oncogene 
 adenocarcinoma in growth signals 
  + Tissue invasion 
  and metastases
CLD1  Tissue invasion  Tight junction
  and metastasis
AXL RCC  Self-suffi ciency  Apoptosis/oncogene
  in growth signals + 
  Evasion of apoptosis
EGLN3** RCC Evasion of apoptosis Apoptosis 
CLECSF6   Immune response
TNIP1   Immune response
HLA-DMA   Antigen processing
HLA-DMB   Antigen processing

(Continued)

(Continued)
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processes has not been established. As an example 
of the latter, we annotated proteolysis genes and 
genes involved in cell-adhesion and/or regulation 
of actin cytoskeleton as potentially involved in 
“tissue invasion and metastasis.”

As summarized in Table 4, the markers include 
several signaling proteins, some of them previously 
implicated in cancer transformation (Notch 
signaling, Wnt signaling, TGF-β signaling, NF-κB 
cascade and MAPK signaling cascades). The 
heatmap of signaling pathway genes is shown in 
Figure 4(a). Interestingly, all markers involved in 
calcium signaling pathways are down-regulated 
in RCC. Another interesting group of genes are 
immune system related genes, 83% of which are 
upregulated (Figure 4(b)). Considering that RCC 
is resistant to chemo, radio and hormonal therapy 
while immunotherapy (cytokines IL-2 and 
interferon-alpha) appears to be effective for RCC 
treatment, these immune response related 
biomarkers could be potentially important for 
therapeutics. Our results also indicate that all cation 
and anion transport genes identifi ed by our anal-
ysis—which encode mainly ion channels—are 
down-regulated (Figure 4(c)). Conversely, genes 
involved in intracellular transport and amino acid 
transport are mostly up-regulated. Since the kidney 
is at the junction of circulatory and urological 

processes both of which involve transport of 
different body fl uids as well as ions; down-regula-
tion of ion channels may be the result of a non-
functioning kidney in RCC. Increase in intracel-
lular transport point to increased communication 
of cancerous cells with ECM, with normal cells as 
well as with other cancer cells. Up-regulated amino 
acid transport shows that cancer cells need more 
building blocks to make proteins for different 
biological processes as they grow.

Other groups of genes potentially important for 
tumor progression include those for proteolysis, 
and cell-adhesion and/or regulation of actin cyto-
skeleton (Figure 4(d)). These genes are likely to 
be involved in tissue invasion and metastasis.

The apoptotic genes (Figure 4(e)) SPP1 and 
SFRP1 are candidate tumor suppressors for various 
cancers; AXL gene is a proto-oncogene, and NOL3 
(ARC, apoptosis repressor with CARD domain) is 
induced in human breast cancer and confers 
chemo- and radiation-resistance (Mercier et al. 
2005). These genes may all contribute to evasion 
of apoptosis during tumor development.

Finally, a number of markers are involved in 
metabolism; some are shown in Figure 4(f). It is 
clear that the processes shown are all linked to 
energy generation in the cell and that most of these 
genes are suppressed in RCC. Studies by Warburg 

(Continued)

Up-regulated genes
Gene Related disease Weinberg category Pathway

HLA-DPA1 Melanoma   Antigen processing
SAMHD1   Interferon induction
PDK1   Glycolysis/Gluconeogenesis
ALDOA RCC, HIF1 activated  Increased glycolysis  Glycolysis/Gluconeogenesis
 gene, also activates HIF1 (Warburg effect)  + 
  Angiogenesis
GM2A   Membrane lipid metabolism
VKORC1   Biosynthesis of steroids
NUOMS   Oxidative phosphorylation
CA9 RCC   Nitrogen metabolism
SQRDL   Energy metabolism
APOC1** RCC   Lipoprotein metabolism
P4HB May be HIF1 related  Metabolism
VGF  Self-suffi ciency  Growth factor
  in growth signals

Genes in italic: 64 genes previously not reported by Lenburg et al.
** genes previously reported by 4 or more RCC studies
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(Warburg, 1956) indicate that the vast majority of 
human and animal tumors display a high rate of 
glycolysis under aerobic conditions. Human solid 
tumors endure profound hypoxia; hence adaptation 
to hypoxic conditions is a crucial step in tumor 
progression. The anaerobic use of glucose as an 
energy source through glycolysis is therefore a 

feature common to solid tumors, in turn leading to 
a lesser dependence on the mitochondria for oxida-
tive phosphorylation. This loss of cell dependence 
on oxidative metabolism is an important factor in 
the development of tumors. In accordance with 
that, it was shown that expression levels of 
OXPHOS genes were down-regulated in RCC 

(e) Apoptosis
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Figure 4. (a-f). Heatmaps of some of the important pathways that 158 markers are involved in. The expression values for each gene are 
transformed (Section 3.4.1) and color coded as in Figure 3. Black represents the mean of normal values, green represents down-regulation 
and red represents up-regulation with respect to the mean.
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(Simonnet et al. 2002; Meierhofer et al. 2004). 
Hence, overall suppression of these genes can be 
due to loss of tumor dependence on normal energy 
generating pathways in hypoxic conditions.

4.2. Disease associations
Eleven of the 158 biomarkers are especially 
definitive, both because of their biology, and 
because they have been identifi ed as RCC related 
in four or more studies (Young et al. 2001; Boer 
et al. 2001; Takahashi et al 2001; Gieseg et al. 
2002; Lenburg et al. 2003). These genes are 
GABARAPL1, EGLN3, MT1G, SFRP1, INHBB, 
ATP6V1B1, APOC1, ADH6, C1QB, ALDOB and 
CNGLN. SFRP1 and EGLN3 are involved in 

apoptosis, which is a critical process as evasion of 
apoptosis is one of the key steps in tumorigenesis. 
CNGLN is involved in regulation of actin cyto-
skeleton, which may have a role in tissue invasion 
and metastasis. Four other genes have a role in 
metabolism, specifically glycolysis (ADH6, 
ALDOB), lipoprotein metabolism (APOC1), and 
oxidative phosphorylation (ATP6V1B1). INHBB 
and C1QB are immune response related genes. 
INHBB is a growth factor, hence its up-regulation 
may cause uncontrolled activation of downstream 
targets.

In addition to these eleven genes, 83 others were 
identified by Lenburg et al. as differentially 
expressed in RCC. They include carbonic anyh-
drase IX, which is the RCC associated antigen 
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Figure 5. Genes related to critical processes underlying kidney cell transformation. Marker genes were replaced into six Weinberg catego-
ries which are essential for tumor development. Genes previously found by at least four other RCC studies are indicated with **, genes 
implicated in other cancers with *, and markers not identifi ed previously by Lenburg et al. are given in red. Since the exact order of these 
steps is not known, the processes are given in here with no particular order. 
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G250 and is induced in many cancer types, hypoxia 
induced gene ADORA3, potentially oncogenic 
AXL gene which causes transformation when 
overexpressed in NIH 3T3 cells, and vitamin D 
receptor (VDR, up-regulated), which was found to 
be over-expressed in pancreatic cell lines (Albre-
chtsson et al. 2003) and is down-regulated by 
resveratrol compound (Shi et al. 2004) in RCC cell 
lines, which acts as a chemopreventive agent for 
RCC and other types of cancers.

Another 64 genes were not identifi ed in our 
previous study. Of these genes 25 were found to 
be signifi cantly up-/down-regulated (in the same 
direction with this study) by one or more other 

RCC studies as summarized in Table 5. The overall 
summary of the 7 RCC studies and the overlap 
between their gene sets and our genes are given in 
Supplementary Table 2.

TUBB, PRDX4 and ZNF395 genes are poten-
tially important genes since they have been identi-
fi ed by four or more RCC studies including us. 
Some of the genes were already shown to be impor-
tant in RCC by additional studies other than listed 
in Table 5. These genes include SLC25A5 (ANT2, 
down), which catalyzes the exchange of ATP for 
ADP across the mitochondrial membrane, thus 
playing an important role in oxidative phosphory-
lation. Renal carcinomas were found to have 

Table 5. 25 genes that were not identifi ed by Lenburg et al but identifi ed by other RCC studies including this 
study.

Boer 
et al

Jones 
et al

Sultmann 
et al

Higgins 
et al

Young 
et al

Gieseg 
et al

TUBB
PRDX4
ZNF395
ARHGEF10
CSH2
HLA-DMA
NCOR2
CD81
SLC15A4
LSM3
MR-1
ALDOA
HLX1
PRKCDBP
PTRF
SQRDL
TNIP1
VKORC1
YEATS2
C14orf2
NDUFA4
SPP1
DACH1
SLC25A5
LCP2

induced

repressed
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reduced levels of ANT2 and other oxidative phos-
phorylation genes (Heddi et al. 1996) in line with 
the argument that the loss of cell dependence on 
oxidative metabolism is an important factor in the 
development of tumors under hypoxic conditions 
(Chevrollier et al. 2005). ALDOA enzyme (up), 
originally found to be up-regulated in lung cancer 
(Ojika et al. 1991), was determined to be an indi-
cator of poor prognosis in RCC patients in combi-
nation with gamma-enolase (Takashi et al. 1993).

We further classifi ed 64 markers into three 
groups (Table 6) based on their disease associa-
tions: (I) previously reported RCC related genes 
(Table 5), (II) genes related to cancers other than 
RCC, and (III) genes related to diseases other than 
cancer.

(II) These genes include NCOR2 (SMRT, up), 
which forms a large co-repressor complex that 
contains SIN3A/B and histone deacetylases 
HDAC1 and HDAC2. This complex associates 
with the thyroid (TR) and the retinoid acid recep-
tors (RAR) in the absence of ligand, and may 
stabilize their interactions with TFIIB. Recently, 
it has been shown that elevated SMRT levels result 
in suppression of target genes for the vitamin D 
receptor (VDR) in prostate cancer cells and in 
apparent hormonal insensitivity (Khanim et al. 

2004). ABL2 (up) tyrosine kinase is related to 
proto-oncogene ABL, and is implicated in hema-
tologic neoplasms (Yagasaki et al. 2001) and 
gastric adenocarcinoma (Wu et al. 2003).

CD81 antigen (up) is reported to infl uence adhe-
sion, morphology, activation, proliferation, and 
differentiation of B, T, and other cells. Antibodies 
against CD81 induce homotypic aggregation of 
cells and can inhibit their growth. The loss of CD81 
was found to be associated with differentiation and 
metastasis of HCC (Inoue et al. 2001). Betta-
tubulin, TUBB, gene is implicated in many cancers 
including ovarian and lung cancer. Non-small cell 
lung cancers have a high incidence of somatic 
mutations of the beta-tubulin (class I) gene, which 
may cause paclitaxel resistance (de Castro et al. 
2003). Moreover, recently, class III beta-tubulin 
overexpression was found to be a prominent 
mechanism of paclitaxel resistance in ovarian 
cancer patients (Mozzetti et al. 2005).

SART3 (squamous cell carcinoma antigen 
recognized by T cells 3), is an RNA-binding 
nuclear protein that is a tumor-rejection antigen. 
This antigen possesses tumor epitopes capable 
of inducing HLA-A24-restricted and tumor-
specifi c cytotoxic T lymphocytes in colorectal 
cancer patients and may be useful for specifi c 

Table 6. Disease related 64 markers not identifi ed by Lenburg et al.

Genes related to cancers other than RCC
NCOR2 Up Suppresses target genes for the vitamin D receptor (VDR) in prostate
  cancer cells resulting in hormonal insensitivity (Khanim et al. 2004) 
ABL2  Up Related to proto-oncogene ABL. Implicated in hematologic neoplasms 
  (Yagasaki et al. 2001) and gastric adenocarcinoma (Wu et al. 2003) 
CD81  Up The loss of CD81 was found to be associated with differentiation 
  and metastasis of HCC (Inoue et al. 2001) 
TUBB  Up Implicated in many cancers including ovarian (Mozzetti et al. 2005) and 
  lung cancer (de Castro et al. 2003) 
SART3  Up Induces HLA-A24-restricted and tumor-specifi c cytotoxic T 
  lymphocytes in colorectal cancer patients (Sasatomi et al. 2002) 
HELAD1 Down Up-regulated in colorectal carcinomas (Ishiguro et al. 2002) 
CHGB Down Up-regulated in neuroendocrine tumors (Kimura et al. 2000) 
JAZF1 Up Frequent fusion of the JAZF1 and JJAZ1 genes in endometrial stromal 
  tumors (Huang et al. 2004) 
PRKCDBP  Up epigenetic or mutational inactivation contribute to the pathogenesis of 
  breast and lung cancers (Xu et al. 2001) 
TFAP2A Down Loss of AP-2 results in metastasis of melanoma cells (Jean et al. 1998) 

Genes related to diseases other than cancer
WASF2  Up Wiscott-Aldrich syndrome 
LCP2 Up Wiscott-Aldrich syndrome 
FYB Up Wiscott-Aldrich syndrome 
TAP2 Up Type 1 diabetes
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immunotherapy (Sasatomi et al. 2002). TFAP2 is 
known to suppress a number of genes including 
MCAM/MUC18, C/EBP alpha and MYC. The loss 
of this gene was shown to be to be associated with 
malignant transformation and tumor progression 
in malignant melanoma (Karjalainen et al. 1998; 
Jean et al. 1998). This gene may be a potential 
tumor suppressor protein for RCC as well.

(III) Markers related to diseases other than 
cancer include WASF2, LCP2 and FYB (Wiscott-
Aldrich syndrome, all up) and TAP2 (up, polymor-
phisms in this gene are implicated in type 1 diabetes 
(Lotfi  et al. 1994; Penfornis et al. 2002). The rela-
tionship between Wiscott-Aldrich syndrome and 
diabetes should be elaborated in the future.

Other genes which we’ve identifi ed as RCC 
related, but which have not previously been asso-
ciated with any disease include ITPR2, which has 
roles in the calcium and phosphatidylinositol 
signaling pathways; glutaryl-Coenzyme A dehy-
drogenase (GCDH), which takes part in fatty acid 
metabolism,; 40S ribosomal protein S5 (RPS5), 
HIG1 (likely ortholog of hypoxia induced gene 1) 
and P4HB (proline 4-hydroxylase).

4.3. Genes related to critical processes 
underlying kidney cell transformation
The development of RCC, as with other cancers, is 
accompanied by alterations in cell physiology, 
which collectively dictate malignant growth 
(Hanahan and Weinberg, 2000). Briefly these 
changes include environment independent growth; 
insensitivity to antigrowth factors (loss of tumor 
suppressor genes); evasion of apoptosis (producing 
survival factors); limitless replicative potential 
(turning on telomerase); sustained angiogenesis 
(producing VEGF inducer) and tissue invasion and 
metastasis (inactivation of E-cadherin). The order 
in which these capabilities are acquired is likely to 
be variable across different cancer types and 
subtypes. In this section we discuss RCC markers 
in the context of these alterations.

The main associations for RCC are summarized 
in (Figure 5 and Table 4). We include (1) genes that 
were previously implicated in cancer e.g. tumor 
suppressors and oncogenes and (2) genes that were 
not previously found to be associated with cancer 
but which have a function critical to tumor develop-
ment. We did not include the genes whose expres-
sion is not correlated with the associated category 
e.g. NCOR2 gene (Table 4) suppresses tumor 

growth in prostate cancer cells but is up-regulated 
in RCC, and hence it is not included. Our results 
suggest the following for RCC (1) Self-suffi ciency 
in growth signals is achieved via activation of onco-
genes JAZF1, AXL, ABL2; and growth factors 
INHBB and VGF. Further, loss of OXPHOS genes 
SLC25A5, ATP6V1B1, B3, V0A4, and NDUFA4 
may contribute to the self-suffi ciency of the cancer 
cells with the ability to be less dependent on 
OXPHOS (2) The loss of tumor suppressor genes 
PTPRO, TFAP2A, CDKN1C, AIM1 and MT1G as 
well as other genes that were shown to suppress 
tumor growth in cancer cell lines but not yet identi-
fi ed as tumor suppressor candidates (RASD1, VDR, 
EHF, SPP1, ACPP, MT1F and ERBB4) contributes 
to insensitivity to antigrowth signals; (3) Evasion of 
apoptosis is mediated through loss of SPP1 and 
SFRP1, and activation of TUBB, NOL3 and EGLN3. 
(4) Two groups of genes are likely to be involved in 
tissue invasion and metastasis: proteolysis genes 
(PAPPA, PSMB9 and MARCH-1) and genes 
involved in cell-adhesion and/or regulation of actin 
cytoskeleton (CNGLN, ITPR2, NPHS1, ITGB2, 
CLD1, ZAK, WASF2, CD81) and (5) Angiogenesis 
may be mediated through ALDOA enzyme which is 
shown to be activated by HIF1 under hypoxic condi-
tions and by increased glycolytic activity (Warburg 
effect), and which in a feedback loop activates HIF1 
(Lu et al. 2002) which then activates several angio-
genic factors including VEGF.

The identifi cation of these genes opens up many 
paths for investigation that would not otherwise have 
been apparent. For example down regulation is often 
the result of epigenetic modifi cation of upstream 
regions; especially methylation. The identifi cation 
of CpG islands in or around binding sites and their 
analysis by RT-PCR or MALDI-TOF would be an 
obvious route to take, and if signifi cant methylation 
difference are found, it would suggest a simple and 
sensitive assay for potentially signifi cant markers.
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Supplementary Table 1. 158 signifi cant (p-value 
≤0.01) markers.

GenBank Accession Symbol p-value
NM_003221 TFAP2B 0
NM_005235 ERBB4 0
NM_017753 PRG-3 0
NM_003714 STC2 1x10–5

AI655467  2x10–5

BF478120  2x10–5

NM_001692 ATP6V1B1 2x10–5

NM_002489 NDUFA4 2x10–5

NM_012232 PTRF 2x10–5

NM_021179 LOC57821 2x10–5

NM_031412 GABARAPL1 2x10–5

AI733359  3x10–5

NM_005950 MT1G 3x10–5

NM_006990 WASF2 3x10–5

NM_172369 C1QG 3x10–5

BF541967  5x10–5

NM_002010 FGF9 5x10–5

NM_033554 HLA-DPA1 5x10–5

AI589190  6x10–5

BC005314.1  6x10–5

NM_004646 NPHS1 6x10–5

NM_133262 ATP6V1G3 6x10–5

NM_174896 MGC24133 6x10–5

NM_002848 PTPRO 7x10–5

NM_003113 SP100 7x10–5

NM_014625 NPHS2 7x10–5

NM_000339 SLC12A3 8x10–5

NM_000491 C1QB 9x10–5

NM_001009 RPS5 9x10–5

NM_000767 CYP2B6 0.00011
NM_003012 SFRP1 0.00011
NM_004894 C14orf2 0.00011
NM_016929 CLIC5 0.00011
NM_022073 EGLN3 0.00011
NM_033201 BC008967 0.00011
NM_004356 CD81 0.00013
NM_138799 OACT2 0.00013
NM_000211 ITGB2 0.00014
AK026764.1  0.00015
NM_152522 MGC33864 0.0003
AV691491  0.00033
NM_004392 DACH1 0.00033
NM_005565 LCP2 0.00033
NM_014463 LSM3 0.00033
NM_015474 SAMHD1 0.00036
BG251556  0.00037
NM_018162 HELAD1 0.0004
NM_000376 VDR 0.00043
NM_001819 CHGB 0.00047
NM_020142 NUOMS 0.00047
NM_004578 RAB4A 0.00055
AI962367  0.00058
NM_021800 DNAJC12 0.0006
NM_021199 SQRDL 0.00061
NM_153233 FLJ36445 0.00073

NM_017606 NM_017606 0.0008
NM_015488 MR-1 0.00084
BF439449  0.00093
NM_000342 SLC4A1 0.00093
NM_006120 HLA-DMA 0.00098
NM_000918 P4HB 0.00108
NM_001099 ACPP 0.00113
NM_021151 CROT 0.00113
BG434272  0.00121
NM_001216 CA9 0.00122
NM_198991 KCTD1 0.00125
NM_006312 NCOR2 0.00126
NM_016582 SLC15A3 0.00142
NM_020632 ATP6V0A4 0.00142
NM_003220 TFAP2A 0.00166
NM_005158 ABL2 0.00169
NM_014601 EHD2 0.00169
NM_003116 SPAG4 0.00185
AW771565 AIM1 0.00187
NM_003946 NOL3 0.00192
NM_000076 CDKN1C 0.00195
NM_006058 TNIP1 0.00197
NM_000336 SCNN1B 0.00198
NM_000035 ALDOB 0.00202
NM_015103 PLXND1 0.00206
BF130943  0.00217
BE552097  0.00222
NM_000672 ADH6 0.00248
BE739519  0.00259
NM_198446 FLJ45459 0.00259
NM_021958 HLX1 0.0026
NM_001395 DUSP9 0.00262
NM_018023 YEATS2 0.00267
NM_001004196 CD200 0.00269
NM_006520 TCTE1L 0.00275
NM_001152 SLC25A5 0.00276
NM_002193 INHBB 0.00277
NM_006922 SCN3A 0.00277
NM_000159 GCDH 0.0029
NM_002800 PSMB9 0.00314
NM_004051 BDH 0.00314
NM_145040 PRKCDBP 0.0032
N58278  0.00325
NM_024006 VKORC1 0.00335
NM_004710 SYNGR2 0.00339
AI796222  0.00342
NM_000161 GCH1 0.00348
NM_000544 TAP2 0.00357
NM_014706 SART3 0.00357
NM_014056 HIG1 0.00362
NM_001645 APOC1 0.00364
NM_012153 EHF 0.00364
NM_175061 JAZF1 0.00368
NM_015991 C1QA 0.00379
NM_145648 SLC15A4 0.00384

GenBank Accession Symbol p-value

(Continued) (Continued)

(Continued)



91

Identifi cation and Characterization of Renal Cell Carcinoma Gene Markers

Cancer Informatics 2007:3

NM_178014 TUBB 0.00391
NM_000405 GM2A 0.00392
AW242899  0.00407
NM_000582 SPP1 0.00408
NM_002610 PDK1 0.00412
NM_007021 C10orf10 0.00413
NM_016084 RASD1 0.00423
NM_016184 CLECSF6 0.00433
NM_017923 MARCH-I 0.00438
NM_015584 POLDIP2 0.00456
NM_006406 PRDX4 0.00468
NM_020991 CSH2 0.0047
NM_000677 ADORA3 0.00478
NM_002223 ITPR2 0.00483
BF590528  0.00485
NM_005949 MT1F 0.00489
NM_003038 SLC1A4 0.0049
NM_001465 FYB 0.00503
NM_004790 SLC22A6 0.00514
NM_024027 COLEC11 0.00514
AI769774  0.00525
NM_016653 ZAK 0.00525
NM_014629 ARHGEF10 0.00527
NM_000253 MTP 0.00571
NM_003361 UMOD 0.00576
BF510426  0.00583
NM_005531 IFI16 0.006
AI282982 LOC120224 0.00629
NM_004247 U5-116KD 0.00634
NM_032118 FLJ12953 0.00641
NM_004414 DSCR1 0.00655
NM_032866 CNGLN 0.00665
NM_002118 HLA-DMB 0.00719
NM_004483 GCSH 0.00742
NM_000316 PTHR1 0.00743
T90295  0.0076
NM_030674 SLC38A1 0.00765
NM_001699 AXL 0.00773
AW242836 LOC120224 0.0078
NM_205848 SYT6 0.00895
NM_000034 ALDOA 0.00896
NM_032717 MGC11324 0.00942
NM_020139 DHRS6 0.00945
AA148534 PAPPA 0.00951
NM_016321 RHCG 0.00956
H99792  0.00983
NM_053000 TIGA1 0.00983
NM_018660 ZNF395 0.00994

GenBank Accession Symbol p-value

(Continued)
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Supplementary Table 2. Comparison with other RCC studies.

  number of    Overlap  Overlap 
  samples Final with 158 with 64*
  /microarray  number of marker marker
 Method platform genes genes genes
Young  More than  7 tumor  189 8  1
et al. 2001 two-fold changed (4 cc-RCC),
 in two or more  7 normal/cDNA 
 tumor samples 7,075 genes
Takahashi  Three-fold or more  29 cc-RCC and  109 7 -
et al. 2001 changed in 75% or 29 normal/
 more of the tumor  cDNA 21,632 
 samples genes
Gieseg  Changed genes in  13 RCC  355 genes,  4 1
et al. 2002 cc-RCC with (9cc-RCC), 85 reported
 Wilcoxon test 9 normal/ 
 p-value ≤0.001 Affymetrix 
 and fold change 5600 genes
 ≥1.1
Boer  adapted sign test by  37 cc-RCC,  1738  45 11
et al. 2001 counting for each 37 normal cDNAs
 gene the number of 
 times that its
 measured intensity
 in the set of repeated
 pair-wise comparisons
 is higher in T and N
Higgins  No reported gene  41 RCC (23 cc- 182 genes 8 1
et al. 2003 set; selected genes RCC), 3 
 with avg fold normal/cDNA
 change >3 and 22,648 genes
 t-test p-value >0.03.
Jones  90% lower  8 clear cell stage I,  1359 up- 37 up, 19  15 up-
et al. 2005 confi dence boung  23 normal, regulated, down- regulated
 of the fold change Affymetrix 22,283 493 down- regulated 
 was >2 and t-test genes regulated
 p-value <0.001
Sultmann  t-test with  25 ccRCC, 25  620 up- 13 up, 11 5 up, 2 
et al. 2005 estimated false normal/RCC- regulated; down- down-
 discovery rate specifi c cDNA 561 down- regulated regulated
 <0.23 microarrays with regulated 
  4207 genes genes
*genes not identifi ed by Lenburg et al.
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