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Dysregulated expression of the transcription factor MYCN is frequently detected in
nervous system tumors such as childhood neuroblastoma. Here, gene amplification of
MYCN is a single oncogenic driver inducing neoplastic transformation in neural crest-
derived cells. This abnormal MYCN expression is one of the strongest predictors of poor
prognosis. It is present at diagnosis and is never acquired during later tumorigenesis of
MYCN non-amplified neuroblastoma. This suggests that increased MYCN expression is
an early event in these cancers leading to a peculiar dysregulation of cells that results in
embryonal or cancer stem-like qualities, such as increased self-renewal, apoptotic
resistance, and metabolic flexibility.
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INTRODUCTION

MYCN belongs to a small family of genes, which in addition to MYCN (or N-Myc) includes two
closely related genes, C-Myc and L-Myc. MYC proteins are master regulators of cell fate and part of a
network of interacting transcription factors. Together, these transcription factors regulate the
expression of multiple genes involved in cell-proliferation, growth, senescence, metabolism,
differentiation, and apoptosis (1). More specifically, MYC proteins bind to active promoters and
enhancers altering transcription mediated by all three RNA polymerases and affecting the
expression of more than 15% of all genes in a cell (2–4). Dysregulated expression of MYC genes
are frequently observed in cancers of different origin, implicating that MYC proteins have central
functions during carcinogenesis (2–4). Additionally, MYC proteins also affect the tumor
microenvironment; MYC protein was shown to regulate the interaction between tumor cells and
the host immune cells by controlling the synthesis of cytokines mediating communication between
tumor cells and myeloid cells (5–7).

Studies in mice showed that both Myc (C-myc) and Mycn (N-myc), but not Mycl (L-myc), are
fundamental for normal development as targeted deletions of these two genes in mice are embryonic
lethal at mid-gestation (8–12). While C-myc is expressed throughout the mouse embryo and at all
developmental stages analyzed; N-myc expression is restricted to hematopoietic stem cells and cells
within the developing nervous system (12–16). The restricted expression pattern of N-myc during
development may be mirrored in human tumors since cancers with a neural cell origin like
neuroblastoma, medulloblastoma, retinoblastoma, astrocytoma and glioblastoma, as well as,
hematological malignancies frequently overexpress MYCN. However, overexpression of MYCN
has also been reported in Wilms tumors, rhabdomyosarcomas, prostate, pancreatic and lung
cancers (17). The mechanisms for MYCN overexpression in tumors have several facets, ranging
from induced transcriptional activation ofMYCN, increased MYCN protein stabilization caused by
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dysregulated MYCN phosphorylation, and reduced proteasomal
degradation to MYCN gene amplification (17–19). Pediatric
cancers usually develop during a much shorter time-period
and with significantly fewer genetic abnormalities compared to
adult tumors. Some of these childhood tumors have embryonal
characteristics that are most probably initiated by aberrations in
genes and/or deregulated expression of genes causing retention
of cell immaturity and increased proliferation capacity (18). In mice
models, guided ectopic expression of N-myc to the developing
nervous system has been shown to be a potent oncogenic driver and
results in the development of medulloblastoma and neuroblastoma
(20–22).
MYCN IN NEUROBLASTOMA

Neuroblastoma is a cancer of the peripheral nervous system that
almost exclusively occurs during early childhood. Although
neuroblastoma is a relatively rare disease affecting 1 of 8,000 live
births, or 6%–10% of all childhood tumors, the disease still accounts
for 12%–15% of all cancer-related deaths in children. 40% of the
patients diagnosed with neuroblastoma are younger than 1 year and
themedian age for diagnosis is 17-18months whereas less than 5% of
the patients are older than 10 years establishing neuroblastoma as the
most common and deadly tumor of infancy (23). Clinically,
neuroblastoma is characterized with a heterogeneous disease
spectrum ranging from patients with widespread tumors that
spontaneously regress or differentiate without treatment to
treatment-resistant tumors with metastatic spread despite intensive
multimodal treatment approaches. This heterogeneity is mirrored in
overall patient survival; neuroblastoma patients with low- to
intermediate-risk disease have 85-90% survival rates, whereas 50%
of patients with high-risk neuroblastoma succumb to the disease.

The risk stratification of low-, intermediate- and high-risk
patients usually becomes evident through chromosomal analysis.
Low-risk neuroblastoma commonly displays whole chromosomal
gains with a hyperdiploid (near triploid or penta/hexaploid)
chromosomal landscape, whereas high-risk neuroblastoma
contains segmental chromosomal aberrations that affect only a
part of a given chromosome. The most common chromosomal
aberration related to poor prognosis in neuroblastoma is somatically
acquired segmental gain of 17q, hemizygous deletions of 1p and
11q, and MYCN gene amplification. In addition, genomic
rearrangements at chromosomal region 5p15.33, located proximal
of the telomerase reverse transcriptase gene (TERT) that results in
chromosomal changes, DNA methylation and enhanced TERT
expression have also been observed in high-risk neuroblastoma
samples. Gene amplification of MYCN was one of the earliest
genetic markers discovered in neuroblastoma and is still one of
the strongest predictors of poor prognosis. The prevalence of
MYCN amplification in neuroblastoma patients is 20%–30% and
the overall survival for these patients remains at less than 50% (23–
25). In high-risk neuroblastoma patients, if amplification ofMYCN
occurs it is always present at diagnosis. Patients with low-risk
disease lack MYCN gene amplification and never progress to
high-risk disease nor do they acquire extra copies of the MYCN
Frontiers in Oncology | www.frontiersin.org 2
gene (17, 23, 26). This indicates thatMYCN gene amplification is an
early and perhaps initiating event driving the development of a
high-risk neuroblastoma subgroup of tumors which is in contrast to
most other cancers where gene amplifications are considered to be
late events during tumorigenesis (17, 27).

Adult cancer is a multistep process that evolves over many years
caused by genomic instabilities giving rise to transformed cells that
have the capacity to develop into life-threatening malignant tumor
cells. Pediatric cancers, on the other hand, develop during a short
time-period and contain much fewer genomic aberrations and
mutations compared to adult cancers. This suggests that certain
pediatric cancers, including neuroblastoma, arise from cells with
embryonal features or from mature prenatal cells that through
external factors have acquired embryonal properties favoring
proliferation (18). Although MYCN gene amplification is detected
in approximately 50% of high-risk neuroblastoma cases and an
oncogenic driver for neuroblastoma, there exists no current
evidence describing when and how the amplification of the
MYCN gene is initiated. Neither is it known in detail how and in
which cell type the expression ofMYCN is initiated in order to drive
neuroblastoma tumorigenesis. Furthermore, it should be noted that
the 2p24 chromosomal amplicon observed in high-risk
neuroblastoma encodes other genes in addition to MYCN, such as
the anaplastic lymphoma kinase (ALK). ALK has also been shown
to drive neuroblastoma formation and to potentiate the oncogenic
activity of MYCN in neuroblastoma (28–30).
NEUROBLASTOMA IS A NEURAL CREST
DERIVED MALIGNANCY

Neuroblastoma derives from cells within the neural crest, a
transient structure consisting of multipotent progenitor cells
present during embryogenesis. The majority of the tumors are
located in the abdomen along the sympathetic chain and in the
adrenal gland medullary region (23, 27). The neural crest
develops between the neural plate and non-neural ectoderm, in
an area named the neural plate border, during gastrulation and
neurulation (Figure 1) (31). Neural crest cells undergo epithelial-
to-mesenchymal transition (EMT) during neurulation and
migrate extensively from the neuroepithelium to more distant
locations in the embryo where the cells differentiate into a wide
varietyof cell types for specificorgansystems including theperipheral
and enteric nervous systems, skin pigment, cardiovascular system
and craniofacial skeleton (32). Neural crest cell maturation,
migration, specification and differentiation are tightly controlled
processes guided by gene regulatory networks, consisting of various
transcription factors.These transcription factors becomesequentially
activatedby external factors likeBMPs,WntandFGF(33).The cell of
origin for neuroblastoma has yet to be determined, but the
combination of timing in disease onset and clinical presentation
suggest that neuroblastoma is derived from sympathoadrenal
progenitor cells within the neural crest that differentiate to
sympathetic ganglion cells and adrenal catecholamine-secreting
chromaffin cells.
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Recent reports, based primarily on in vitro studies of
neuroblastoma cell lines, have demonstrated that neuroblastoma
consists of two phenotypically different subpopulations of cells,
called adrenergic and mesenchymal. These two subpopulations
show distinct networks of super enhancer-associated transcription
factors (34, 35). In vitro, these cell lineages can interconvert and
exhibit differences in sensitivity to chemotherapeutic drugs.
Interestingly, the mesenchymal population of cells seems to be
more drug resistant whichmay be important for the development of
drug resistance frequently observed in patients with high-risk
neuroblastoma (19, 34). The identity of a cell from the adrenergic
subtype is defined by key regulatory genes, such as PHOX2B,
HAND2, or GATA3, which are interconnected by reciprocal
regulation (35). This core regulatory circuitry can be reinforced
by MYCN amplification through a mechanism called “enhancer
invasion”. Enhancer invasion depends on combined enhancer co-
Frontiers in Oncology | www.frontiersin.org 3
occupation of individual gene enhancer/promoter regions by
MYCN and TWIST1 (36). Another regulatory loop involving
MYCN has recently been identified and depends on ASCL1
which is directly regulated by MYCN together with LMO1. In the
same study, it has been shown thatASCL1 is, itself, a part of the core
regulatory circuitry under the adrenergic identity and expression of
ASCL1 can induce differentiation arrest in neuroblastoma cells (37).

Overexpression of Mycn in migrating neural crest cells of
chicken embryos increases the proportion of neurons at the cost
of other cells. Loss ofMycn in mouse embryos decreases the size of
the entire nervous system, including spinal, peripheral and cranial
ganglia and reduces the number of mature neurons in the spinal
ganglia (9). In the sympathetic ganglia, expression of C-myc is
considerably higher compared to N-myc. This indicates that N-myc
expression is induced in the sympathetic ganglia during gestation
and then switched off before birth (38). Interestingly, the expression
FIGURE 1 | N-MYC acts as a Cancer Stem Cell Factor in the Developing Neural Crest and Promotes Tumorigenesis in Neuroblastoma. Upper Panel: The neural
crest is a transient structure located in the neural plate border, an area between the neural plate and the non-neural ectoderm. From the neural crest, multipotent
progenitor cells delaminate, migrate through epithelial-to-mesenchymal-transition (EMT), and differentiate into versatile structures within the whole organism. Lower
Panel: While C-Myc is the main regulator in pluripotent cells of early embryonal development, MycN is highly expressed in the multipotent cells of the migratory and
post-migratory neural crest. During differentiation, MycN expression is downregulated and the sympathoadrenal precursor cells or progenitor cells mature into
different cell types of the autonomic neural cell lineage (see asterisk), such as sympathetic ganglion cells, chromaffin cells of the adrenal medulla or cells of the
peripheral nervous system. Even though there is strong evidence that MYCN gene amplification is an early and maybe initiating event, it has not been proven yet
when and how the amplification takes place. The aberrant expression of MYCN induces a unique cancer stem cell-like phenotype by enabling infinite self-renewal,
apoptotic resistance, and via metabolic reprogramming characterized by increased glycolysis together with an active oxidative phosphorylation. The establishing
neuroblastoma consists of heterogeneous cell populations.
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level of C-myc does not change afterN-myc downregulation. On the
other hand, downregulation of N-myc strongly upregulates the
expression of Phox2b, Mash1, Hand2, and Gata3 genes.
MYCN AS AN ONCOGENIC DRIVER IN
NEUROBLASTOMA

Despite that several molecular prognostic factors with oncogenic
potentials have been described in neuroblastoma, only activating
ALK mutations and MYCN overexpression were shown to be de
novo oncogenic drivers. This is seen when mutation or
overexpression of these molecules give rise to neuroblastoma
in genetically engineered animal models.

The ALK gene located on chromosome 2p23 encodes a
receptor tyrosine kinase that is normally expressed at high levels
in the nervous system and was originally identified as a fusion
protein in non-Hodgkin’s lymphoma. Zhu et al. generated
transgenic zebrafish models in which human MYCN, human
ALK or ALK harboring the F1174L activating mutation
(ALKF1174L) were placed under control of the dopamine b-
hydroxylase (dbh) promoter (30). F1174L mutation is one of the
most frequent activating somatic mutations in human cell lines
and neuroblastoma patients (39). Tumor penetrance and the rate
of tumor induction were much higher in zebrafish expressing both
MYCN and ALK compared to zebrafish expressing either MYCN
or ALK. Additionally, zebrafish expressing both MYCN and
ALKF1174L transgenes demonstrated increased tumor penetrance
compared to all other transgene combinations. The expression of
alk increased the effect of mycn by blocking apoptosis in MYCN-
overexpressing sympathoadrenal neuroblasts (30). ALKmutations
can be detected in all clinical stages while an association with a
poorer outcome can only be detected in intermediate- and high-
risk neuroblastoma. In 2%–3% of all cases, ALK can be further
activated by gene amplification leading to protein expression and
kinase activity. Interestingly, this is specific to neuroblastoma as it
has been described that ALK amplification does not result in
protein expression in non-small-cell lung cancer and is therefore
not involved in its pathogenesis but maybe only a passenger event
(40–42).

Targeted expression of Lin28b to sympathetic adrenergic lineage
cells gives rise to neuroblastoma. One mechanism of induced tumor
development indicates a Lin28B-mediated downregulation of Let-7
which results in high MYCN protein expression suggesting that
MYCN is the actual driver of oncogenesis (43). Others have
described let-7-independent pro-tumorigenic effects of LIN28B
e.g. via protein-protein interaction with the transcription factor
ZNF143 recruiting LIN28B to activate promoters of genes involved
in neuroblastoma progression (44, 45).

MYCN is highly expressed in the earlypost-migratoryneural crest
(Figure 1) and regulates ventralmigration and growth of cells within
the neural crest during normal murine sympathoadrenal
development. MYCN expression is gradually downregulated in
differentiating sympathetic neurons, which suggest that
sympathoadrenal maturation is independent of MYCN expression.
Frontiers in Oncology | www.frontiersin.org 4
The sympathoadrenal precursor cells maturate into neural or
chromaffin cells. Moreover, it has been proposed that the
preneoplastic lesions, which can develop into neuroblastoma, arise
in sympathoadrenal precursor cells not having received or reacted to
signals controlling the neuronal or chromaffin cell fate. Studies in
zebrafish demonstrated that ectopic expression of mycn in
sympathoadrenal precursor cells obstruct the development of
chromaffin cells causing the development of neuroblastoma. An
excess of precursor cells is produced during the transition to
sympathoadrenal cells, which during normal stages of maturation,
are submitted to controlled apoptosis caused by deficiency of local
neural growth factors. As MYCN is a master transcription factor
important for both proper cell proliferation and apoptosis, a
persistent expression of MYCN during the maturation stages of
sympathoadrenal precursors could result in inhibition of apoptotic
signaling andmaintained proliferation that ultimately could result in
the development of neuroblastoma (17).

In a genetically engineered neuroblastoma mouse model,
called Th-MYCN (22), accumulation of small, blue round cell
populations in the paravertebral ganglia are observed at
embryonic day 14 (46). This population of cells called
neuroblasts later develops into neuroblastoma observed in
100% of the Mycn homozygous mice from postnatal week 6.
Similar observations were shown in transgenic zebrafish with
neural crest cells expressing mycn. Furthermore, overexpression
of MYCN in primary neural crest cells isolated from an
embryonic neural tube explant developed tumors that were
highly similar to MYCN amplified neuroblastoma when the
cells were inoculated in mice (47). However, blocking
expression of Mycn in neural crest cells was recently shown to
induce perinatal lethality in mice which suggests that primary
neural crest cells are not the origin of MYCN amplified
neuroblastoma (48). This is in line with a study showing that
Mycn is expressed together with the phosphorylating-stabilizing
factor, CIP2A in regions of the neural plate and that Mycn
protein is excluded from the neural crest stem cell domain (49).
This indicates that high-risk subgroups of neuroblastoma may be
initiated before the emigration of neural crest cells and before
sympathoadrenal specification. The importance of MYC
expression in neuroblastoma is further emphasized by the fact
that neuroblastoma without MYCN gene amplification
frequently expressed high levels of C-MYC indicating that C-
MYC and N-MYC are mutually exclusive in neuroblastoma (50).
MYCN AS A STEM CELL FACTOR

The interrelation of neural crest development and neuroblastoma
tumorigenesis is one good example of how developmental biology
and cancer research fuel each other in their mutual discoveries. In
fact, it was the early analysis of teratocarcinomas that led to the
discovery of embryonic stem cells (ESC) (51). The theory of cancer
stem cells has elucidated the exploitation of embryonic pathways by
malignant cells, not only in pediatric tumors, but in most cancers.
More recent studies have further demonstrated that malignant as
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well as non-malignant tissues can possess unexpected plasticity
(52, 53).

The Nobel-prize awarded discovery of induced pluripotency
by Yamanaka in 2006 has opened a new chapter in regenerative
medicine and demonstrated a paradigm shift in our
understanding of cellular plasticity and lineage restriction (54).
By reprogramming fibroblasts to become induced pluripotent
stem cells (iPS) with activation of merely four transcription
factors (SOX2, OCT4, KLF4, and C-MYC), Yamanaka showed
that no definite cell state is truly irreversible. KLF4 and C-MYC
are well known oncogenes, indicating similarities in
reprogramming and tumorigenesis. The oncogenic potential of
iPS-derived cells is a major concern in today`s regenerative
medicine (55) and has led to a deeper analysis of C-MYC and
its tumorigenic potential during the process of reprogramming.
Other protocols for the generation of iPS cells without direct
MYC activation have been described, although they usually have
a lower reprogramming efficiency (56).

One important hallmark of all stem cells is their continuous
self-renewal which can be described as proliferation without
differentiation. By inhibiting the expression of cell lineage
specifiers while simultaneously inducing cell cycle progression,
MYC proteins fulfill a major function in establishing self-renewal
in ESCs, as well as in cancer stem cells (1, 57, 58).

During early embryogenesis in mice, C-myc and N-myc are
highly redundant and can compensate each other’s loss. Single
knock-outs have no effect on the self-renewal or pluripotency of
mouse ESCs, while N-myc can be substituted for C-myc during
reprogramming (10, 57, 59, 60). However, later during
development Myc expression becomes tissue specific and single
knock-outs of C-myc and N-myc become lethal during mid-
gestation (10, 12, 16, 26). Besides tissue specific expression, Myc
proteins are highly conserved in their structure and function
which has been proven in murine development by transgenic
mice expressing N-myc from the C-myc gene locus which
generated healthy and fertile offspring (61). These along with
other studies have shown that C-myc and N-myc fulfill similar
functions as stem cell factors, but tissue specific differences have
been described within their networks of protein interactions and
transcriptional regulation (62). Insights obtained mainly by the
analysis of C-myc as a pluripotency factor can, to a certain
degree, be transferred to N-myc’s role in stem cell research and
during oncogenesis.
MYCN AS AN APOPTOSIS REGULATOR

Oncogenic transformation and cellular reprogramming are
similar processes that are impeded by cell intrinsic barriers. A
critical mechanism is the induction of apoptosis or senescence
facilitated by p53, the most commonly mutated gene in the Pan-
Cancer cohort of The Cancer Genome Atlas (TCGA) (63).
Balance in p53 activity is essential for self-renewal of
undifferentiated cells and is tightly regulated at the mRNA-, as
well as at the protein-level (64). During reprogramming, p53 acts
as a roadblock. Thereby p53 inhibition increases reprogramming
Frontiers in Oncology | www.frontiersin.org 5
efficiency, but at the cost of increased oxidative stress, shortened
telomeres and higher risk of DNA damage (65). Results by Olsen
et al. have indicated that cultured primary mouse neural crest
cells with a heterozygous p53 deletion (p53+/-) allow more
permissive tumor induction by lentiviral MYCN transduction
than p53 wild type cells (47). In the vast majority of human
neuroblastoma, however, no p53 mutations are detectable at
diagnosis and tumor cells express nuclear protein as well as a
functional cytochrome c-caspase cascade (66–68). C-myc and N-
myc can both bind the p53 promoter and induce its expression
without eliciting apoptosis indicating additional anti-apoptotic
effects regulated by Myc (69, 70). Many players in this complex
network have been studied extensively constituting promising
candidates for future targeted therapies (71). The main
antagonist of p53 is Mdm2, an E3–ligase contributing to the
ubiquitination and the repression of p53. Mdm2 is directly
induced by N-myc but also regulates N-myc in a feedback-
manner (72, 73). In neuroblastoma, Mdm2 can acts as a tumor
promoting factor as seen in Mdm2 haploinsufficient (Mdm2+/-)
MYCN transgenic mice which show a decreased tumor
incidence, latency, and reduced tumor growth (74). The same
study described that Mdm2+/- tumors had a decreased level of
p19Arf (Cdkn2a), another tumor suppressor that is reciprocally
regulated by N-myc. p19Arf in turn can be inhibited by Twist-1
which is also a direct target of N-myc (75). The upregulation of
Twist-1 correlates with MYCN-amplification in neuroblastoma
indicating that apoptosis evading mechanisms are different in
MYCN amplified compared to non-amplified neuroblastoma
(76). A direct targeting of the MYCN gene using siRNA,
CRISPR/Cas9 crRNA molecules or specific alkylating agents
induced apoptosis in MYCN amplified cells but not in non-
amplified cells (77). These studies indicate that N-myc alone can
prevent apoptosis or senescence in neuroblastoma without
depending on mutations in additional tumor-promoting genes.
N-myc regulates the transcriptional network around p53 to
overcome these intrinsic barriers, similar to the artificial
activation of the pluripotency program in healthy somatic cells.
Why the incidence of initial p53 mutations in neuroblastoma is
only around 2% remains an open question, especially if the
selection pressure during early tumorigenesis preferentially
selects cells with an active p53 signaling (67). In early analysis
of heterozygous p53-deficient mice (tp53+/-), it was observed that
a high proportion of tumors retain the functional copy of p53
while only a minor fraction lost their wild-type allele. The
functional copy of p53 prevented chromosomal instability and
induced apoptosis after radiation therapy (78).

During the early onset of neuroblastoma, the cell of origin
depends on self-renewal to maintain tumor growth as a
homeostatic process. It is known from pluripotent cells that
increased cellular stress can disturb this homeostasis, inhibit self-
renewal and induce differentiation or senescence. P53 can
alleviate cellular stress by DNA damage control or by reducing
oxidative phosphorylation (65). Downstream effects of MYCN
might induce a transient reduction of p53 protein, e.g. during G1
cell cycle checkpoint phase. There is further evidence that micro
RNAs such as miR-380-5p contribute to this fine-tuned balance
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(79). Chemotherapy, however, disturbs this balanced activity of
p53 by inducing massive DNA damage forcing p53 wild-type
tumors to regress. Many high-risk neuroblastomas relapse as a
therapy-resistant metastatic disease with increased frequency of
mutations in P53-MDM2- p19Arf pathway (80).
MYCN CONFERS METABOLIC
PLASTICITY

During embryonic development, stem cells undergo rapid cell
duplications while passing through different cell states in a
continuously changing environment. Their metabolism is
challenged to provide a sufficient amount of energy, in the
form of ATP, but also to generate molecules for biosynthetic
demands such as DNA replication or cell growth. This versatile
flexibility is re-acquired by somatic cells during reprogramming
and is also shared by cancer cells (81).

Differentiated somatic cells usually generate energy by
metabolizing glucose to carbon dioxide. In the initial anaerobic
glycolytic step, glucose is oxidized to pyruvate which can be
converted into lactate. Alternatively, pyruvate can enter the
mitochondrial matrix where it is further catabolized to Acetyl-
CoA feeding the tricarboxylic acid (TCA) cycle. The TCA cycle
takes part in cellular redox reactions by providing reduced
oxidizing agents such as NADH and FADH as electron sources
for oxidative phosphorylation (OxPhos), which is the
mitochondrial direct ATP synthesis pathway when under an
aerobic state. While OxPhos produces vastly more ATP per
glucose molecule, ATP generation is faster during anaerobic
glycolysis (82, 83). The observation that cancer cells fulfill a
glycolytic switch, meaning they depend mostly on anaerobic
glycolysis despite a sufficient oxygen supply, is referred to as the
Warburg effect or aerobic glycolysis (82).

Otto Warburg stated in his article from1956, “On the Origin
of Cancer Cells”, that the “irreversible injury of respiration”
constitutes the first phase of cancer development (84). A deeper
understanding of the cellular metabolism has revealed that
cataplerosis, the use of partially oxidized metabolites from the
TCA cycle, is an important and eclectic source for versatile
anabolic processes (85). Thus, pyruvate and alpha-ketoglutarate,
key intermediates in the TCA cycle, are important building
blocks for non-essential amino acids and Acetyl-CoA is the
precursor molecule of fatty acid synthesis and histone
acetylation. Further, direct derivatives of glucose can be
incorporated into the pentose phosphate pathway providing
ribose for nucleotide synthesis (82, 85). Otto Warburg couldn’t
be aware that the incomplete oxidation of substrates constitutes
an advantage for the anabolic processes in cancer tissue despite a
less efficient ATP generation. The investigation of embryonic
stem cells and later of induced pluripotent stem cells has shown,
however, that dependency on glycolysis in pluripotent stem cells
and cancer cells is not a consequence, but a pre-requisite of
successful embryonal development and tumorigenesis (81).

ESCs can obtain different states of pluripotency, of which the
naïve state better reflects the ground state pluripotency of the inner
Frontiers in Oncology | www.frontiersin.org 6
cell mass from the preimplantation blastocyst than the primed
pluripotency state. While MYC proteins are crucial in order to
maintain pluripotency in both states, human naïve pluripotent cells
show a specific nuclear expression of MYCN associated with a
higher glycolytic flux (86). If the glycolytic enzyme hexokinase II is
pharmacologically inhibited by the pyruvate analog 3-
bromopyruvate, cultured ESCs switch from anaerobic glycolysis to
OxPhos and lose their pluripotency, even under pluripotency
promoting conditions indicating the functional role of the
glycolytic metabolism in pluripotency (87). Likewise, the
generation of iPS from somatic cells highly depend on functional
glycolysis as its inhibition reduces reprogramming efficiency while it
is supported by the stimulation of glycolytic activity (88). Several
studies have indicated that the metabolic restructuring during
reprogramming precedes the expression of pluripotency factors.
The expression of MYC in cancer cells or as a transduced factor
during reprogramming supports this switch by inducing hypoxia
inducible factor 1a (Hif1A) and its downstream targets pyruvate
dehydrogenase kinase and other glycolytic enzymes (88–91).
However, a study in MYC inducible cancer cell lines has shown
that highly proliferating MYC expressing cells require active
OxPhos together with increased glycolysis to drive their fast cell
cycle progression (92).

Similar results have been described in neuroblastoma, where
MYCN-amplified cells display a distinct metabolic structure
defined by high energy consumption and production compared
to MYCN non-amplified neuroblastoma cells (93, 94). In a
detailed metabolic analysis of MYCN-amplified neuroblastoma
cells, Oliynyk et al. showed that MYCN induction upregulates
glycolytic enzymes such as hexokinase-2 but that the dominant
effect was an increase in OxPhos induction (94). Interestingly,
MYCN activation not only increased the oxygen consumption
rate but also OxPhos response provoked by metabolic stress.
This indicates increased flexibility for regulating glycolysis or
mitochondrial respiration within MYCN expressing cells (94).

Beyond glucose, glutamine and fatty acids are important fuels
for mitochondria generating ATP and other macro-molecules.
MYCN enables neuroblastoma cells to oxidize fatty acids with a
higher capacity than in non-MYCN amplified cells. This feature
might become of clinical relevance as it has been shown that the
inhibition of b-oxidation induces differentiation in MYCN
expressing tumor spheroids and leads to a decreased tumor
growth in MYCN amplified cell lines when injected into nude
mice (94). Another metabolic hallmark of many cancers is
increase in glutaminolysis. Glutamine is a versatile nutrient
and its derivatives are involved in many anabolic processes
within the cell. Its carbon atoms can be fed into the TCA cycle
or can be utilized to generate amino or fatty acids. Glutamine
further provides nitrogen for amino acid production as well as
for nucleotide biosynthesis (95). Highly proliferating cancer cells
are often addicted to glutamine and studies have shown that
MYCN leads to an upregulation of glutaminolytic enzymes,
while also selectively inducing apoptosis in glutamine depleted
cells (96, 97). Although, a recent in vitro study found that MYCN
expression can enable tumor cells to synthesize glutamine from
glucose-derived alpha-ketoglutarate (94, 98). The ability to adapt
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to a low-glutamine environment is highly beneficial for
proliferating cancer cells in a poorly vascularized environment.
This has therapeutic implications as the glutamine metabolism is
currently studied as an anticancer target (95).

The above-mentioned studies have shown that the
metabolism of MYCN amplified cells is not only driven by the
strong proliferative stimulus but remains flexible to provide high
amounts of energy as well as bio-macromolecules for anabolic
processes. This metabolic structure of a regulated balance
between active OxPhos and glycolysis has also been described
during the first days of somatic reprogramming as well as in early
naïve ESCs being a prerequisite to successfully achieve
pluripotency (89, 99–101). Direct comparisons of MYCN
amplified versus non amplified cells have shown that MYCN is
one of the metabolic master regulators equipping cells with a
high versatility resembling mechanisms of self-renewing
stem cells.
SELF-RENEWAL IN MYCN NON-
AMPLIFIED HIGH-RISK
NEUROBLASTOMA

MYCN amplification drives tumorigenesis in neural crest cells by
maintaining or re-establishing embryonic features in these cells.
By conferring stem-like qualities such as infinite self-renewal,
apoptotic resistance or metabolic flexibility, MYCN contributes
to the life-threatening characteristics of high-risk neuroblastoma.
Even though, MYCN gene amplification accounts for 50% of all
high-risk neuroblastoma cases, the malignant MYCN non-
amplified neuroblastomas never gain secondary gene
amplifications during tumor progression or relapse, which is
an uncommon feature of oncogenes in adult cancers (17). High-
risk, MYCN single copy neuroblastomas often express MYC as
the oncogenic driver while MYCN is not expressed in these cells
(50). Usually, only one of these two MYC proteins can be
expressed in a tumor cell at a time, with MYC often
dominating over MYCN by repressing MYCN expression (50,
102). Coincidentally, higher MYCN expression in MYCN non-
amplified tumors was reported to be correlated with favorable
prognosis (50, 103). It must be mentioned that these tumor cells
never reach the MYCN mRNA expression level of MYCN
amplified tumors. Most MYC target genes are regulated in a
dose dependent manner and non-MYCN-amplified tumor cells
that artificially overexpress MYCN retain their ability of
neuronal differentiation (104, 105).

Inducing stemness without direct MYC overexpression has
been shown by reprogramming somatic cells without using
MYC. Interestingly, similar pathways that are used to avoid
MYC transduction in iPS generation are potentially involved in
the tumorigenesis of MYCN non-amplified neuroblastomas.

Lin28b, as one example, has been a part of the pluripotency
factors first used in reprogramming of human somatic cells that
did not depend on the enforced overexpression of MYC (106).
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It has always been suspected, however, that Lin28b expression
leads to an indirect activation of endogenous MYC proteins (56).

Another strategy involves the activation of the Wnt pathway,
a well described and highly conserved signaling cascade in
embryonal development, tissue stem cells and tumorigenesis.
Together with MYC proteins and other factors, Wnt signaling is
involved in the initial induction of neural crest cells, their
maintenance and later cell fate determination (33, 107). High-
risk MYCN non-amplified neuroblastoma often have an
increased Wnt activity which contributes to its high
aggressiveness by inducing c-MYC expression (108). A
reciprocal mechanism has been described for the Wnt-
inhibitor Dickkopf-3 (DKK3) which induces tumor cell
maturation and correlates with a favorable prognosis. In
MYCN amplified tumors, Dkk3 is often downregulated by
MYCN leading to an undifferentiated phenotype and higher
aggressiveness (109). With the help of strong Wnt signaling,
artificial c-MYC activation becomes dispensable when self-
renewal and pluripotency is re-induced in differentiated
somatic cells (110). Of the aforementioned mechanisms,
activation of endogenous MYC genes is most closely associated
with high risk in MYCN non-amplified neuroblastoma.
Comprehensive transcriptome analyses elucidates the
expression of MYC target genes and their embedded pathways,
which can be indicative for the clinical outcome, independent of
MYCN amplification (111). If the expression of MYC
downstream factors such as Hif or the Krüppel-like family of
transcription factors (Klf) is highly expressed, the oncogenic
activity of MYC becomes irrelevant (112).
PRECLINICAL IN VIVO MODELS OF
NEUROBLASTOMA

Weiss et al. have previously demonstrated that Mycn has the
potential to drive neuroblastoma in a transgenic model mouse
model, i.e. Th-MYCN mice, which carry, in their germline,
human MYCN cDNA under the control of the rat tyrosine-
hydroxylase promoter (22). Neuroblastoma growth in these Th-
MYCN mice begins with hyperplastic lesions in sympathetic
ganglia through the first few weeks after birth (58). Mice
containing MYCN transgene targeted to the neural crest cells
develop neuroblastoma with a phenotype very similar to the
human neuroblastoma (46).

Incorrect MycN expression shortly after birth in the
paravertebral ganglia caused neuroblast hyperplasia in Th-
MYCN mice. N-myc amplification existed at low levels in
perinatal neuroblast hyperplasia from both hemizygote and
homozygote mice. The level of N-myc in hyperplasias and
tumor tissue was highest at week 1 of age. A stepwise increase
of N-myc amplification was only seen in tumor formation of
hemizygote mice. The neuroblast hyperplasia in the ganglia from
Th-MYCN did not express differentiation markers, such as beta-
III-tubulin or tyrosine hydroxylase, differing from nearby
neuronal cells (46).
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Althoff et al. generated a transgenic mice, termed LSL-MYCN;
Dbh-iCre, with Cre-conditional induction of MYCN in Dbh-
expressing cells. These mice form tumors irrespective of strain
background with an incident of 75% (113).

In the Th-MYCN mouse model, tumor penetrance is only high
in a 129 x 1/SvJ strain background. Tumors in LSL-MYCN;Dbh-
iCre mice arise in superior cervical ganglion, celiac ganglion or the
adrenals covering all locations, in which human neuroblastomas
arise. They consist of small blue round cells harboring
neurosecretory vesicles. The cells express neuroblastoma specific
genes such as paired-Phox2b, Dbh, Th, and high levels of N-myc
compared to normal tissue. The level of differentiation and tumor
location resemble the human neuroblastoma more in the LSL-
MYCN;Dbh-iCRe than in the Th-MYCN model.

Hierarchical clustering shows that tumors from the Th-
MYCN mouse model and LSL-MYCN;Dbh-iCre mice are very
similar, both at miRNA and mRNA level. In tumors from LSL-
MYCN;Dbh-iCre mice a partial gain of murine chromosome 11
was observed, syntenic to human chromosome 17q. Therefore,
this model resembles more closely the genetic aberrations
observed in human neuroblastomas better than the Th-MYCN
model which lack any additional chromosomal aberrations.

Since neural crest cells are the suspected embryonic precursor
cell in neuroblastoma, Olsen et al., generated neuroblastoma
tumors through forced expression of Mycn in neural crest cells.
The tumors were phenotypically and molecularly similar to
human MYCN-amplified neuroblastoma. The neural crest
derived neuroblastomas acquired copy number gains and
losses that are similar to those observed in human MYCN-
amplified neuroblastoma. These copy number gains and losses
included 2p gain, 17q gain and loss of 1p36. To form tumors in
these experiments, they used p53 compromised neural crest cells
from the neural tube demonstrating high expression sox10, p75,
scl1, and low expression of Th and Phox2b. The embryonic cells
were transduced with MYCN-IRES-GFP retrovirus and
inoculated subcutaneously in mice. With 100% tumor
penetrance this proved to be a good, reliable and more rapid
method of making a neuroblastoma mouse model (47).

In another study, Alam et al. examined which cell types drive
neuroblastoma growth in the Th-MYCN transgenic mice model.
They showed that both primary tumors and hyperplasia are
comprised predominantly of highly proliferative Phox2B+

neuronal progenitors. N-myc stimulates the growth of these
progenitors by both promoting their proliferation and
preventing their differentiation. They also identified a small
population of undifferentiated Nestin+ cells in both primary
tumors and hyperplastic lesions. These cells may serve as
precursors of phox2b+ neuronal progenitors. Sympathetic neural
crest cells express the pro neural genesMash1 and Phox2B. Mash1
and Phox2b promote further neuronal differentiation by
upregulating, the levels of Hand2, Phox2A, and Gata3. These
transcription factors collaborate by inducing the expression of Th
and dopamine b-hydroxylase, enzymes essential in the
catecholamine biosynthesis. Phox2B+ in hyperplastic cells from
Th-MYCN sympathetic ganglia exhibited the morphology of
undifferentiated, small round cells and expressed no measurable
Frontiers in Oncology | www.frontiersin.org 8
levels of Th. Alam et al. suggests that Phox2b+ hyperplastic cells
are halted at the progenitor stage and that Phox2b+ neuronal
progenitors are the main cellular target of N-myc in driving
neuroblastoma expansion from hyperplasia to tumors. Most of
the tumor cells expressed Phox2b, and the majority of the Phox2b+

tumor cells expressed Ki67, but no measurable levels of Th (58).
Taken together N-myc not only blocks neural progenitors’

differentiation but also promotes the proliferation of Phox2B+

neuronal progenitors. This leads to marked increases of the
progenitor population in sympathetic ganglia and subsequently
the formation of hyperplastic lesions. Alam et al. also proposes
that nestin+ cells in sympathetic ganglia are possibly the cells of
origin for neuroblastoma in Th-MYCN mice (58).

The zebrafish model showed thatMYCN induced neuroblastoma
does not develop from the earliest cells populating the superior
cervical ganglia. Instead, tumors arise from neuroblasts that migrate
into the inter-renal gland later in development, after the kidney has
developed. The neuroblasts overexpressing N-myc fail to differentiate,
resulting in reduced numbers of chromaffin cells (30).

Neuroblastoma tumors from Th-MYCN mice are composed
of several cell populations, including Phox2b+Th-, Phox2b-Th+,
and Phox2b+Th+ cells. The varying degrees of differentiation in
these tumors indicate that the tumors are heterogeneous and
may show a molecular resemblance to embryonic stem cells.
Sphere forming neuroblastomas were mainly composed of
Mycn+ and phox2b+ cells (114).
PERSPECTIVES AND CONCLUSIONS

Here, we have emphasized the role ofMYCN as an oncogenic driver
in neuroblastoma. This is seen in part through MYCN’s ability to
initiate stem-like qualities in neural crest-derived cells. A process
that is reminiscent of the artificial induction of pluripotency in
somatic cells and depends on MYC protein activity. MYCN is
significantly involved in the induction of self-renewal by the
blockage of differentiation factors as well as by inducing
proliferation. While the strong pro-proliferative signal of artificial
MYCN overexpression usually leads to apoptosis, the apoptotic
machinery in MYCN amplified tumors is reorganized in a unique
way that allows them to resist apoptotic signals and maybe even
benefit from active p53 signaling.

Increased metabolic flexibility by neglecting the Warburg Effect
and retaining mitochondrial respiration, as well as, glutamine
independence further contributes to the malignancy of MYCN
amplified tumors and their often observed therapeutic resistance.

The observation that MYCN non-amplified tumors never
gain extra copies of the MYCN gene during their development
supports the assumption that a high expression of MYCN in an
already established neuroblastoma overloads connected signaling
pathways, such as Wnt or HIF signaling.

The extensive and unique restructuring of cellular mechanisms
are further reflected by the incompatibility ofMYCN amplification
with other oncogenic events such as genomic rearrangements
affecting the TERT locus or mutations within the ATRX gene. Both
might be explained by the fact that the high MYCN expression
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already deregulates the affected pathways of telomere lengthening,
causing mitochondrial dysfunctions and replicative stress.
MYCN’s combined effects on DNA damage are incompatible in
neuroblastoma (115, 116).

The accumulated data demonstrates that high MYCN
expression can act as a single oncogenic driver in neuroblastoma
and the mechanisms for how MYCN induces neoplastic
transformation has been thoroughly described. However, we still
do not know how and at which stage during neural crest
development MYCN becomes amplified and which cells are
affected by sustained high expression of MYCN. The existing
animal models are excellent references for studying the
mechanisms of induction in tumorigenesis driven by MYCN.
Drawbacks of these animal models can be seen however during
normal development in which the N-myc expression is controlled
by the Dbh or Th promotor. Both are activated relatively late during
thematuration of cells within the neural crest andmay therefore not
fully reflect the initial neoplastic events in humans. Furthermore, for
patients with non-amplifiedMYCN neuroblastoma, high expression
of MYCN is not correlated with adverse outcomes, in fact the
opposite is observed. Instead, a trend correlating high MYCN
expression to improved outcomes was evident in these
neuroblastoma patients (103). Recent studies indicate that the
initial oncogenic event for the development of neuroblastoma
must occur early in the neural crest development and no studies
to date have identified the precise cell of origin for neuroblastoma.
Additionally, which developmental cues or molecular signals
Frontiers in Oncology | www.frontiersin.org 9
and mechanisms are inducing the somatic amplification of the
MYCN locus at chromosome 2p24.3? Is the gene amplification of
MYCN the initial genetic aberration in neuroblastoma? Is MYCN
amplification guided by other earlier genetic aberrations or is the
amplification of the chromosome 2p24.3 locus induced by random
genomic insults induced by untidy or downregulated DNA repair
mechanisms and/or external signals? These are questions that we
should address in order to fully understand the biology of MYCN
amplified neuroblastoma.
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