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Abstract: We studied the optical properties of a hybrid structure that was composed of a semicon-
ductor quantum dot and a doubly clamped suspended graphene nanoribbon nanoresonator. We
obtained analytical results for the linear and third-order optical susceptibilities of the hybrid system.
The spectrum of the linear susceptibility exhibited a single resonance, and its position depended on
the value of the on-resonance exciton energy and the exciton–nanoribbon resonator coupling strength
coefficient; the amplitude of the resonance was independent of the values of these parameters. The
third-order optical susceptibility spectrum exhibited a sharp resonance arising at low frequencies of
the probe field, the position of which depended only on the frequency of the fundamental flexural
phonon mode. It also presented a broader resonance arising at higher frequencies of the probe field,
the position of which was determined both by the coupling strength coefficient and by the exciton
frequency; its amplitude depended solely on the exciton–photon coupling strength.

Keywords: exciton; phonon; linear susceptibility; graphene nanoribbon nanoresonator; third-
order susceptibility

1. Introduction

The optical response of hybrid systems that make use of the interaction between
different excitations, such as, for example, excitons from semiconductor quantum dots
or molecules and plasmons from metallic nanoparticles, have attracted the interest of
recent studies due to the enhanced nonlinear and quantum optical effects that the hybrid
systems may offer, as compared to their uncoupled constituents [1–19]. Another important
category of hybrid systems investigated for their enhanced nonlinear optical response
are those emerging due to the coupling between excitons in quantum dots and phonons
in nanoresonators [20–29]. In these latter studies, the quantum system was described as
a two-level system interacting with a weak probe field that was also strongly pumped
by a coherent coupling field. The coupling of the quantum system, which provides the
exciton, with the nanoresonator, which provides a system of low mass and high vibrational
frequency, contributes importantly to all the possible optical effects that arise due to the
exciton–phonon coupling. These unique characteristics make such hybrid systems ideal for
applications in sensing with extreme sensitivity, ultrafast optical switching, and efficient
optical storage.

The type of the nanoresonator that was used differed in the various studies; the
quantum system was coupled to a suspended Z-shaped graphene nanoribbon [20–22], a
carbon nanotube [23–25], a monolayer MoS2 suspended on a Si/SiO2 substrate [26], or DNA
molecules [27–29]. In these hybrid systems, the main nonlinear optical effects that have
already been studied are the linear dispersion/absorption under coherent pump–probe
excitation and the cross-Kerr nonlinearity under the action of a strong pump field. The
nonlinear optical response of the system is determined by the intensity and the frequency
of the pump field and the exciton–phonon coupling. In the hybrid systems with quantum

Micromachines 2022, 13, 1179. https://doi.org/10.3390/mi13081179 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13081179
https://doi.org/10.3390/mi13081179
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-5988-8169
https://orcid.org/0000-0001-5206-2244
https://doi.org/10.3390/mi13081179
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13081179?type=check_update&version=2


Micromachines 2022, 13, 1179 2 of 9

dots or molecules and metallic nanostructures, it was shown that even in the absence of the
pump field, the optical response of the hybrid structure could lead to several interesting
effects that depended on the exciton–plasmon coupling [10–12,17]. Interestingly, to the best
of our knowledge, the linear and nonlinear optical properties of an exciton from a quantum
system coupled to a nanoresonator in the absence of the pump field has not been explored
so far. This was the purpose of the present publication.

Specifically, we analyzed the optical properties of a hybrid structure that was com-
posed of a quantum dot and a doubly clamped suspended graphene nanoribbon nanores-
onator, similar to that studied in [20–22]. Graphene-based nanomechanical resonators have
been studied for over 15 years and have very interesting properties [30–32]. In addition, it
has been shown that a quantum dot could be trapped in a Z-shaped graphene nanoribbon
junction [33,34]. The combination of these two structures provided the hybrid structure
that we studied in this work when it interacted with a weak probe laser field. We first
derived the Langevin equations of motion and obtained analytical results for the linear and
third-order optical susceptibilities of the system. The spectrum of the linear susceptibility
exhibited a single resonance, the position of which was dependent both on the value of the
on-resonance exciton energy and on the exciton–nanoribbon resonator coupling strength
coefficient. However, the width and the amplitude of the resonances were independent
of these parameters. The third-order optical susceptibility spectrum exhibited a sharp
resonance arising at low frequencies of the probe field, the position of which depended
exclusively on the frequency of the fundamental flexural phonon mode and a broader
resonance arising at higher frequencies of the probe field; its position was determined both
by the coupling strength coefficient and by the exciton frequency, and its amplitude was
solely dependent on the exciton–phonon coupling strength.

2. Theory

The hybrid system under study was a doubly clamped suspended graphene nanorib-
bon nanoresonator that was coupled to a small-scale localized exciton formed in its vicinity
(Figure 1). We assumed that the quantum system interacted with an electromagnetic field
of amplitude E and angular frequency ω. The ground and the excited states of the localized
exciton are respectively denoted as |0〉 and |1〉. The energy level scheme of the hybrid
system is depicted in Figure 2, which shows an exciton being created due to the excitation
of the two-level system, while a continuum of the energy states represents the phonon
states of the graphene nanoresonator.

Micromachines 2022, 13, x  2 of 10 
 

 

dots or molecules and metallic nanostructures, it was shown that even in the absence of 
the pump field, the optical response of the hybrid structure could lead to several interest-
ing effects that depended on the exciton–plasmon coupling [10–12,17]. Interestingly, to 
the best of our knowledge, the linear and nonlinear optical properties of an exciton from 
a quantum system coupled to a nanoresonator in the absence of the pump field has not 
been explored so far. This was the purpose of the present publication. 

Specifically, we analyzed the optical properties of a hybrid structure that was com-
posed of a quantum dot and a doubly clamped suspended graphene nanoribbon 
nanoresonator, similar to that studied in [20–22]. Graphene-based nanomechanical reso-
nators have been studied for over 15 years and have very interesting properties [30–32]. 
In addition, it has been shown that a quantum dot could be trapped in a Z-shaped gra-
phene nanoribbon junction [33,34]. The combination of these two structures provided the 
hybrid structure that we studied in this work when it interacted with a weak probe laser 
field. We first derived the Langevin equations of motion and obtained analytical results 
for the linear and third-order optical susceptibilities of the system. The spectrum of the 
linear susceptibility exhibited a single resonance, the position of which was dependent 
both on the value of the on-resonance exciton energy and on the exciton–nanoribbon res-
onator coupling strength coefficient. However, the width and the amplitude of the reso-
nances were independent of these parameters. The third-order optical susceptibility spec-
trum exhibited a sharp resonance arising at low frequencies of the probe field, the position 
of which depended exclusively on the frequency of the fundamental flexural phonon 
mode and a broader resonance arising at higher frequencies of the probe field; its position 
was determined both by the coupling strength coefficient and by the exciton frequency, 
and its amplitude was solely dependent on the exciton–phonon coupling strength.  

2. Theory 
The hybrid system under study was a doubly clamped suspended graphene nano-

ribbon nanoresonator that was coupled to a small-scale localized exciton formed in its 
vicinity (Figure 1). We assumed that the quantum system interacted with an electromag-
netic field of amplitude E  and angular frequency ω . The ground and the excited states 
of the localized exciton are respectively denoted as 0  and 1 . The energy level scheme 
of the hybrid system is depicted in Figure 2, which shows an exciton being created due to 
the excitation of the two-level system, while a continuum of the energy states represents 
the phonon states of the graphene nanoresonator.  

 
Figure 1. Schematic representation a doubly clamped suspended monolayer Z-shaped graphene 
nanoribbon nanoresonator coupled to an exciton while interacting with a probe electromagnetic 
field. 

Figure 1. Schematic representation a doubly clamped suspended monolayer Z-shaped graphene
nanoribbon nanoresonator coupled to an exciton while interacting with a probe electromagnetic field.



Micromachines 2022, 13, 1179 3 of 9

Micromachines 2022, 13, x  3 of 10 
 

 

In this study, we aimed at the derivation of analytical expressions for the linear sus-
ceptibility (1)χ  and the nonlinear susceptibility (3)χ  in a systematic and straightfor-
ward manner. In order to perform the calculation of these physical quantities, we followed 
the methodology presented below, starting with the Hamiltonian that describes the sys-
tem in a rotating frame with respect to the probe field’s angular frequency: 

*
10 01 )( ) ( )(ω ωσ ω σ σ σ+ + − += Δ + + + − Ω + Ω    i t i t

z n zH a a g a a e e . (1)

 
Figure 2. The energy level scheme of the hybrid system. The continuum of the energy states repre-
sents the phonon states, while the ground state 0  and the excited state 1  describe the two-
level excitonic system. 

Here, ω + na a  is the vibration Hamiltonian term of the graphene resonator, where 

ω n  is the fundamental phonon mode energy that is consistent with the exciton transi-
tion, since the vibration modes can be treated as phonon modes. The creation and the 
annihilation operators for the eigenmode of the graphene are respectively denoted as +a  
and a . The exciton was coupled to the phonon mode of the graphene nanoresonator; we 
symbolized the strength of this coupling with the parameter g . The pseudospin opera-
tors are represented by σ z , 01σ , and 10σ . Moreover, 10ω ωΔ = −  is the detuning of 
the probe field from the 1 0↔  resonance, /μΩ = E  is the Rabi frequency, μ  de-
notes the dipole moment element corresponding to the transition, and 01 1 0( )ω = Ε − Ε  
expresses the energy of the exitonic transition. The relaxation rate of the atomic coherence 
associated with the density matrix element ρ nm  and the population decay rate corre-

sponding to the transition ↔n m  ( )≠n m  are indicated by γ nm  and Γ nm , respec-
tively.  

If we substitute the expression of the Hamiltonian of Equation (1) into the Heisenberg 
equation, we derive the following Langevin equations of motion: 

*
2 10( ) ( ) ( ) ( ) ( ) ( ) ( )ω ωω −= −Γ − − Ξ − Ω + Ω i t i tp t p t i p t igp t t i e w t i e w t , (2)

* *
1 1( ) ( ) 2 ( )[ ( ) ( )]ω ω−= −Γ − Γ + Ω + Ω − i t i tw t w t i e e p t p t , (3)

2( ) ( ) ( ) ( )γ ω ωΞ + Ξ + Ξ = − 
n n nt t t gw t . (4)

In Equations (2)–(4), we introduce the operator notation 01σ=p , 2 σ= zw , 

and +Ξ = +a a . In order to examine the linear and the third-order optical response of 

the system, we first calculated the corresponding terms that are introduced in the expres-
sion of the optical susceptibility of the system. Thus, we proceed to the third-order expan-
sion of the density matrix elements, with respect to the Rabi frequency of the probe field, 
as follows: 
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In this study, we aimed at the derivation of analytical expressions for the linear
susceptibility χ(1) and the nonlinear susceptibility χ(3) in a systematic and straightforward
manner. In order to perform the calculation of these physical quantities, we followed the
methodology presented below, starting with the Hamiltonian that describes the system in a
rotating frame with respect to the probe field’s angular frequency:

H = }∆σz + }ωna+a + }gσz(a + a+)− }(Ωe−iωt + Ω∗eiωt)(σ10 + σ01). (1)

Here, }ωna+a is the vibration Hamiltonian term of the graphene resonator, where }ωn
is the fundamental phonon mode energy that is consistent with the exciton transition, since
the vibration modes can be treated as phonon modes. The creation and the annihilation
operators for the eigenmode of the graphene are respectively denoted as a+ and a. The
exciton was coupled to the phonon mode of the graphene nanoresonator; we symbolized the
strength of this coupling with the parameter g. The pseudospin operators are represented
by σz, σ01, and σ10. Moreover, ∆ = ω10 − ω is the detuning of the probe field from the
|1〉 ↔ |0〉 resonance, Ω = µE/} is the Rabi frequency, µ denotes the dipole moment
element corresponding to the transition, and }ω01 = (E1 − E0) expresses the energy of
the exitonic transition. The relaxation rate of the atomic coherence associated with the
density matrix element ρnm and the population decay rate corresponding to the transition
|n〉 ↔ |m〉 (n 6= m) are indicated by γnm and Γnm, respectively.

If we substitute the expression of the Hamiltonian of Equation (1) into the Heisenberg
equation, we derive the following Langevin equations of motion:

.
p(t) = −Γ2 p(t)− iω10 p(t)− igp(t)Ξ(t)− iΩe−iωtw(t) + iΩ∗eiωtw(t), (2)

.
w(t) = −Γ1 − Γ1w(t) + 2i(Ω∗eiωt + Ωe−iωt)[p∗(t)− p(t)], (3)

..
Ξ(t) + γn

.
Ξ(t) + ω2

nΞ(t) = −ωngw(t). (4)

In Equations (2)–(4), we introduce the operator notation p = 〈σ01〉, w = 2〈σz〉, and
Ξ = 〈a + a+〉. In order to examine the linear and the third-order optical response of the
system, we first calculated the corresponding terms that are introduced in the expression of
the optical susceptibility of the system. Thus, we proceed to the third-order expansion of the
density matrix elements, with respect to the Rabi frequency of the probe field, as follows:

Ki = K(1)
i + Ω∗eiωtK(2)

i + Ωe−iωtK(3)
i + (Ω∗)2e2iωtK(4)

i + |Ω|2K(5)
i + Ω2e−2iωtK(6)

i
+ (Ω∗)3e3iωtK(7)

i + Ω∗|Ω|2eiωtK(8)
i + Ω|Ω|2e−iωtK(9)

i + Ω3e−3iωtK(10)
i

(5)
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with K1 = p, K2 = w, and K3 = Ξ; and
∣∣∣K(1)

i

∣∣∣>>
∣∣∣K(2)

i

∣∣∣, ∣∣∣K(3)
i

∣∣∣>>
∣∣∣K(4)

i

∣∣∣, ∣∣∣K(5)
i

∣∣∣, ∣∣∣K(6)
i

∣∣∣, ∣∣∣K(7)
i

∣∣∣,∣∣∣K(8)
i

∣∣∣, ∣∣∣K(9)
i

∣∣∣, ∣∣∣K(10)
i

∣∣∣. After introducing these expressions in Equations (2)–(4), we derive a
set of 30 differential equations. The susceptibility of the system is defined as:

χ =
(Γ/V)µp

ε0E0
(6)

and can be analyzed in a Taylor series. If we maintain terms up to the third order in our
expansion, we take:

χ = χ(1) + 3χ(3)E2
0, with (7)

χ(1) =
µ2(Γ/V)

ε0}Ω
A∗3 and (8)

χ(3) =
µ4(Γ/V)

3ε0}3Ω3 A∗9 , (9)

respectively representing the linear and the third-order susceptibility, where ε0 is the dielec-
tric constant of vacuum, while V and Γ represent the volume of the semiconductor quantum
dot and the optical confinement factor related to the exciton transition, respectively. If we
also define the following simplified notation for the coefficients defined in Equation (5):

K(n)
1 = An, K(n)

2 = Bn, K(n)
3 = Cn (10)

and we assume that the Rabi frequency is a real parameter, analytical expressions can be
derived for the coefficients A∗3 and A∗9 in a steady state:

A∗3 = − Ω
(ω−ω10−g2/ωn)−iΓ2

=
Ω[ω−(ω10+g2/ωn)]

[ω−(ω10+g2/ωn)]
2
+[(2Γ2)/2]2

+ i (Ω/Γ2)[(2Γ2)/2]2

[ω−(ω10+g2/ωn)]
2
+[(2Γ2)/2]2

(11)

and

A∗9 =
[g(A∗2C∗6 + A∗3C∗5 ) + Ω(B∗5 − B4)]

(ω−ω10 − g2/ωn)− iΓ2
, (12)

where
A∗2 = − Ω

(ω + ω10 + g2/ωn) + iΓ2
, (13)

B4 =
2Ω(A∗3 − A2)

2ω− iΓ1
, (14)

B∗5 =
2iΩ
Γ1

(A∗2 − A2 + A∗3 − A3), (15)

C∗5 = − 2iΩg
ωnΓ1

(A∗2 − A2 + A∗3 − A3) (16)

and

C∗6 =
ωngΩ(A2 − A∗3){

2
[
ω2 − (ωn/2)2

]
− iωγn

}
(2ω− iΓ1)

. (17)

At this point, the analytical expressions of the coefficients A∗3 and A∗9 given by
Equations (11) and (12) can be introduced into Equations (8) and (9) to calculate the linear
and the third-order optical susceptibility, respectively.

3. Results

In all the figures presented below, the frequency of the fundamental flexural phonon
mode ωn was taken equal to 7.477 GHz, and the decay rate of the nanoresonator was
γn = ωn/Q, with Q = 9000, which is considered to be a comparatively high quality
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factor [20,21]. The exciton decay and dephasing rates were Γ1 = 2GHz and Γ2 = 1GHz,
respectively, as in [20]. In Figures 3 and 4, the response of the χ(1) spectrum as a function
of the probe field angular frequency was investigated, as the coupling strength parameter
was modified. More specifically, in Figure 3, we depicted the spectra of the real part
(a) and the imaginary part (b) of χ(1), as the coupling strength between the exciton and
the phonon mode varied. For simplicity, in Figure 3, we exhibited the spectrum of the
dimensionless coefficient A∗3 . The blue solid curve corresponds to g = 5 GHz, while the
green dashed curve and the magenta dotted curve are for the cases of g = 10 GHz and
g = 15 GHz, respectively. The required exciton angular frequency ω10 was assumed to be
equal to 10 GHz. When we introduced the expression of Equation (11) in Equation (8), it
became evident that we should expect the linear optical susceptibility spectra to exhibit
a single resonance when the value of the probe field angular frequency ω was exactly
equal to ω10 + g2/ωn. This means that the resonances observed in Figure 3, arising at the
positions with ω = 13.3 GHz, 23.4 GHz, and 40.1 GHz, which were respectively taken
for g = 5 GHz, 10 GHz, and 15 GHz, were transposed to the right at an accelerating rate,
as the coupling strength increased monotonically. More specifically, as was theoretically
predicted, the transposition of the resonances was analogous to the second power of the
coupling coefficient. Based on the analytical expression of A∗3 (Equation (11)), we deduced
that the imaginary part of χ(1) (Equation (8)) corresponded to a Lorentzian-shaped profile
with amplitude µ2(Γ/V)/(ε0}Γ2) and a full width at half maximum equal to 2Γ2. We noted
that these quantities were both independent of the coupling strength coefficient g and the
exciton resonance frequency ω10. Furthermore, the real part of χ(1) had the characteristic
dispersion-like profile near resonance, the amplitude and the width of which were also
independent of the parameters g and ω10, and are respectively given by the analytical
expressions µ2(Γ/V)/(2ε0}Γ2) and 2Γ2.
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In Figure 4, the spectra associated with the real part (a) and the imaginary part (b) of
the linear optical susceptibility are presented for different values of the exciton energy. Here,
the blue solid curve, the green dashed curve, and the magenta dotted curve correspond
to ω10 = 5 GHz, 10 GHz, and 15 GHz, respectively, for a specific value of the coupling
coefficient (g = 10 GHz). As mentioned above, the resonance was theoretically predicted
to arise at the angular frequency ω = ω10 + g2/ωn and, hence, the transposition of the
resonance along the horizontal axis exhibited a linear dependence on ω10. We noted that the
position of the resonances was also dependent on the value of the resonator’s fundamental
frequency ωn. However, in the present study, this parameter was assumed to be constant
(equal to 7.477 GHz), as mentioned above.

In Figure 5, we present the spectra of the real part (a) and the imaginary part (b) of
the third-order optical susceptibility χ(3) for the same values of the exciton–phonon mode
coupling strength as the ones considered in Figure 3, in which the spectra of the linear
optical susceptibility were explored. For simplicity, in Figure 5, we present the spectra
of the real and the imaginary part of the dimensionless coefficient A∗9 . If we substituted
Equation (12) into Equation (9), we noted that the spectral profile of χ(3) should exhibit a
sharp resonance centered around ω = ωn/2 (which was found by setting the denominator
of the C∗6 coefficient equal to zero) and a broader resonance placed at ω = ω10 + g2/ωn
(which could also be derived based on the mathematical formula of the A∗9 coefficient).
These resonances, both being theoretically predicted, were indeed observed in the spectra
presented in Figure 5. We noted that the left resonance, which arose on the spectrum
of Re[χ(3)] at ω = ωn/2, was quite sharp, and it also presented an inverse Lorentzian
profile, while the resonance detected in Im[χ(3)] exhibited a Fano-type profile. These
resonances were observed in the insets inserted in captions (a) and (b), respectively. We
noted that the amplitude and the position of the resonance, which were centered around
ω = ω10 + g2/ωn, were both proportional to the square of the coupling strength coefficient
between the exciton and the phonon mode, as was theoretically predicted. On the other
hand, the amplitude of the resonance detected at ω = ωn/2 did not really seem to exhibit a
well-specified pattern, as the values of the physical parameters of the system were modified.
However, the position of this resonance was totally unaffected by the modification of the
coupling strength between the nanoresonator and the exciton, as expected.

Finally, in Figure 6, the real part (a) and the imaginary part (b) of the third-order optical
susceptibility χ(3) are presented for different values of the exciton resonance frequency.
More specifically, the blue solid curve corresponds to ω10 = 5 GHz, while the green dashed
curve and the magenta dotted curve correspond to 10 GHz and 15 GHz, respectively.
In addition, the exciton–phonon coupling strength g was equal to 10 GHz, as in the case of
the χ(1) spectra presented in Figure 4. Since the value of the fundamental phonon mode
ωn was not modified, the position of this resonance did not practically change. However,
the resonance arising at ω = ω10 + g2/ωn was transposed to the right when the exciton
resonance frequency is increased, since its position presented linear dependence on the ω10
parameter. Hence, equally spaced values of the exciton energy led to a set of equidistant
spectral peaks. We also observed that when ω10 increased, the amplitude of the sharp
resonance decreased at a decelerating rate, whereas the amplitude of the broader resonance
remained intact.
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4. Conclusions

In this work, we examined the linear and third-order optical responses of a doubly
clamped suspended graphene nanoribbon nanoresonator that was coupled to a small-scale
localized exciton. We assumed that the entire system interacted with a probe electromag-
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netic field, while the fundamental phonon mode of the nanoresonator was consistent
with the exciton transition of a two-level system. The Hamiltonian was introduced in the
Heisenberg equation, and the relative Langevin equations of motion were derived. We
next applied a third-order Taylor expansion of the density matrix elements with respect
to the Rabi frequency of the probe field and obtained analytical expressions for the linear
and the third-order optical susceptibility of the system. The spectrum of the linear optical
susceptibility presented a single resonance that had a typical near-resonance dispersion
profile in the spectrum of its real part, and also exhibited a single peak in the spectrum of its
imaginary part. The position of the resonance presented a linear dependence on the second
power of the strength characterizing the coupling between the exciton and the phonon
mode, as well as on the exciton resonance frequency, whereas its width and its amplitude
were independent of the value of these parameters. In the third-order spectral response,
we observed a sharp dip (Fano-type resonance) on the spectrum of its real/imaginary
resonance arising at low values of the frequency of the probe field, as well as a broader
Lorentzian peak (Fano-profile resonance) arising at higher values of the frequency of the
probe field. The position of the sharp resonance depended solely on the frequency of
the fundamental flexural phonon mode, whereas the position of the broader resonance
exhibited the same patterns as the ones discovered for the resonance observed in the profile
of the linear susceptibility. The amplitude of the broad resonance was proportional to the
square of the coupling strength coefficient, whereas it did not depend on the characteristic
value of the exciton resonance frequency. The dependence of the characteristics associated
with the resonances in the exciton–phonon coupling constituted a strong indication that
this effect may be useful in sensing applications.
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