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Abstract

The outcomes of evolution are determined by a stochastic dynamical process that governs how 

mutations arise and spread through a population. Here, we analyze the dynamics of molecular 

evolution in twelve experimental populations of Escherichia coli, using whole-genome 

metagenomic sequencing at 500-generation intervals through 60,000 generations. Despite a 
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declining rate of fitness gain, molecular evolution continues to be characterized by signatures of 

rapid adaptation, with multiple beneficial variants simultaneously competing for dominance in 

each population. Interactions between ecological and evolutionary processes play an important 

role, as long-term quasi-stable coexistence arises spontaneously in most populations, and evolution 

continues within each clade. We also present new evidence that the targets of natural selection 

change over time, as epistasis and historical contingency alter the strength of selection on different 

genes. Together, these results show that long-term adaptation to a constant environment can be a 

more complex and dynamic process than is often assumed.

Evolutionary adaptation is driven by the accumulation of mutations, but the temporal 

dynamics of this process are difficult to observe directly. Recently, time-resolved sequencing 

of microbial evolution experiments1–6, viral and bacterial infections7–9, and cancers10 has 

begun to illuminate this process. These studies reveal complex dynamics, characterized by 

rapid adaptation, competition between beneficial mutations, diminishing-returns epistasis, 

and extensive genetic parallelism. These forces alter patterns of polymorphism11 and 

influence which mutations ultimately fix12–15. However, it is unclear whether these 

dynamics are general or, instead, reflect the short timescales and novel environmental 

conditions of previous studies.

To address this question, we turned to an experiment with the longest frozen “fossil record”: 

the E. coli long-term evolution experiment (the “LTEE”)16. The 12 LTEE populations have 

been serially propagated in the same medium for >60,000 generations, with samples 

preserved every 500 generations (Supplementary Information 1). Previous work has shown 

that the competitive fitness of each population continues to increase through 60,000 

generations, despite a declining rate of improvement17,18. Genome sequences of evolved 

clones have shown that these fitness gains are accompanied by a steady accumulation of 

mutations3,4. Parallel genetic changes across replicate populations suggest that there is a 

common pool of adaptive mutations that has yet to be exhausted in any single population4.

Together, these earlier findings show that the LTEE populations have not yet reached a 

fitness peak, even after tens of thousands of generations in the same environment. However, 

the existing data provide only limited information about the population genetic processes 

that drive these changes. Does the supply of adaptive mutations eventually diminish enough 

that evolution proceeds via discrete selective sweeps? Are the populations still approaching 

the same fitness peak as they accumulate mutations from a common pool? Or do more 

complicated dynamics arise that require more complex models? These questions require 

more finely resolved information about the genetic diversity within each population through 

time, to analyze when and in what order the successful mutations occur, the dynamics by 

which they spread through a population, and what other competing mutations arose that 

were ultimately eliminated.

Reconstructing the molecular fossil record

To measure the dynamics of molecular evolution, we sequenced mixed-population samples 

taken at 500-generation intervals across 60,000 generations of evolution in each of the 12 

LTEE populations (Supplementary Information 3). This yielded a total of 1431 samples with 
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a median coverage of ~50× (Supplementary Table 1). To distinguish mutations from 

sequencing errors, we developed a pipeline that leverages the temporal correlations expected 

in a true mutation trajectory (Supplementary Information 4). This approach allows us to 

identify a subset of the mutations that reached ~10% frequency in at least 2 sampled 

timepoints, and to track the frequency of the derived alleles through the rest of the 

timecourse. Our pipeline identifies both point mutations and indels, including many events 

mediated by insertion sequence (IS) elements (Supplementary Information 4).

Figure 1 shows the allele frequency trajectories of all mutations identified in each 

population. Although previous work has shown that fitness gains across the replicate 

populations are largely similar to one another17,18 (Figure 2a), Figure 1 reveals a wide range 

of dynamics at the genetic level.

We analyzed the rate at which mutations accumulate through time by calculating the total 

derived allele frequency, Mp(t)=Σ fp,m(t), for all mutations m in population p at time t 
(Figure 2b; Supplementary Information 5.1). This quantity approximates the expected 

number of mutations in a randomly sampled individual, neglecting mutations that never rise 

above our detection threshold. Consistent with earlier work3,4, Figure 2 shows that the pace 

of molecular evolution remains rapid throughout the experiment, even as the rate of fitness 

improvement declines17,18.

The high temporal resolution of the data reveals striking differences in the rate of molecular 

evolution over time and across replicate populations. Six populations evolved a mutator 

phenotype4,19, producing a sudden jump in total derived allele frequency (Fig. 2b). In some 

of these mutator populations, the rate of molecular evolution later declines (Fig. 2 inset), 

consistent with evidence from sequenced clones4. In Ara–1, previous work has shown that 

this deceleration is driven by “antimutator” alleles that arise after the fixation of the initial 

mutator20. Our results suggest a similar process also occurs in other populations.

In contrast to the mutator lines, the six “nonmutator” populations accumulate mutations at a 

steadier pace. Their average rate of molecular evolution does decline modestly over time, 

decreasing from ~20 mutations in the first 10,000 generations to ~10 mutations in the last 

10,000 (Fig. 2c). There are also systematic differences between populations that persist over 

10,000-generation intervals, suggesting they acquired mutations at slightly different rates 

(Extended Data Fig. 1).

The rates of mutation accumulation in nonmutator lineages are comparable to previous 

estimates of bacterial mutation rates21. However, they are incompatible with the timescale of 

neutral evolution. With an effective population size of Ne~107, new mutations would require 

Δt ~ 0.1Ne ~ 106 generations to reach the 10% detection threshold by genetic drift alone22. 

Thus, the mutations in Fig. 1 must have reached observable frequencies through the direct or 

indirect action of natural selection.

Emergence of quasi-stable coexistence

Once a mutation reaches detectable frequencies, the shape of its allele frequency trajectory 

contains information about selective forces. We find that the trajectories in Fig. 1 are 
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inconsistent with a “periodic selection” model in which individual driver mutations fix in a 

sequence of discrete selective sweeps. This model predicts that driver mutations (with any 

nearly-neutral hitchhikers) should quickly and deterministically fix after reaching observable 

frequency, which greatly exceeds the drift barrier 1/Nes. By contrast, many mutations in Fig. 

1 persist at intermediate frequencies for long periods, often undergoing reversals in 

frequency that sometimes result in extinction.

Part of this complexity is driven by clonal interference. When beneficial mutations are 

common, mutations that would otherwise drive selective sweeps can be outcompeted by 

other lineages carrying superior beneficial mutations23. Further beneficial mutations can 

draw out this battle, resulting in allele-frequency trajectories with multiple inflection 

points12,24,25. Yet models of clonal interference predict that one lineage must eventually 

win, and so on long timescales the number of fixed mutations should grow at the same rate 

as the total allele frequency Mp(t).

To test this expectation, we developed a hidden Markov model (HMM; Supplementary 

Information 5.2) to estimate the “fixation time” of each mutation from its allele frequency 

trajectory, allowing us to estimate the number of fixed mutations through time (Figure 2d). 

The number of fixed mutations closely tracks Mp(t) in some populations (e.g. Ara+2 and 

Ara+4), but there is a marked deficit of fixations in others (e.g. Ara–6). Instead of fixing, the 

“missing” mutations segregate into at least two intermediate-frequency clades that coexist 

for long periods (Fig. 1).

To investigate these clades, we extended our mutation-trajectory HMM to assign mutations 

to basal, major, or minor clades, and to infer their frequencies through time (Fig. 3a; 

Supplementary Information 5.3). This approach leverages correlations in the trajectories of 

many independent mutations, while accounting for noise in each sample. The results confirm 

that long-lived clades are common in the LTEE. Figure 3b shows that 9 of the 12 

populations have clades that coexist for >10,000 generations, often persisting through 

generation 60,000. By partitioning the mutations into clades (Fig. 3a), we also see that 

fixations continue to accumulate within each clade, even when population-wide fixation 

events have ceased.

This striking separation of timescales between inter- and intra-clade fixations cannot be 

explained by clonal interference26. Instead, long-term coexistence is likely maintained by 

negative frequency-dependent selection, as has been demonstrated in Ara–227,28. It is not 

known whether these additional examples of coexistence revealed by our data involve the 

same glucose/acetate cross-feeding interaction seen in Ara–2, or whether these populations 

have exploited other opportunities for ecological diversification.

Regardless of the mechanism of coexistence, the metagenomic data show that the balance 

between the two clades does not remain constant over long timescales. Instead, their relative 

abundance can shift by at least ~10-fold during their coexistence. The timing and 

magnitudes of these shifts vary from population to population; they could reflect ongoing 

selection on the mechanism of coexistence or a general coupling between the ecologically 
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divergent phenotypes and ordinary fitness gains28–30. Further work is needed to distinguish 

between these scenarios.

Dynamics and fates of new mutations

Most models of molecular evolution do not account for frequency-dependent selection, 

which complicates efforts to understand the evolutionary dynamics using population-wide 

data. To overcome this problem, we focused on the dynamics within each clade.

First, using the clade-aware HMM, we estimated the appearance and fixation times of all 

mutations that fixed in basal or majority clades in the nonmutator populations 

(Supplementary Information 5.3.1). These are upper and lower bounds, respectively, as they 

exclude time outside the observable frequency range. From these measurements, we 

calculated the number of fixed mutations in the basal or majority clade through time (Fig. 

4a). These data show that within-clade fixations continue at a steady pace, consistent with 

the Mp(t) trajectories in Fig. 2b. Although the average rate of fixations declines only 

modestly during the experiment, there is noticeable temporal variability as mutations often 

fix in “cohorts” of multiple linked mutations. These cohorts have been observed 

previously1,29 and are expected in models of clonal interference31,32. However, they could 

also reflect transiently stable frequency-dependent interactions, as previously observed in 

Ara–129.

The difference between the appearance and fixation times of each successful mutation (the 

“transit time”) is a proxy for the strength of selection acting on a lineage. Despite the 

declining rate of fitness gain (Fig. 2a), we observe a broad distribution of transit times 

throughout the experiment (Fig. 4b). Even after 50,000 generations, some mutations appear 

to fix nearly as rapidly as those that occurred in the first 5,000 generations of evolution. This 

observation suggests that fitness differences between cohorts of mutations can remain high, 

with selection coefficients at least ~2log|1-Δf|/Δt~1%, even after many beneficial mutations 

have fixed.

In addition to mutations that fix, many others reach substantial frequencies before going 

extinct, consistent with clonal interference. To quantify this effect, we estimated the fixation 

probability of a mutation as a function of its (within-clade) frequency (Fig. 4c,d). As 

explained above, a mutation can only reach observable frequencies if it is linked to a 

beneficial driver mutation or is a driver itself. Thus, without clonal interference, all observed 

mutations should fix in their clade with probability ~1. By contrast, the fixation probabilities 

in Figs. 4c and 4d are substantially lower, even when restricted to mutations that arose in 

later generations. Instead, the observed fixation probabilities are more consistent with the 

quasi-neutral limit, pfix(f)~f, which arises when clonal interference is strong13,25 

(Supplementary Information 5.3.2). This quasi-neutrality implies that adaptation in the 

LTEE is not mutation-limited; instead, clonal interference and hitchhiking remain important 

even after tens of thousands of generations in the same environment.
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Parallelism at the genetic level

Allele frequency trajectories provide evidence for pervasive adaptation in the LTEE, but the 

dynamics alone provide limited information about which mutations are beneficial drivers 

and which are neutral or deleterious passengers. However, we can leverage the identities of 

mutations to learn about the targets of selection, and to ask whether these targets change 

through time or differ across populations.

Figs. 5a,b show the cumulative distribution of all detected variant types through time. In the 

mutator populations, this distribution reflects the mutational biases and appearance times of 

mutator phenotypes. By contrast, we see few temporal changes in the types of mutations in 

nonmutators, apart from a slight early enrichment of missense mutations (Fig. 5c). 

Consistent with previous studies3,4, we observe an excess of nonsynonymous relative to 

synonymous mutations in nonmutators (dN/dS >1; Extended Data Fig. 2), indicating that 

many observed mutations are adaptive (even those driven extinct by clonal interference). By 

contrast, dN/dS ≲ 1 in mutators, reflecting a higher proportion of passenger mutations.

Because we observe the fates of mutations through time, we can examine how the 

distribution of variant types differs between the entire pool of detected mutations and the 

subset that fixed in their respective clades (a generalization of the McDonald-Kreitman 

test33). This approach allows us to estimate a fixation probability for each class of mutations, 

conditioned on reaching detectable frequency (Fig. 5d). In nonmutator lines, synonymous 

mutations have a smaller conditional fixation probability than other variant types (Fig. 5d), 

as expected if the latter are more likely to be beneficial. Nevertheless, the ratio of 

conditional fixation probabilities is smaller than dN/dS, suggesting that mutations are 

strongly influenced by genetic draft (i.e., linkage and associated hitchhiking) once they 

reach observable frequencies. Consistent with this interpretation, conditional fixation 

probabilities in mutator lines meet (or slightly exceed) the synonymous expectation, even 

though dN/dS ≲ 1.

Parallel genetic changes can reveal targets of selection on more finely resolved scales. 

Although we find some parallelism at the nucleotide level (Extended Data Fig. 3), more 

information is obtained by grouping mutations into genes and their respective promoter 

regions. We quantified parallelism in a gene by its effective multiplicity, mi, defined as the 

observed number of non-synonymous changes ni (including indels and SVs), normalized by 

gene length. Consistent with previous studies4,34, we find significantly more multi-hit 

mutations than expected by chance (Supplementary Information 6.3.1), though the excess is 

more pronounced in nonmutators (Fig. 5e,f).

This excess parallelism could be driven by natural selection or local increases in mutation 

rate (e.g., due to a nearby IS element). However, we find that multiplicity is positively 

correlated with conditional fixation probability in nonmutators (p~0.001; logistic regression) 

and essentially uncorrelated in mutators (p~0.4), suggesting that much of the excess 

parallelism in nonmutators is driven by selection (Fig. 5g). However, there is substantial 

variation around this trend, and even for the most recurrently mutated genes, the fixation 

probability rarely rises above 80%. Thus, while selection plays a large role in driving 
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mutations to detectable frequencies, stochastic forces and interactions among competing 

lineages also are important in determining their fates.

Signatures of epistasis and historical contingency

We next quantified how signatures of parallelism vary over time and across populations. We 

first focused on genes mutated ≥ 3 times in nonmutators with multiplicities significant at 5% 

FDR (Fig. 6a, Supplementary Information 6.3.1). These genes include many previously 

identified targets of parallel evolution3,4,34. By permuting the appearance times of mutations 

across these genes (Supplementary Information 6.3.2), we find that mutations in many 

individual genes are distributed non-randomly (KS test, q<0.05). Some genes (e.g., hslU, 
Extended Data Fig. 4) are mutated early in the experiment but almost never late, while 

others (e.g., atoS, Extended Data Fig. 5) show the opposite tendency. Moreover, there is a 

global enrichment of non-random appearance times, even after removing the individually 

significant cases (summed KS test, p<0.001). This temporal bias is not restricted to high-

multiplicity genes: mutations in 2-hit genes also tend to happen closer together in time than 

mutations in different genes (p<0.001, Extended Data Fig. 6). As a result, the observed 

repertoire of adaptive mutations changes over time (Extended Data Fig. 7, Supplementary 

Information 6.3.2).

Genes that accumulate mutations early are expected under a “coupon collecting” model, in 

which genes with the most strongly beneficial mutations (or with higher mutation rates) are 

depleted once each population has acquired that mutation. Preferentially late genes might 

also be consistent with this model in the presence of clonal interference: weakly beneficial 

mutations that are usually outcompeted early can become successful once their stronger 

counterparts have fixed (Supplementary Information 6.3.3).

Preferentially late mutations could also reflect global changes in selection pressures with 

increasing fitness, or new evolutionary paths opened up by earlier substitutions. An example 

of the latter scenario is the evolution of citrate utilization in Ara–3, in which key mutations 

became beneficial only after earlier mutations35–37. We lack statistical power to scan for 

such interactions directly, but this signal of contingency might still be reflected in the 

distribution of mutations across nonmutator populations (Supplementary Information 6.3.3). 

Specifically, we expect mutations in a contingent gene to be clustered in a subset of the 

populations (i.e., those that fixed an unknown potentiating mutation). By contrast, genes in 

the coupon-collecting model should be over-dispersed, since additional mutations in the 

same lineage are no longer beneficial33.

We find a few under-dispersed genes that are candidates for historical contingency (e.g. argR 
has 7 mutations clustered in 3 populations; Extended Data Fig. 8). However, these examples 

cannot reach genome-wide significance in our limited sample, so we instead focused on the 

global distribution of dispersion configurations (Fig. 6b). We find a trend toward under-

dispersion in genes that were mutated ≤4 times, and signatures of both under- and over-

dispersion in genes mutated ≥5 times. This pattern suggests a combination of historical 

contingency and coupon collecting, with the latter expected to decline over time as targets 

are depleted, and the former expected to increase as potentiating mutations arise. Consistent 
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with this hypothesis, over-dispersion declines when we focus on genes with later appearance 

times, and under-dispersion becomes more pronounced (Fig. 6c,d). When summed across 

genes, this under-dispersion amounts to at least ~16 “missed opportunities” (i.e., populations 

that would be expected to have produced a mutation in a target gene but did not), more than 

expected by chance (p~0.003; Extended Data Fig. 9). Similar results are obtained after 

clustering genes into operons (Supplementary Information 6.4).

Together, these results support the hypothesis that new routes for adaptation are sometimes 

opened up by earlier mutations. While purely statistical, this evidence implies that some 

adaptive mutations should be less beneficial (or even deleterious) when transplanted to 

genetic backgrounds without the corresponding potentiating mutations. This prediction 

might be tested directly in future work.

Discussion

The evolutionary dynamics that characterize long-term adaptation to a constant environment 

remain poorly documented empirically. Here, we observed this process directly by 

sequencing metagenomic samples from 60,000 generations of an ongoing experiment with 

E. coli. Our time-resolved “molecular fossil record” reveals a complex adaptive process, 

with clonal interference, genetic draft, and eco-evolutionary feedbacks playing important 

roles. Our data also suggest that the targets of selection shift over time, as emergent 

ecological interactions and changing genetic backgrounds create new genetic opportunities 

for adaptation that were not initially available. Such effects help to explain why the rate of 

molecular evolution remains so high through 60,000 generations.

Taken together, our results demonstrate that long-term adaptation to a fixed environment can 

be characterized by a rich and dynamic set of population genetic processes, in stark contrast 

to the evolutionary “desert” expected near a fitness optimum. Rather than relying only on 

standard models of neutral mutation accumulation and mutation-selection balance in well-

adapted populations, these more complex dynamical processes should also be considered 

and included more broadly when interpreting natural genetic variation.

Extended Data

Extended Data Figure 1. Between-line variability in the rate of mutation accumulation
a, coarse-grained mutation gains ΔMp,k (Supplementary Information section 5.1) for the six 

nonmutator populations, plotted using the same color scheme as Fig. 2. For comparison, the 
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original mutation trajectories Mp(t) are shown in light grey. b, between-line variability in 

ΣkΔMp,k, with and without the Ara+1 population. Observed values are indicated as symbols, 

while the solid lines show the corresponding null distribution obtained by randomly 

permuting ΔMp,k across the six populations.

Extended Data Figure 2. Nonsynonymous vs synonymous mutations
The ratio of nonsynonymous to synonymous mutations (dN/dS) in the entire pool of 

detected mutations, as well as the subset that fixed within their respective clades. Symbols 

denote individual populations, while bars denote pooled estimates across either the 

nonmutator or mutator populations. In panel a, this ratio is normalized by the relative 

number of synonymous and nonsynonymous sites. Panel b corrects for the observed 

spectrum of single-nucleotide mutations in each population.
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Extended Data Figure 3. Parallelism at the nucleotide level
The distribution of nucleotide multiplicity (Supplementary Information section 6.2) for the 

nonmutator (a) and mutator (b) populations. Observed data are shown in colored lines, while 

the null expectations are shown in grey for comparison.
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Extended Data Figure 4. Mutations in hslU
Mutations that arose in the hslU gene in the six nonmutator populations. The inferred 

appearance times are indicated by the star symbols.
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Extended Data Figure 5. Mutations in atoS
Mutations that arose in the atoS gene in the six nonmutator populations. The inferred 

appearance times are indicated by the star symbols.
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Extended Data Figure 6. Temporal similarity among two-hit genes
The distribution of the difference between the earliest and latest appearance times in genes 

with exactly two detected mutations in the nonmutator lines. The null distribution is 

obtained by randomly permuting appearance times among the 2-hit genes.

Extended Data Figure 7. Realized mutation spectrum in different time windows
a, Fraction of mutations contributed by each gene in Fig. 6a, including time windows before 

and after the median appearance time of all mutations in those genes. b, Differences between 

the early and late distributions in (a) as a function the partition time t*. Dashed line denotes 

the median appearance time used to divide in (a). Solid line shows the value of the 

likelihood ratio test (LRT) between these two distributions for different choices of t* 

(Supplementary Information 6.3.2). Shaded region represents a 95% confidence interval 

obtained by randomly permuting appearance times across the subset of genes in (a) for 

10,000 bootstrap iterations.
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Extended Data Figure 8. Mutations in argR
Mutations that arose in the argR gene in the six nonmutator populations. The inferred 

appearance times are indicated by the star symbols.
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Extended Data Figure 9. Missed opportunities
Net missed opportunities in the nonmutator populations as a function of the partition time t*. 

Lines denote the net missed opportunities for genes with median appearance times before 

and after t*, as defined by the formula in Supplementary Information section 6.3.3. Shaded 

regions denote one-sided 95% confidence intervals obtained by bootstrap resampling from 

the corresponding null model 10,000 times (see Supplementary Information section 6.3.3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The dynamics of molecular evolution
Allele frequency trajectories of all de novo mutations detected in the 12 LTEE populations.
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Figure 2. Rates of molecular evolution
a, Competitive fitness through time (Supplementary Information 2). b, Number of mutations 

in each population as a function of time, measured by total derived allele frequency, Mp(t). 
The average of the nonmutator populations is shown in white. c, Average rate of change of 

Mp(t) for nonmutators in 5,000-generation sliding windows. Shaded region depicts a 95% 

confidence interval obtained by bootstrapping replicate populations 10,000 times. d, 
Number of fixed mutations versus Mp(t) in nonmutators.
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Figure 3. Long-term coexistence of competing clades
a, Output of the clade-aware HMM for population Ara–6. Major and minor clades (solid 

black lines) are defined by the clade frequencies at the final timepoint, while the basal clade 

contains mutations shared by major and minor clades. Colored lines indicate mutations 

within the corresponding clade in each panel; all other mutations are shown in grey. b, 

Estimated clade frequencies for all 12 populations (major clade in purple, minor clade in 

pink). Individual mutations are shown in grey.
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Figure 4. Evolutionary dynamics within clades
a, Number of mutations fixed within the basal or major clade through time in the nonmutator 

populations. Colors are the same as Fig. 2, and the ensemble average is in white. b, The 

transit time of each mutation in (a) as a function of its appearance time. White line shows 

the median across the six populations in non-overlapping 5-percentile windows, and the 

interquartile range of each window is in grey. c, Fixation probability as a function of current 

mutation frequency within its parent clade, along with expectations under quasi-neutral and 

hitchhiking models. Fixation probabilities are estimated using sliding frequency windows 

(Supplementary Information 5.3.2). d, Pooled version of (c) for mutator and nonmutator 

populations. Lighter lines include only timepoints from generation 20,000 and later.
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Figure 5. Parallelism
a, b, Cumulative distribution of detected mutations of each type in nonmutator (a) and 

mutator (b) populations over time (sv = structural variants, including IS-mediated 

mutations). Bars at right depict the distribution of mutations that fixed within their respective 

clades. c, Distribution of appearance times for each variant type in nonmutators. d, Fraction 

of detected mutations of each type that fixed in nonmutator and mutator populations (blue 

and red, respectively). Error bars denote the 14th and 84th percentiles of the beta posterior 

distribution; numbers above bars indicate the sample size of mutations of each type. e, f, 
Fraction of all mutations (excluding synonymous mutations) in nonmutator (e) and mutator 

(f) populations in genes with multiplicity mi≥m. The grey line is the null distribution, 

obtained by randomly distributing the mutations across genes. g, Average conditional 

fixation probability of a mutation as a function of its gene multiplicity (in sliding windows 

of 0.2 log10 units) in nonmutator (blue) and mutator (red) populations. Shaded confidence 

intervals denote the 14th and 84th percentiles of the beta posterior distribution of each 

window. Fixation probabilities of the 20 most-frequently mutated genes are shown as dots.
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Figure 6. Epistasis and contingency
a, Genes mutated ≥3 times in nonmutators with multiplicities significant at 5% FDR. Circles 

indicate the appearance time of each mutation, connected by a vertical line for visualization. 

Each gene is colored according to its median appearance time (hatch-mark). Genes with 

significantly non-random appearance times are marked by asterisks. b, c, d, The distribution 

of dispersion configurations of a gene (i.e., the total number of mutations versus the number 

of different populations in which they appeared) for (b) all genes and (c, d) those with 

median mutation appearance times before or after t* = 17,500 generations, which was 

chosen to maximize the number of “missed opportunities” (Supplementary Information 

6.3.3).
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