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AbstrACt
rationale Sleep-disordered breathing (SDB) is strongly 
linked to adverse cardiovascular outcomes (cardiovascular 
diseases (CVD)). Whether heart rate changes measured 
by nocturnal R-R interval (RRI) dips (RRI dip index (RRDI)) 
adversely affect the CVD outcomes is unknown. 
Objectives To test whether nocturnal RRDI predicts CVD 
incidence and mortality in the Wisconsin Sleep Cohort 
study (WSCS), independent of the known effects of SDB on 
beat-to-beat variability.
Methods The study analysed electrocardiograph obtained 
from polysomnography study to assess the nocturnal total 
RRDI (the number of RRI dips divided by the total recording 
time) and sleep RRDI (the number of RRI dips divided by 
total sleep time). A composite CVD risk as a function of 
total and sleep RRDI was estimated by Cox proportional 
hazards in the WSCS.
results The study sample consisted of 569 participants 
from the WSCS with no prior CVD at baseline were 
followed up for up to 15 years. Nocturnal total RRDI (10-
unit change) was associated with composite CVD event(s) 
(HR, 1.24 per 10-unit increment in RRDI (95% CI 1.10 to 
1.39), p<0.001). After adjusting for demographic factors 
(age 58±8 years old; 53% male; and body mass index 
31±7 kg/m2), and apnoea–hypopnoea index (AHI 4%), 
individuals with highest total nocturnal RRDI category 
(≥28 vs<15 dips/hour) had a significant HR for increased 
incidence of CVD and mortality of 7.4(95% CI 1.97 to 
27.7), p=0.003). Sleep RRDI was significantly associated 
with new-onset CVD event(s) (HR, 1.21 per 10-unit 
increment in RRDI (95% CI 1.09 to 1.35), p<0.001) which 
remained significant after adjusting for demographic 
factors, AHI 4%, hypoxemia and other comorbidities.
Conclusion Increased nocturnal RRDI predicts 
cardiovascular mortality and morbidity, independent of 
the known effects of SDB on beat-to-beat variability. The 
frequency of RRDI is higher in men than in women, and is 
significantly associated with new-onset CVD event(s) in 
men but not in women.

IntrOduCtIOn
Sleep-disordered breathing (SDB) is a 
disorder characterised by the occurrence 
of recurrent episodes of apnoea and hypo-
pnoea, resulting in a cascade of physio-
logical responses including hypoxemia, 

hypercapnia, intrathoracic pressure swings 
due to the inspiratory effort, activation of the 
sympathetic nervous system and arousal from 
sleep.1 In clinical practice, SDB is defined 
by the measurement of apnoea–hypop-
noea index (AHI), as the average number 
of respiratory events divided by the total 
sleep time. Although AHI is easy to use, this 
measure discounts other physiological conse-
quences of the respiratory events that may be 
important, including associated hypoxemia 
and arousals from sleep, as well as the cardiac 
autonomic disturbances throughout the 
night.2 Indeed, recent evidence showed that 
sub-type of excessively sleepy patients with 
moderate to severe SDB have significantly 
increased the risk for prevalent and incident 
cardiovascular events indicating the central 
role of sleep disruption in increased CVD 
risk.3 In addition, a recent study found that 

strengths and limitations of this study

 ► It used a new method of detecting heart rate ac-
celerations to assess its effect on the incidence of 
cardiovascular diseases (such as heart attack, heart 
failure, or need for cardiac procedures) and cardio-
vascular-related mortality.

 ► Using secondary analysis of a database of a pro-
spective community cohort from the Wisconsin 
Sleep Cohort, we found that heart rate accelerations 
predict cardiovascular mortality and incidence of 
cardiovascular diseases.

 ► These results suggest that assessing the nocturnal 
ECG for heart accelerations may assist in predicting 
cardiovascular disease early on.

 ► The study was focused on individuals who had no 
prior pre-existing cardiac disease and were  not 
on medications that affect heart rate such as Beta 
blocker; therefore, it may not be applicable to pa-
tients with current heart disease.

 ► This study lacks racial diversity as 95% was report-
ed as a white race. Therefore, the results may not be 
generalisable to other races.
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varying hypopnoea definitions in the general population 
can affect the risk stratification of cardiovascular disease 
in patients with SDB.4 5 

While recent reports included measurements of 
sleep fragmentation and respiratory event duration as a 
surrogate of arousal threshold6 it did not include direct 
measurements of sympathetic activity and heart rate 
changes related to these events and its physiological 
stressors. Nocturnal heart rate variability, not day-time, 
is a heritable phenotype7 independent of covariates, 
suggesting that genetic factors play an important role in 
controlling these cardiovascular risk factors.8 Therefore, 
R-R interval (RRI), a time domain measure of heart rate 
variability, may reflect a physiological trait that predicts 
the risk of adverse cardiovascular outcomes, otherwise 
missed by SDB severity classification using traditional AHI 
and desaturation criteria.9 However, the long-term effect 
of heart rate changes during sleep on the cardiovascular 
outcome and mortality is unknown.

The objectives of this study were to examine whether 
RRI or heart rate accelerations can serve as predictors 
of cardiovascular disease in the Wisconsin Sleep Cohort 
study (WSCS), a prospective community cohort. We 
hypothesised that increased nocturnal RRI dip index 
(RRDI) would be associated with increased cardiovas-
cular disease (CVD) or mortality independent of the 
known effects of SDB on beat-to-beat variability. Results 
of this study have been previously reported in the form of 
an abstract.10 11

MethOds
Participants
We studied individuals from the WSCS. The protocols of 
the WSCS were approved by the Health Sciences Institu-
tional Review Board of the University of Wisconsin-Mad-
ison. All participants provided written informed consent. 
Sampling and data collection protocols of the WSCS have 
been described previously.12

Cohort description
The WSCS comprises 1546 adult employees of state 
agencies, ages 30–60 years old at the Cohort’s inception, 
which underwent attended in-laboratory overnight poly-
somnography (PSG) and provided health-related ques-
tionnaires approximately every 4 years. Data presented 
here were collected from August of 2000 through August 
2016 (the period when digital PSG recording systems 
were in use by the WSCS). The most recent available 
PSG study was used for analysis. WSCS participants were 
eligible to be included in the study if they had full PSG 
with adequate ECG recording, not treated for SDB, had 
no prior CVD event and did not use beta blockers or 
chronotropic drugs (online supplementary table 1S) on 
the night of the sleep study or at any other point during 
follow-up.

Patient and public involvement
This study was a secondary analysis for pre-existing data 
from an established cohort of the Wisconsin study. There-
fore, participants were not involved in the design, recruit-
ment, or conduct of this study.

Predictor
The main predictor variable is the hourly rate of RRI 
changes assessed over an entire night’s sleep period. 
The recorded ECG signals were retrieved from PSG 
to measure the RRI, which are time intervals between 
successive pairs of QRS complexes, by using software 
for the detection of R waves in LabChart 7 with heart 
rate variability Module (AD Instruments, Colorado 
Springs, Colorado, USA) (figure 1). In this program, 
ECG signal was examined and retrieved to a MatLab 
R2017a program (MathWorks, Natick, Massachu-
setts, USA) developed and validated by our group to 
obtain RRI signal for the entire night (figure 2).13 14 
The RRI dips, defined by a decreased RRI compared 
with the average RRI for the corresponding 1 min 
segment as a baseline, were collected. Given that 90% 
dips threshold correlated previously with most respira-
tory events (apneic and non-apneic respiratory events, 
defined below),14 total RRI dips index (RRDI) was 
defined by the number of RRI dips below the 90% base-
line divided by the total PSG recording time in hours 
(from light on to light out), regardless of wake or sleep 
stages. Sleep RRDI for non-rapid eye movement (REM) 
and REM stages combined were defined by the number 
of RRI dips below the 90% baseline divided by the total 
sleep time in hours (for both REM and non-REM sleep 
stages). Subsequently, sleep RRDI was calculated for 
specific sleep stages for REM and non-REM, respec-
tively. In subgroup analysis, the gender differences in 
total and sleep RRDI were compared between men and 
women.

The person performing the analysis was blinded to 
the participant’s demographic information. The RRDI 
values were examined as a continuous variable and as 
a categorical variable divided into tertiles (lower 25% 
(low), middle 50% (medium) and upper 25% (high)).

Outcome
Incident CVD events were death related to CVD, self-re-
ported physician-diagnosed heart attack, heart failure, 
or a CVD procedure (angioplasty, stent, pacemaker, 
bypass, or defibrillation). Information on CVD events, 
including the date of the event, was obtained on the 
overnight health questionnaire. Death certificates 
and cause of mortality in the cohort were obtained 
by matching social security numbers with two data 
sources: The National Death Index and the Wisconsin 
State Bureau of Health Information and Policy, Phial 
Records Section. All included participants in this study 
were able to complete the follow-up information. The 
censored analysis was used, and the data is censored at 
the last visit. If multiple events were reported over the 

https://dx.doi.org/10.1136/bmjopen-2019-030559
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course of follow-up, the first reported event was used in 
this analysis.

Covariates
Participants underwent a baseline overnight 18-channel 
PSG (Grass model 78; Quincy, Massachussets, USA) at 
the University of Wisconsin-Madison Clinical Research 
Unit using a standard protocol.15 The PSG recorded 
sleep state using electroencephalography, electroocu-
lography and electromyography; and breathing, using 
respiratory inductance plethysmography (Respitrace; 
Ambulatory Monitoring, Ardsley, New York, USA), nasal 
and oral airflow (ProTec thermocouples; Hendersonville, 
Tennessee, USA) and oxyhaemoglobin saturation, using 
pulse oximetry (Ohmeda Biox 3740, Englewood, Colo-
rado, USA). Each 30 s epoch of the polysomnographic 
recordings was scored for sleep stage and apnoea and 
hypopnoea events by trained technicians and reviewed 
using standard criteria.15 Apnoea was defined as the cessa-
tion of nasal and oral airflow for ≥10 s and hypopnoea as 

a discernible reduction in breathing (sum of the chest 
and abdominal excursions) with a decrease in oxyhaemo-
globin saturation of ≥4%. The apnoea–hypopnoea index 
was calculated as the mean number of apnoea and hypo-
pnoea events per hour of sleep.

statistical analysis
Cox proportional hazards regression was used to estimate 
adjusted HRs and 95% CIs for the association between 
RRDI and subsequent risk of an incident CVD event.16 
Because of the strong dependence of CVD risk on age, 
Cox-regression models were based on age as the time 
scale, (the age when RRDI was measured and age at the 
event) allowing for left truncation (late entry).17 In addi-
tion to adjusting for age using this methodology, models 
2 were adjusted for body mass index (BMI) and gender. 
Models 3 were adjusted for AHI 4% (as continuous 
and categorical variables (AHI <5, 5–15, or >15 events/
hour)). Subsequently, models 4 were adjusted for other 
factors: diabetes, hypertension, stroke, smoking, average 

Figure 1 (A) A representative polygraph from one subject in the WSCS that illustrate changes in respective heart rate and 
computed RRI tracing during sleep. (B) A magnified segment of ECG illustrating RRI following respiratory event (apnoea). The 
RRI tracing was retro-graphed from the exported signal that calculates RRI from raw ECG recordings. Open arrows indicate 
oxygen desaturation following apnoea and closed arrows indicate RRI dip following apnoea. EEG, electroencephalogram; 
EMG, electromyogram;; RRI, R-R interval; WSCS, Wisconsin Sleep Cohort Study.
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HR, % TST <90%, Kaplan-Meier techniques were used to 
compare survival across RRDI categories.18

results
baseline characteristics
Table 1 presents the baseline characteristics of the eligible 
participants. A total of 1440 sleep studies were examined 
for inclusion in this study as depicted in figure 3. The final 
sample included 569 participants (one sleep study per 
participant) after excluding those on continuous   posi-
tive   airway pressure (CPAP) treatment, individuals who 
had a prior history of cardiovascular disease, use of beta 
blocker the night of the study or in other visits during the 
study, lack of follow-up or if they had events before PSG. 
RRDI (at 90% threshold) significantly correlated with the 
following sleep parameters: AHI 4%, periodic legs move-
ments index (PLMI) and respiratory electroencephalo-
gram arousals (p<0.001) (table 2).

CVd incidence—association with total rrdI
Using Cox Proportional Hazards Model, continuous 
total RRDI (with 90% threshold for RRI dips) was 
significantly associated with new-onset CVD event(s) 
(HR, 1.24 per 10-unit increment in RRDI (95% CI 1.10 
to 1.39), p<0.001) which remained significant after 
adjustment for age, BMI and gender (model 1) and the 
addition of AHI 4% (model 3) (as depicted in table 3). 
Lower thresholds (80%, 70% and 60%) of RRDI 
correlated with total RRDI 90% but were less sensitive 
in predicting CVD (less than five individuals attained 
RRDI >20 dips/hour). The association between total 
RRDI at 90% threshold and the incidence of new-onset 

CVD remained significant after the adjustment for 
AHI 4% (model 3) (p<0.001). Total RRDI category 3 
(≥28.4/hour vs <15.1 dips/hour) was associated with 
increased CVD hazards risk of 6.1 (95% CI 1.7 to 27.7, 
p=0.005) and remained significant after adjustment 
for AHI 4% (p=0.003). Continuous total RRDI 90% 
remained significant (HR, 1.22 (per 10-unit increment 
in RRDI (95% CI 1.08, 1.37), p=0.001) after additionally 
adjusted for diabetes, hypertension, stroke, smoking, 
average heart rate and % total time with oxygen satura-
tion less than 90% (model 4) (as depicted in table 3).

Figure 4 illustrates the changes in CVD incidence and 
hazard ratios for total RRDI less than 15.1 dips per hour (as 
reference), RRDI 15.1–28.4 dips/hour (second tertile) and 
for the third group (tertile) of individuals with RRDI equal 

Figure 2 A representative computed data of RRI and 
oxygen saturation (SaO2) from one individual during sleep. 
The red dots represent the RRI dips throughout the duration 
of the PSG recording (approximately 8 hours). The RRDI at 
90% threshold for this participant was 54.5 dips/hour, the 
average heart rate was 61.1 bpm and the ODI (3%) was 2.3 
de-saturations/hour (from the original PSG recording). The 
RRI tracing was retro-graphed from the exported signal that 
calculates RRI and SaO2 from raw ECG and pulse oximetry 
recordings, respectively. ODI, oxygen desaturation index; 
PSG, polysomnography; RRI, R-R intervals; RRDI, RRI dips 
index; SaO2, oxygen saturation.

Table 1 Baseline characteristics

Characteristics Value

n 569

Age in years, mean (SD) range 58 (8) 39–79

Body mass index in kg/m2, mean (SD) 
range

31 (7) 18–66

Years to event/censor, mean (SD) range 8 (4) 0.1–15

Males, n (%) 300 (53)

Apnoea–hypopnoea Index, n (%) 

  <5 253 (44) 

  5–15 168 (30) 

  >15 148 (26) 

Diabetes, n (%) 32 (6)

Hypertension, n (%) 191 (34)

Stroke, n (%) 11 (2)

Antihypertensive medication use (excluding 
Beta Blockers or any chronotropic 
medication), n (%)

133 (24)

Smoking, n (%) 

  Current 63 (11) 

  Past 213 (37) 

  Never 293 (52) 

White race, n (%) 538 (97)

Number of alcoholic drinks per week, 
mean (SD) range

4 (5) 0–32

Total sleep time, minutes, mean (SD) range 368 (61) 30–514

Per cent stage 1 sleep, mean (SD) 10.6 (6.5)

Per cent stage 2 sleep, mean (SD) 65.0 (9.3)

Per cent stage 3, 4 sleep, mean (SD) 7.8 (8.0)

Per cent REM sleep, mean (SD) 16.6 (6.4)

Mean SaO2, mean (SD) 95.4 (1.8)

Mean desaturation, mean (SD) 4.5 (1.5)

Percentage of total sleep time below 90% 
saturation, mean (SD)

2.7 (11.2)

REM, rapid eye movement; SaO2, oxygen saturation. 
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or more than 28.4 dips/hour. Kaplan-Meier survival curves 
(figure 5) illustrate decreased CVD event-free survival with 
increasing total RRDI category from RRDI less than 15.1 to 
RRDI equal or more than 28.4 dips/hour.

CVd incidence—association with sleep rrdI
Using Cox Proportional Hazards Model, continuous 
sleep RRDI 90% was significantly associated with 
new-onset CVD event(s) (HR, 1.21 per 10-unit increment 
in RRDI (95% CI 1.09 to 1.35), p<0.001) which remained 

significant after the model adjusted for age, BMI and 
gender (model 2) and the addition of AHI 4% (model 
3) (as depicted in table 4). RRDI category 3 (≥23.5/
hour vs <9.0/hour) was associated with increased CVD 
hazards risk of 3.39 (95% CI 1.06 to 10.85, p=0.04) and 
remained significant after adjustment for demographics 
and AHI 4% (model 4) (p=0.037). The relationship 
between sleep RRDI categories and CVD events were 
predominantly in non-REM sleep as depicted in table 5. 

Figure 3 The WSCS study sample. CPAP, continuous  positive airway pressure; PSG, polysomnography; WSCS, Wisconsin 
Sleep Cohort Study. 
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Continuous RRDI 90% during REM sleep was significant 
(HR, 1.19 per 10-unit increment in RRDI (95% CI 1.07 to 
1.32), p=0.001) in the unadjusted model (model 1) and 
remained significant after the model adjusted for age, 
BMI and gender (model 2) and the addition of AHI 4% 
(model 3) (as depicted in table 6). However, sleep RRDI 
category 3 (≥24/hour vs <9.0/hour) was only significant 
in the unadjusted model (model 1) with hazards risk of 
new CVD events of 2.92 (p=0.04).

Cardiovascular events were detected in 25 participants 
(4%), of the sample, over a follow-up interval of 15 years 
with mean age 59 years old (range 41–80). Cardiovascular 
events consisted of heart failure, heart attack, CVD proce-
dure (before any events), or CVD death (table 7). No 
difference between mean age at the start for those who 
had CVD versus not (p=0.58).

Gender effect on the association of CVd incidence with total 
and sleep rrdI
Table 8  presents the baseline characteristics of men and 
women participants and associated total and sleep RRDI. 

While BMI was higher in women ( 32.0 ± 7.0 vs. 30.0 ± 5.0
 kg/m2, p=0.0001), men had higher AHI, total RRDI and 
sleep RRDI than women (p<0.01). Using Cox Proportional 
Hazards adjusted model (3) (for age, body mass index and 
AHI 4%), continuous total RRDI 90% was significantly asso-
ciated with new-onset CVD event(s) in men (HR, 1.22 per 
10-unit increment in RRDI (95% CI 1.06 to 1.40), p<0.001) 
but not in women (as depicted in Table 8). Likewise, 
continuous sleep RRDI 90% was significantly associated 
with new-onset CVD event(s) in men (HR, 1.19 per 10-unit 
increment in RRDI (95% CI 1.04 to 1.36), p<0.05) but not 

Table 2 Pearson correlation for RRDI (at 90% threshold)

Correlation 
coefficients P value

AHI 4% 0.18 <0.0001

PLMI 0.19 <0.0001

Respiratory arousal index 0.24 <0.0001

Leg movement arousal index 0.23 <0.0001

Spontaneous arousal index −0.09 0.127

AHI 4%, apnoea–hypopnoea index based on hypopnoea 
associated with 4% desaturation; PLMI, periodic legs movement 
index; RRDI, R-R interval dips index.

Table 3 The adjusted time to event Cox Proportional Hazards Models for total RRDI predicting the incidence of CVD event

CVD
events

HR (95% CI)
p value

n (%)
Unadjusted model 
(1) Adjusted model (2) Adjusted model (3) Adjusted model (4)

Continuous RRDI (10-
unit increment)

24/569
(4)

1.24 (1.10 to  1.39)
0.0003

1.22 (1.08 to  1.38)
0.0018

1.23 (1.11 to  1.38)
0.0007

1.22 (1.08 to  1.37)
0.0012

RRDI Category

Tertile 1
(<15.1)

3/187
(2)

REF REF REF REF

Tertile 2
(15.1–<28.4)

7/194
(4)

2.66 (0.68 to  10.34)
0.1586

2.72 (0.70 to  10.59)
0.1481

3.16 (0.81 to  12.40)
0.099

3.22 (0.80 to  12.93)
0.10

Tertile 3
(≥28.4)

14/188
(7)

6.11 (1.72 to  21.72)
0.0052

5.87 (1.60 to  21.46)
0.0075

7.40 (1.97 to  27.73)
0.003

8.99 (2.35 to  34.40)
0.001

P-trend 0.0024 0.0045 0.0017 0.0006

Model (1) is unadjusted. Model (2) is adjusted for age, sex and body mass index. Model (3) is additionally adjusted for age, sex, body mass 
index and AHI (4% criteria). Model (4) is additionally adjusted for diabetes, HTN, stroke and smoking, average HR and %TST<90%.
AHI 4%, apnoea–hypopnoea index with hypopnoea scored if associated with at least 4% desaturation (events/hour); CVD, cardiovascular 
disease; HTN, hypertension; RRDI, R-R interval dips index (dips/hour); %TST<90, total sleep time spent less than 90% on oxygen saturation 
signal (%).

Figure 4 Incidence of composite CVD and hazard ratio 
across different total RRDI severity: Category 1 as a reference 
(RRDI <15.1), category 2 (RRDI 15.1-<28.4) and category 
3 (RRDI ≥28.4) (n=569). (*) versus unadjusted model (1) 
RRDI <15.1 dips/hour, p<0.01; (**) versus adjusted model (3) 
RRDI <15.1 dips/hour, p<0.01. CVD, Cardiovascular  disease 
; RRDI, R-R interval dips index.  
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in women. Using total RRDI threshold of 20 dips/hour or 
more from the adjusted model (model 3) was associated 
with increased CVD hazards risk of 4.34 in men only (95% 
CI 1.32 to 14.34, p = 0.016).

dIsCussIOn
Our study prospectively examined the relationship of 
nocturnal beat-to-beat RRI changes, that is, brief accel-
erations in the heart rate, with long-term cardiovascular 
outcomes. The study revealed several important and 

novel findings. First, increased frequency of heart rate 
accelerations (RRDI) during sleep study was associated 
with the development of cardiac events or mortality in a 
prospective large community-based cohort of individuals 
over a follow-up interval of 15 years, who had no known 
heart disease at the time of their sleep study. Second, the 
relationship between total RRDI and incidence of CVD 
remained significant after adjusting for demographics, 
SDB severity using AHI 4%, hypoxemia and other comor-
bidities. Third, the frequency of total RRDI was higher in 
men than in women and associated with CVD predomi-
nantly in men.

To our knowledge, this is the first community-based 
cohort that has shown an association between adverse 
cardiovascular outcomes and heart rate changes during 
sleep. Specifically, we found that the association between 
RRDI and incidence of new CVD events was independent 
of AHI (with a 4% desaturation threshold for hypopnoea 
scoring) and hypoxia. Prior studies assessed the relation-
ship between AHI using different thresholds and adverse 
cardiovascular consequences. For example, in the Sleep 
Heart Health Study, Punjabi, et al. found an association 
of cardiovascular morbidity with SDB characterised by 
breathing events defined as having ≥4% desaturations, 
but not by SDB characterised by desaturations of less than 
4%.19 More recently, it has been found that the desatu-
ration hypoxic burden related to respiratory events, 
measured by the integration of the severity of the desatu-
ration and its length, predicted CVD mortality.20 Another 
study that examined heart rate variability during sleep 
found that SDB patients had shorter RRI and increased 
sympathetic burst frequency (49±4 bursts/min) compared 
with control subjects.21 The authors speculated that 
abnormalities in heart rate and blood pressure variability 
might be implicated in the subsequent development of 

Figure 5 Kaplan-Meier estimates of the likelihood of 
survival according to total RRDI severity: Category 1 as a 
reference (RRDI <15.1), category 2 (RRDI 15.1–<28.4) and 
category 3 (RRDI ≥28.4) (n=569); log-rank test for differences 
in survival by RRDI category; survival was lower for category 
3 compared with group 1 and 2. RRDI is a mean number 
of RRI dips/hour of total recording time of PSG. PSG, 
polysomnography; RRDI, R-R interval dips index.

Table 4 The adjusted time to event Cox Proportional Hazards Models for sleep RRDI predicting the incidence of CVD event

CVD
events

HR (95% CI)
p value

n (%) Unadjusted model (1) Adjusted model (2) Adjusted model (3) Adjusted model (4)

Continuous RRDI 
(10-unit increment)

24/569
(4)

1.21 (1.09 to  1.35)
0.0006

1.29 (1.06 to  1.33)
0.0037

1.20 (1.07 to 1.34)
0.0015

1.19 (1.06 to  1.33)
0.003

RRDI category

Tertile 1
(<9.0)

4/187
(2)

REF REF REF REF

Tertile 2
(9.0–<23.5)

9/194
(5)

2.61 (0.79 to  8.57)
0.1144

2.46 (0.75 to  8.11)
0.1383

2.66 (0.80 to  8.77)
0.1092

2.79 (0.83 to  9.36)
0.10

Tertile 3
(≥23.5)

11/188
(6)

3.39 (1.06 to 10.84)
0.0398

2.94 (0.91 to  9.56)
0.0729

3.61 (1.08 to  12.10)
0.0373

4.00 (1.17 to  13.68)
0.027

P-trend 0.0392 0.0768 0.0365 0.026

Model (1) is unadjusted. Model (2) is adjusted for age, sex and body mass index. Model (3) is additionally adjusted for age, sex, body mass 
index and AHI (4%  criteria). Model (4) is additionally adjusted for diabetes, HTN, stroke, and smoking, average HR, and %TST<90%. 
AHI 4%, apnoea–hypopnoea index with hypopnoea scored if associated with at least 4% desaturation (events/hour); CVD, cardiovascular 
disease; HTN, hypertension; RRDI, R-R interval dips index (dips/hour); %TST<90, total sleep time spent less than 90% on oxygen saturation 
signal (%). . 
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cardiovascular disease in patients with SDB. The present 
study confirmed this association between the frequency 
of heart rate accelerations (RRDI) and adverse cardiovas-
cular consequence in a prospective large cohort of indi-
viduals who had no known heart disease at the time of 
their sleep study.

The mechanism of increased incidence of CVD and 
association with RRDI can be explained by an increased 
sympathetic tone and autonomic arousals. First, sleep 
disturbances like SDB, periodic limb movements, insuf-
ficient sleep are all associated with an increased risk of 
CVD. These sleep disorders are commonly associated with 
impaired autonomic nervous system leading to increased 

sympathetic tone.22 Furthermore, sleep fragmentation 
due to autonomic or respiratory arousals from sleep 
increases the cardiac sympathetic tone activity resulting in 
a sudden elevation in vascular tone and heart rate gener-
ating a rise in arterial blood pressure.22 23 The increased 
sympathetic tone in patients with heart disease has been 
proposed as an intermediate outcome linking heart rate 
variability with increased mortality.24 Resting heart rate 
also has been linked to CVD in patients with SDB and 
chornic obstructive pulmonary disease (COPD).21 25 26 
Second, the augmented shear forces due to intermittent 
episodes of tachycardia secondary to respiratory events 
and the resultant mechanical shear forces may lead to 

Table 5 The adjusted time to event Cox Proportional Hazards Models for RRDI during non-REM sleep predicting the 
incidence of CVD event

CVD
events

HR (95% CI)
p value

n (%) Unadjusted model (1) Adjusted model (2) Adjusted model (3)

Continuous RRDI (10-unit 
increment)

24/569
(4)

1.19 (1.08 to1.33)
0.0009

1.17 (1.05 to1.31)
0.0044

1.18 (1.07  to1.32)
0.0019

RRDI category

Tertile 1
(<8.5)

4/187
(2)

REF REF REF

Tertile 2
(8.5–<22.6)

9/194
(5)

2.69 (0.82 to 8.86)
0.1040

2.69 (0.82 to 8.82)
0.1023

2.85 (0.87 to 9.36)
0.0849

Tertile 3
(≥22.6)

11/188
(6)

3.40 (1.06 to10.94)
0.0389

3.11 (0.96 to 10.06)
0.0577

3.92 (1.18 to13.09)
0.0263

P-trend 0.0390 0.0612 0.0249

Model (1) is unadjusted. Model (2) is adjusted for age, sex and body mass index. Model (3) is additionally adjusted for age, sex, body mass 
index and AHI (4%  criteria). 
AHI 4%, apnoea–hypopnoea index with hypopnoea scored if associated with at least 4% desaturation (events/hour); CVD, cardiovascular 
disease; REM, rapid eye movement; RRDI, R-R interval dips index (dips/hour).

Table 6 The adjusted time to event Cox Proportional Hazards Models for RRDI during REM sleep predicting the incidence of 
CVD event

CVD
events

HR (95% CI)
p value

n (%) Unadjusted model (1) Adjusted model (2) Adjusted model (3)

Continuous RRDI (10-unit 
increment)

24/569
(4)

1.19 (1.07 to 1.32)
0.0013

1.17 (1.05 to1.31)
0.0056

1.19 (1.07 to1.33)
0.0016

RRDI category

Tertile 1
(<9.0)

5/187
(3)

REF REF REF

Tertile 2
(9.0–<24.0)

7/194
(4)

1.34 (0.42 to 4.24)
0.6222

1.19 (0.37 to 3.78)
0.7732

1.24 (0.39 to 4.00)
0.7171

Tertile 3
(≥24.0)

12/188
(6)

2.92 (1.00 to 8.55)
0.0508

2.42 (0.80 to 7.29)
0.1173

2.69 (0.88 to 8.19)
0.0825

P-trend 0.0393 0.0936 0.0657

Model (1) is unadjusted. Model (2) is adjusted for age, sex and body mass index. Model (3) is additionally adjusted for age, sex, body mass 
index and AHI (4%  criteria). 
AHI 4%, apnoea–hypopnoea index with hypopnoea scored if associated with at least 4% desaturation (events/hour); CVD, cardiovascular 
events; REM, rapid eye movement; RRDI, R-R interval dips index (dips/hour).
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endothelial dysfunction.27 This possibility is physiolog-
ically plausible particularly in male patients,28 who may 
have significant endothelial dysfunction secondary to 
activation of several inflammatory pathways. Such patho-
physiologic changes in untreated SDB patients have been 
linked to nocturnal angina, myocyte necrosis leading to 
cardiomyopathy and cardiac remodelling.29–31 Our find-
ings corroborate these pathological changes particularly 
in the coronary vessels making the vast majority of CVD 

events either related to coronary artery disease (CAD) 
(48%) or myocardial infarction (36%), predominantly 
in men. On the other hand, medications such as Beta-
blockers attenuate the increase in heart rate related to 
respiratory events during sleep in patients with hyperten-
sion and untreated SDB.32 This modulation of cardiac 
responses in patients with SDB provides a mechanism 
by which Beta-blockers may decrease the risk of sudden 
cardiac death, particularly in patients with CVD.33 Finally, 
hypoxic events can affect the autonomic cardiac response 
and generate significant RRI dips events.34 Hypox-
emia and RRI dips may represent different features of 
SDB-related stress, both of which may contribute to CVD 
morbidity and mortality through independent pathways. 
Our findings suggest a need to further identify the inter-
mediate mechanisms that link RRI dips events to long-
term outcomes.

This study has several strengths including its prospec-
tive design with longitudinal follow-up of participants, 
community-based including a diverse group of ages 
and morbidities from both genders, and the use of the 
gold-standard laboratory-based polysomnography for 
assessment of SDB. This study assessed the role of heart 
rate changes, a heritable and physiological phenotype, 
on CVD outcome. These findings can allow clinicians 

Table 7 A summary of CVD events types

First event type*

CVD events types (n=24)

n (%)

Myocardial infarction 9 (36)

Heart failure 4 (17)

Pacemaker 2 (8)

CAD/intervention 12 (48)

Bypass surgery 1 (4)

CVD death 5 (20)

*Individuals could have multiple type events (for example 
myocardial infarction and stent and coronary artery disease). If 
multiple events were reported over the course of follow-up, the first 
reported event was used in this analysis.

Table 8 Adjusted time to event Cox Proportional Hazards Models for RRDI Predicting Incidence of CVD Event Stratified by 
Gender for Continuous RRDI and across Categories of Participants with RRDI more than 20 dips/hour.

Males (n=300) Females (n=269) P value

Age, mean (SD) 58 (8) 58 (8) 0.52

Body mass index, kg/m2, mean (SD) 30 (5) 32 (7) 0.0001

AHI, mean (SD) 13 (16) 10 (12) 0.0045

RRDI (SLEEP), mean (SD) 26 (24) 18 (21) <0.0001

RRDI (ALL), mean (SD) 30 (23) 22 (20) <0.0001

RRDI (SLEEP)>20, n (%) 143 (48) 78 (29) <0.0001

RRDI (ALL)>20, n (%) 179 (60) 105 (39) <0.0001

Adjusted model (3)* (95% CI) 
p value

Adjusted model (3) * (95% CI) 
p value

Continuous RRDI (SLEEP) (10-unit increment) 1.19 (1.04 to 1.36)
0.011

1.22 (0.96 to 1.54)
0.109

RRDI category

<20 REF REF

>20 1.85 (0.67 to 5.07)
0.234

1.29 (0.22 to 7.47)
0.779

Continuous RRDI (ALL) (10-unit increment) 1.22 (1.06 to 1.40) 
0.006

1.25 (0.97 to 1.67)
0.086

RRDI category

<20 REF REF

>20 4.34 (1.32 to 14.34) 
0.016

2.03 (0.38 to 10.77)
0.407

*Model adjusted for age, body mass index and AHI  4%  categories. 
AHI 4%, apnoea–hypopnoea index with hypopnoea scored if associated with at least 4% desaturation (events/hour); RRDI, R-R interval dips 
index (dips/hour).



10 Sankari A, et al. BMJ Open 2019;9:e030559. doi:10.1136/bmjopen-2019-030559

Open access 

to identify early on high-risk patients and implement 
an intervention to prevent cardiovascular disease and 
premature death. In addition, our study used a novel 
method of automatic detection of heart rate accelerations 
that can be translated into an executable program or a 
plug‐in for sleep scoring software and can be used in any 
sleep study across the world. The study has some limita-
tions. First, we used the self-reported diagnosis of CVD 
(including dates of diagnosis). However, there is evidence 
that self-reported CVD is very reliable and accurate as 
noted in the AusDiab cohort. Barr et al reported more 
than 99% of self-reported CVD events were correctly veri-
fied in the patients’ medical records; only 0.2% of those 
denying any CVD event being recorded as having had 
an event on the medical record.35 Second, we lack racial 
diversity in our study as 95% was reported as a white race. 
Therefore, the results may not be generalisable to other 
races. Third, the incidence of CVD in this population is 
relatively smaller than what was observed in other high 
cardiovascular risk population. This is might be due to 
the inclusion of only those who have no prior history of 
CVD. Finally, the study excluded participants who had 
pre-existing cardiac disease history (history of any CVD 
event as listed in table 7), were on CPAP treatment or 
were on beta-blocker and/or other chronotropic medi-
cations, which alter the cardiac autonomic responses, 
particularly heart rate bursts following respiratory events. 
Therefore, this study could not include all WSCS partic-
ipants and might not be applicable to individuals with 
heart disease or if taking Beta-blocker or chronotropic 
medications. Likewise, this study might not be applicable 
to individuals with arrhythmia, frequent ectopic beats and 
in case of cardiac pacemakers.

Clinical perspectives
The association between heart rate changes and the 
cardiovascular outcome may have significant clinical 
implications. First, the association between increased 
incidence of cardiovascular events and the RRDI suggest 
that early detection of heart rate fluctuations during 
sleep could identify those who are at increased risk of 
future CVD events and inform primary preventions strat-
egies. Second, several behavioural factors36 and medical 
conditions, such as SDB37 and COPD,26 are associated 
with changes in resting heart rate, which increase the 
risk of cardiovascular diseases. Third, the attenuation of 
heart rate accelerations by Beta-blockers during sleep as 
recently shown in patients with SDB,32 indicate that Beta-
blockers may play an important role in preventing CVD. 
However, large prospective clinical studies are needed to 
confirm this finding.

In summary, this study demonstrates that after adjusting 
for age, BMI, sex, AHI and other comorbidities, people 
with high RRDI during sleep study are at increased 
risk for incident CVD events. These results suggest that 
assessing the ECG of high-risk patients for RRDI during 
sleep may assist in predicting cardiovascular disease 
early on. Further research is needed to understand the 

pathophysiology of heart rate bursts during sleep and 
whether the RRI dips provide markers of subclinical 
cardiac disease or whether their occurrence represents 
pathophysiological responses to respiratory events that 
increase the risk of cardiovascular morbidity.
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