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Abstract: Epigenetics, CpG methylation of CpG islands (CGI) and gene bodies (GBs), plays an
important role in gene regulation and cancer biology, the former established as a transcription
regulator. Genome wide CpG methylation, summarized over GBs and CGIs, was analyzed for impact
on overall survival (OS) in cancer. The averaged GB and CGI methylation status of each gene was
categorized into methylated and unmethylated (defined) or undefined. Differentially methylated
GBs and genes associated with their GB methylation status were compared to the corresponding CGI
methylation states and biologically annotated. No relevant correlations of GB and CGI methylation
or GB methylation and gene expression were observed. Summarized GB methylation showed
impact on OS in ovarian, breast, colorectal, and pancreatic cancer, and glioblastoma, but not in lung
cancer. In ovarian, breast, and colorectal cancer more defined GBs correlated with unfavorable
OS, in pancreatic cancer with favorable OS and in glioblastoma more methylated GBs correlated
with unfavorable OS. The GB methylation of genes were similar over different samples and even
over cancer types; nevertheless, the clustering of different cancers was possible. Gene expression
differences associated with summarized GB methylation were cancer specific. A genome-wide
dysregulation of gene-body methylation showed impact on the outcome in different cancers.
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1. Introduction

Epigenetic changes are an increasingly important research field for understanding cancer biology
and cancer treatment [1], despite the fact that epigenetics has not yet reached the status of a cancer
hallmark [2,3]. DNA methylation on cytosines is one of the epigenetic changes which can be measured
relatively easily, even genome wide, and whose impact on gene expression is—more or less—well
known. In vertebrates usually most of cytosines in CpG-dinucleotides are methylated throughout
the genome [4]. Only promoter regions, with or without CpG-islands (CGIs), of expressed genes are
frequently hypo-methylated. One of the epigenetic changes associated with cancer (progression) is

Cancers 2020, 12, 2257; doi:10.3390/cancers12082257 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-8355-0977
http://dx.doi.org/10.3390/cancers12082257
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/8/2257?type=check_update&version=2


Cancers 2020, 12, 2257 2 of 18

the hyper-methylation of such CGIs in promoter regions of so-called tumor suppressor genes (TSG),
leading to the silencing of the corresponding genes, with the well-known examples TP53 and BRCA1.
Gene body CpG-methylation is not so well understood, but usually associated with higher expression
of the corresponding gene, or vice versa, hypo-methylation of gene bodies (GBs) associated with lower
expression [5]. Positive correlations between active transcription and gene body methylation have
recently been confirmed on the active X chromosome [6,7]. It was also shown that intragenic DNA
methylation, especially if located near exon–intron boundaries, is associated with alternative splicing
events [8]. Arechederra et al. discovered, in a clinically relevant hepatocellular carcinoma (HCC)
mouse model, that the expression of oncogenes with hypermethylated CGIs either in their 5′-UTR or
in the gene body is raised [9]. Many of these genes discovered in the mouse model—several of them
well-known oncogenes—are also affected by concurrent CGI hypermethylation and gene expression
upregulation in human HCC patients, especially in 56% of HCC patients, which belong to the “HCC
proliferative-progenitor” subclass.

However, overall, “Intriguingly, the genes regulated by intragenic methylation in cancer cells are
related to cell type-specific functions rather than tumor suppressors”, a citation from Lee et al. [8].

It was also recognized, that global hypomethylation of cancer genomes (often measured on Alu
repeats [10]) is a frequent event and associated with a more aggressive tumor [11]. Here, we analyzed
global CGI methylation, as well as global gene body methylation levels, in different solid cancer entities
and its effect on overall survival.

2. Results

2.1. Reduced Representation Bisulfite Sequencing

DNA methylation of fresh frozen (FF) and formalin fixed paraffin embedded (FFPE) ovarian
cancer tissues was measured with the enhanced reduced representation bisulfite sequencing (RRBS)
methodology [12]. CpG call rates (more than five informative reads) of median 1.86 million (0.57–2.80 m)
CpG-cytosines for FFPE and 2.58 million (1.53–3.44 m) for FF material were obtained. CGI coordinates
were downloaded from the UCSC genome browser (HG38) and GB coordinates of protein coding genes
extracted from the GENCODE V25 annotation. Beta values were calculated as ratios of methylated
cytosines to total called cytosines (0 being unmethylated and 1 fully methylated) and the weighted
(log10(calling depth + 0.1)) average of all CpG cytosines calculated for each CGI and every GB.
Only averaged beta values of CGIs or GBs with at least eleven called CpGs were used for further
analyses. These averaged beta values for each CGI and every gene body and sample were categorized
into ten deciles, i.e., 0–10%, 10–20%, . . . , 90–100% and summed up.

In Figure S1 the correlations of averaged GB methylation values of matched pairs of tumor tissues
analyzed from FF and FFPE material are shown, indicating a high consistency of results. In addition,
correlations of all possible combinations within the group of FF and FFPE tissues and between FF
and FFPE tissues of different patients were obtained (Figure S2A). Interestingly, there was a very high
correlation between all samples, indicating a very stable GB methylation situation in ovarian cancer.

For survival analysis only values from FFPE tissues were selected as this cohort was the larger
one and tissues used for DNA isolation were enriched for tumor cells using macro- and laser capture
microdissection. Using the ten frequency deciles for each patient a robust survival analysis was
performed with censored overall survival data as an outcome variable. In Figure 1 this procedure
is outlined.

Four GB methylation deciles showed significant correlation with overall survival in ovarian
cancer (red and green dots in Figure 1D), i.e., defined/extreme states (0–10%, means not
methylated and 90–100%, means completely methylated) showed a negative impact on survival,
whereas undefined/intermediate states (50–60% and 60–70%) showed a positive impact on survival.
Using these slots a final “methylation definition factor” (MDF) was calculated as given in Figure 1E,
i.e., the number of GBs with a defined/extreme methylation status (<10% and >90%) divided by the



Cancers 2020, 12, 2257 3 of 18

number of GBs with undefined/intermediate methylation states (50–70%), dichotomized at the optimal
cutoff and used for multiple Cox regression analysis including known clinicopathologic factors such as
age, FIGO stage, and residual tumor after debulking surgery (Table 1). A higher MDF, corresponding to
more defined/extreme methylated genes compared to undefined/intermediate methylated genes,
indicated unfavorable OS. A similar analysis with CGI methylation frequency deciles revealed no
significant impact on survival at all.Cancers 2019, 11, x FOR PEER REVIEW 3 of 21 
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Figure 1. Overview of the generation of the global CpG island (CGI) and gene body (GB) methylation 
measures used for correlation with overall survival (OS). (A) Beta values from CpGs mapped to CGIs or 
GBs were averaged—from RRBS data with a weighted method—and (B) summarized in decile slots, (C) 
shown as a histogram exemplarily for the GBs of one patient. (D) Using these summarized decile 
numbers robust Cox regression analyses with censored OS data were performed (plot on the right 
showing the expected and observed scores for the ten deciles and the 5% false discovery rate (FDR) cutoff 
as dashed line; in red and green the significant deciles). (E) Using all negatively (red dots in the plot of 
(D)) and positively (green dots in the plot of (D)) with OS correlated deciles a methylation definition 
factor (MDF) was calculated as indicated and used for Cox regression analysis including known cancer 
type specific clinicopathologic parameters. An optimal cutoff for the MDF was determined from this 
model and a Kaplan–Meier estimate using the optimally dichotomized MDF is show on the right. A plot 
of the Cox model, corrected for clinicopathologic factors, is shown in Figure 2 and details of the Cox 
regression models are given in Table 1. 

Figure 1. Overview of the generation of the global CpG island (CGI) and gene body (GB) methylation
measures used for correlation with overall survival (OS). (A) Beta values from CpGs mapped to CGIs
or GBs were averaged—from RRBS data with a weighted method—and (B) summarized in decile slots,
(C) shown as a histogram exemplarily for the GBs of one patient. (D) Using these summarized decile
numbers robust Cox regression analyses with censored OS data were performed (plot on the right
showing the expected and observed scores for the ten deciles and the 5% false discovery rate (FDR) cutoff

as dashed line; in red and green the significant deciles). (E) Using all negatively (red dots in the plot of
(D)) and positively (green dots in the plot of (D)) with OS correlated deciles a methylation definition
factor (MDF) was calculated as indicated and used for Cox regression analysis including known cancer
type specific clinicopathologic parameters. An optimal cutoff for the MDF was determined from this
model and a Kaplan–Meier estimate using the optimally dichotomized MDF is show on the right.
A plot of the Cox model, corrected for clinicopathologic factors, is shown in Figure 2 and details of the
Cox regression models are given in Table 1.
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Table 1. Overview of Characteristic Numbers (Samples, Death Event Numbers, Significant Deciles, Dichotomized Numbers, Hazard Ratios, and p-Values of Single and
Multiple Cox Regression Analyses and Included Clinicopathologic Factors) of Cancer Types Analyzed in This Study (the grey shadow indicates subanalyses for
ovarian cancer and is otherwise alternating for better readability).

Characteristics and OS Analyses Cox Regression (Overall Survival)
Cancer Type Patients 1 Gene Bodies 2 SAM Sign.3 MDF Predictor (Def/UnDef) 4 Cutpoint 5 Univariate Multiple Clinical Params 6 Cit

Ovarian
(OvCa) 45 (19) 17,798

+ 0–10%
+ 90–100%
−50–60%
−60–70%

D: <10% and >90%
U: 50–70% 28 vs. 17

HR 4.29
(1.62–11.3)
p = 0.0034

HR 4.44
(1.63–12.08)
p = 0.0035

Age
Residual tumor

(FIGO stage)
(Grade)

RRBS

Ovarian—Exons 45 (19) 14,902
(Exons)

+ 0–10%
+ 90–100%

−all other deciles

D: <10% and >90%
U: 30–70% 27 vs. 18

HR 3.17
(1.24–8.11)
p = 0.0162

HR 3.44
(1.31–9.06)
p = 0.0124

Age
Residual tumor

(FIGO stage)
(Grade)

RRBS

Ovarian—Introns 45 (19) 15,223
(Introns)

+ 0–10%
+ 80–90%
+90–100%
−60–70%
−70–80%

D: <10% and >80%
U: 60–80% 28 vs. 17

HR 5.33
(1.96–14.52)
p = 0.0011

HR 6.10
(2.01–18.51)
p = 0.0014

Age
Residual tumor

(FIGO stage)
(Grade)

RRBS

Breast
(BC)

690 (87)
680 (84) 7814 + 10–20%

D: <20%

U: 30–70%
428 vs. 252

HR 1.79
(1.17–2.76)
p = 0.0078

HR 1.78
(1.16–2.75)
p = 0.0088

Stage
(Histology) [13]

Colorectal
(CRC)

390 (87)
370 (80) 7816

+ 70–80%
+ 80–90%
−20–30%
−30–40%
−40–50%
−50–60%

D: >70%
U: 20–60% 192 vs. 178

HR 1.8
(1.13–2.85)
p = 0.0126

HR 1.96
(1.23–3.11)
p = 0.0044

Stage
(Sex)

(Histology)
(Site)

[14]

Pancreatic
(PAAC)

184 (99)
167 (91) 7816

−0–10%
−10–20%
−20–30%
+ 40–50%
+ 50–60%

D: <30%
U: 40–60% 114 vs. 53

HR 0.44
(0.27–0.74)
p = 0.0018

HR 0.49
(0.29–0.82)
p = 0.0068

Age
Residual tumor
Radio therapy

(Sex)
(Stage)

[15]

Lung 238 (150) 7815 n.s. n.d.7 n.d. n.d. n.d. n.d. [16]

Glioblastoma
(GBM)

138 (93)
126 (82) 7816

+ 0–10%
+ 10–20%
+ 20–30%
+ 30–40%
+ 40–50%
−60–70%
−70–80%
−80–90%
−90–100%

Methylated/Unmethylated
(MUMF)
M: >50%

UM: <50%

76 vs. 50
HR 0.49

(0.31–0.79)
p = 0.0030

HR 0.50
(0.30–0.83)
p = 0.0073

Sex
Histology

Radio therapy
[17]

1 Number of patients with survival data (death events) (Number of patients with complete clinical data (Death events) used for multiple Cox regression, if not all). 2 Number of gene
bodies with >10 CpG beta values. 3 Significant frequency deciles with FDR < 5%. “+” means positive impact on unfavorable OS and “−” vice versa. n.s., not significant. 4 Definition of
the methylation definition factor (MDF) and the methylation-over-unmethylation factor (MUMF) as predictor for overall survival. 5 Dichotomization using the optimal cut-point of
the MDF/MUMF predictor determined with multiple Cox regression models including all clinical parameters (high MDF/MUMF vs. low MDF/MUMF). 6 Clinical parameters finally
included into the multiple Cox regression model together with the dichotomized MDF predictor, determined by minimizing the Akaike Information Criterion, AIC (in parentheses,
additional clinical parameters considered for the Cox model which were excluded). 7 n.d., not determined.
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Figure 2. Significance Analysis of Microarray (SAM) plots of Cox regressions (X-axis, expected score; 
Y-axis, observed score; dashed line, threshold cutoff at 5% false discovery rate, FDR; red dots, 
associated with unfavorable overall survival (OS); green dots, associated with favorable OS), Kaplan–
Meier estimates of the optimally dichotomized MDF/MUMF, and survival curves of the corrected Cox 
regression models (details are given in Table 1). (No censored patients are indicated for the latter 
plots, as these are survival estimates from multiple Cox regression models). 

2.4. Characterization of Unmethylated, Methylated, and Undefined Methylated Gene Bodies 

To assess the methodological impact of the RRBS technology and the Agilent’s methylation 
arrays to the results and to estimate the cancer type specificity of the whole genome GB methylation 
state, an Isomap (a nonlinear dimensionality reduction method) and a tSNE (t-distributed stochastic 
neighbor embedding, a machine learning algorithm for visualization) analysis over all tumor entities 
using averaged beta values was performed. Figure S10 shows the first four dimensions of the Isomap 

Figure 2. Significance Analysis of Microarray (SAM) plots of Cox regressions (X-axis, expected score;
Y-axis, observed score; dashed line, threshold cutoff at 5% false discovery rate, FDR; red dots,
associated with unfavorable overall survival (OS); green dots, associated with favorable OS),
Kaplan–Meier estimates of the optimally dichotomized MDF/MUMF, and survival curves of the
corrected Cox regression models (details are given in Table 1). (No censored patients are indicated for
the latter plots, as these are survival estimates from multiple Cox regression models).
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A comparison of GB methylation and corresponding CGI methylation (mostly localized in the
5′-untranslated region (5′-UTR) or at the beginning of the first exon) over all samples revealed high
(r > 0.8) correlations only for 4.45% of GB-CGI combinations, mainly small genes with the CGI inside
their corresponding GB. In Figure S3 these results are shown, in (A) the correlations between GB and
CGI methylation values over all samples subdivided into ten methylation slots (GBs left plots and CGIs
right plots), i.e., 0–10%, 10–20%, ..., 90–100% mean GB or CGI methylation, respectively (colored white
to dark grey), in (B) the correlation of corresponding GB and CGI methylation levels averaged over all
samples of all GB-CGI combinations, and in (C) the coefficients of variation (CV) of the GB methylation
values (in percent) according the GB mean values, indicating more variation in low methylated
GBs compared to high methylated ones (probably due to noise derived from the method used for
measurement). Interestingly, the highest GB-CGI methylation correlations were observed in low
methylated GBs (which showed the highest variation) and medium to high methylated CGIs.

The next question was whether the GB methylation level correlated to the RNA expression of the
corresponding genes or whether genes with high GB methylation levels are globally higher expressed
compared to genes with low GB methylation levels (both suggested from literature). Figure S4 shows
in (A) the histograms of the correlation coefficients between GB methylation values and corresponding
gene expression values of all analyzed patients subdivided into ten GB methylation slots, i.e., 0–10%,
10–20%, ..., 90–100% mean GB methylation levels (colored white to dark grey) and in (B) the boxplots of
log2 expression values of all genes in these GB methylation slots and boxplots of the corresponding gene
(i.e., mRNA transcript) lengths of genes in these slots. The latter is shown, as from RNA sequencing data
the expression values derived from mapped read counts are dependent on corresponding (mappable)
gene lengths, if not corrected for gene lengths during bioinformatical processing. There seems to be
no positive correlation between GB methylation and gene expression, neither for individual genes
nor globally over all genes with the same GB methylation level. Contrary, genes with very high GB
methylation levels are globally less expressed compared to genes with lower or intermediate GB
methylation levels (regardless of gene length).

2.2. Comparison of the Methylation Definition Factor (MDF) of Tumor Tissues, Tumor Cell Lines, and Normal
Human Tissues

To compare the ratios of the defined/extreme methylation status (averaged beta values of CpGs in
GBs < 0.1, i.e., unmethylated, and averaged beta values of CpGs in GBs > 0.9, i.e., methylated) to the
undefined/intermediate methylation status (averaged beta values between 0.2 and 0.8), the methylation
definition factor (MDF), between tumor tissues, tumor cell lines, and normal cells and tissues, RRBS data
from the ENCODE consortium were downloaded and processed as above (using corresponding HG19
annotations for CGIs and GBs). In Figure S5 histograms of these MDF values over all samples in each
category are shown. Normal cells and tissues showed the most defined MDF values around 2 and up
to 4 (with one outlier at 8, perhaps an artefact), followed by cancer cell lines with values around 1 and
up to 5.5 and tumor tissues with values all below 1, regardless if measured with DNA isolated from
fresh frozen or FFPE tissues. Loss of defined GB methylation, either un- or completely methylated,
seems to be a universal event in cancer tissues. Comparing high and low MDF values from tumor
tissues concerning overall survival revealed more aggressive tumors with high MDF values, leading to
unfavorable overall survival in ovarian cancer patients. In Figure S6 the distribution of all averaged
GB methylation beta values with 95%-confidence intervals over all samples are shown for ovarian
cancer tissues, cancer cell lines, and normal human primary cells or tissues.

2.3. Validation of the Impact of the MDF on Survival in other Cancer Entities

Unfortunately, the TCGA methylation data for ovarian cancer were performed with Agilent’s
Human Methylation 27 bead array, comprised of about 27.6K CpGs only, which is by far not enough
to validate the results (not even one CpG for each of the ~28K CGIs and ~18K protein coding GBs).
Other publicly available DNA methylation data of clinical samples with corresponding survival data
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(RRBS, whole genome bisulfite sequencing (WGBS), or Agilent’s Human Methylation 450K array) were
not available for ovarian cancer; therefore, we thought to investigate if similar correlations of MDF
values with survival will be obtained for other solid cancer entities. In Table 1 cancer entities used
in this study are summarized. Interestingly, in breast (BC) and colorectal (CRC) cancer comparable
results were obtained using GB frequency deciles for predicting overall survival: more defined/extreme
states (either highly methylated or unmethylated) showed a negative impact on survival and more
undefined/intermediate states (averaged beta values around 0.5) showed a positive impact. A calculated
and optimally dichotomized MDF revealed, always, an independent predictor for OS, corrected for
relevant clinicopathologic factors, similar as for OvCa. In BC the MDF correlated positively with the
basal subtype (Figure S7), but including the subtype information to the multiple Cox regression model
even increased the hazard ratio (HR) and the significance of the dichotomized MDF (HR 2.00; p = 0.003).
In CRC the MDF correlated positively with the CpG Island Methylator Phenotype high (CIMP-H) status
(determined from TCGA colorectal cancer samples according to Hinoue et al. [18]; Figures S8 and S9)
but the dichotomized MDF remained as independent predictor for OS (HR 2.07; p = 0.004) even when
the CIMP status was added to the other clinicopathologic factors in the multiple Cox regression
model. The CIMP status showed no independent impact on survival. In lung cancer, no significant
association of any averaged GB methylation frequency decile with OS was revealed, therefore,
no further survival analyses were performed. In pancreatic adenocarcinoma (PAAC) the impact of the
averaged GB methylation frequency deciles was the other way round, more defined/extreme states
(i.e., unmethylated) showed a positive impact on favorable OS and more undefined/intermediate
states showed a positive impact on unfavorable OS. An optimally dichotomized high MDF, therefore,
showed alone and corrected for known clinicopathologic factors (independent) significant impact
of favorable OS. In glioblastoma multiforme (GBM), all deciles below averaged beta values of 0.5
(unmethylated) showed a negative impact on OS and all deciles above averaged beta values of 0.5
(methylated) revealed positive impact on OS. Therefore a “methylation-over-unmethylation factor”
(MUMF) was calculated, dichotomized at the optimal cutoff, and used for OS analyses. High MUMF
correlated with favorable OS, alone and corrected for (thus independent from) clinicopathologic factors.
In Figure 2 SAM plots of robust Cox regressions, Kaplan–Meier estimates, and multiple Cox regression
survival curves, dichotomized using the optimal cutoff, are shown.

2.4. Characterization of Unmethylated, Methylated, and Undefined Methylated Gene Bodies

To assess the methodological impact of the RRBS technology and the Agilent’s methylation arrays
to the results and to estimate the cancer type specificity of the whole genome GB methylation state,
an Isomap (a nonlinear dimensionality reduction method) and a tSNE (t-distributed stochastic neighbor
embedding, a machine learning algorithm for visualization) analysis over all tumor entities using
averaged beta values was performed. Figure S10 shows the first four dimensions of the Isomap in
three plots (dimensions 1 and 2, 2 and 3, and 3 and 4) and in Figures 3 and 4 the first two dimensions
of the tSNE are shown. The largest impact on the results revealed the methodology, i.e., RRBS versus
methylation array, in dimension 1 of the Isomap. The clearest discrimination between cancer entities
are seen in dimensions 3 and 4. In the tSNE representation all cancer entities are nearly completely
separated, with OvCa samples isolated on the upper side due to methodological and biological
differences. Only a few individual cancer samples are wrongly clustered, especially some lung and
CRC samples in the PAAC cluster. Figure 4 shows the tSNE plots colored according the MDF/MUMF
values, the optimally dichotomized MDF/MUMF, and each one of the relevant clinicopathologic
or subclassification factors. To compare cancer entity specific lists of usually extreme methylated
(mean averaged beta values > 0.7), usually undefined/intermediate methylated (mean averaged beta
values > 0.3 and < 0.7) or usually extreme unmethylated (mean averaged beta values < 0.3) genes,
Venn-like diagrams (UpSet plots) are shown in Figure S11. Interestingly, besides the differences
between RRBS data (OvCa) and all methylation array data (all other cancer entities, including GBM),
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the overlap over all cancer entities was relatively large, indicating a robust methylation status of GBs,
at least in solid cancers.
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Figure 4. T-distributed stochastic neighbor embedding (tSNE) of the GB-averaged beta values as in
Figure 3, colored according one relevant clinicopathologic factor (age for OvCa and PAAC, the subtype
for BC, the CIMP status for CRC, and sex for GBM) in the left panel, colored by the MDF/MUMF values
in the middle panel, and colored according the optimally dichotomized MDF/MUMF in the right panel.
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To biologically annotate genes with either preferentially unmethylated (mean averaged beta
values < 0.3), methylated (mean averaged beta values > 0.7), or undefined methylated (mean averaged
beta values between 0.3 and 0.7) GBs, lists over all samples per cancer entity where built averaging
all averaged beta values per single gene and trichotomized according mean beta cutoffs of 0.3 and
0.7. In Figure 5 gene ontology (GO) and pathway annotations for each category (methylated > 0.7,
undefined between 0.3 and 0.7, and unmethylated < 0.3) of every cancer type with GB methylation
impacts on OS are shown as word clouds in colors indicating enrichment p-values.Cancers 2019, 11, x FOR PEER REVIEW 11 of 21 
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all samples (cf. Figure S2). To analyze and annotate the overlap of consistently high, intermediate, or 
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Figure 5. Enrichment plots of gene ontology terms and pathways are shown for lists of genes
preferentially (averaged over all samples from each cancer type) methylated (averaged betas > 0.7),
unmethylated (averaged betas < 0.3) or undefined methylated (averaged betas between 0.3 and 0.7).
Enrichments are indicated in word clouds by size and color (p-values). Overlap of gene lists are shown
in Figure S11.

To assess the consistency of the GBs in the mean GB methylation slots, i.e., high methylated (>0.7),
intermediate methylated (≥0.3 and ≤0.7), and low methylated (<0.3), Figure S12 shows the distribution
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of the percentages of all genes consistently annotated to one of these three slots. Interestingly,
high percentages of GBs in the same slot are only seen for intermediate methylated GBs in all cancer
entities. Therefore, there are only few genes with consistent high or low GB methylation values
if cutoffs are applied, despite the fact that GB methylation values correlated substantially over all
samples (cf. Figure S2). To analyze and annotate the overlap of consistently high, intermediate, or
low methylated GBs, Figures S13 and S14 show the overlap of gene (i.e., GB) lists which are in >90%
of samples annotated to the respective GB methylation slot, thus consistently categorized, and the
annotations of these gene lists in GO enrichment plots, respectively.

2.5. Correlation of the MDF and MUMF with Gene Expression

Genes whose expressions were significantly correlated to the MDF in OvCa, BC, CRC, and PAAC
and to the MUMF in GB were determined from RNA-sequencing data, either from our own data,
OvCa [19,20], or from the TCGA database for all other cancer entities. In OvCa (false discovery rate
(FDR) < 10%) 1039 genes were positively correlated with the MDF and 730 were negatively correlated;
in BC (FDR < 5%) 3177 and 2920 genes, in CRC (<5%) 1405 and 1179 genes, and in PAAC (<5%) 1780
and 2052 genes, respectively. In GB (FDR < 10%) 339 genes were positively correlated with the MUMF
and 505 negatively. Overlaps of significantly differentially correlated genes are shown in Figure S15,
indicating nearly no relevant overlaps between tumor entities. There were completely no overlaps of
significantly positively or negatively correlated genes over all samples, even if GBM was excluded.
Only two genes were positively correlated in OvCa, BC, CRC, and negatively correlated in PAAC,
namely SLC7A11 and TFAP2A, and only one gene was negatively correlated in OvCa, BC, and CRC
and positively correlated in PAAC, namely LIMS2. The rational for this combination was that the MDF
showed an inverse impact on OS in PAAC compared to OvCa, BC, and CRC.

A Signaling Pathway Impact Analysis (SPIA) with lists of significantly with the MDF/MUMF
factor associated genes revealed for three cancer entities significant (FDR < 5%) deregulated
KEGG pathways (total 202 KEGG pathways considered, Figure S16), for OvCa two activated ones:
“Systemic lupus erythematosus” (FDR 0.08%, Figure S17A) and “Staphylococcus aureus infection”
(FDR 0.5%), for BC 30 inhibited pathways: “Cytokine-cytokine receptor interaction” (Figure S17B),
“Neuroactive ligand-receptor interaction”, “Chemokine signaling pathway”, “Natural killer
cell mediated cytotoxicity”, “PI3K-Akt signaling pathway”, “Systemic lupus erythematosus”,
“Pathways in cancer”, “Staphylococcus aureus infection”, “Th1 and Th2 cell differentiation”,
“Th17 cell differentiation”, “Focal adhesion”, “Measles”, “NF-kappa B signaling pathway”,
“Human T-cell leukemia virus 1 infection”, “Necroptosis”, “Inflammatory bowel disease (IBD)”,
“Complement and coagulation cascades”, “Leukocyte transendothelial migration”, “Hepatitis B”,
“Adipocytokine signaling pathway”, “Autoimmune thyroid disease”, “Allograft rejection”,
“Malaria”, “Asthma”, “Intestinal immune network for IgA production”, “Rap1 signaling pathway”,
“Osteoclast differentiation”, “Antigen processing and presentation”, “ECM-receptor interaction”,
FDRs from 10−8% to 4.9%, and for GB one inhibited “Taste transduction” and one activated “Choline
metabolism in cancer” pathway (both FDR 2.5%, Figure S17C) (cf. Table S1). Interestingly, no pathway
regulation direction combination overlapped between these cancer entities. For CRC and PAAC no
significant KEGG pathways were revealed at all (SPIA results tables are given in Table S1).

For further biological annotations lists of significantly (false discovery rates <5% or <10% for OvCa
and GB) positively and negatively with the MDF/MUMF correlated genes for each cancer entity were
composed and annotated as above. In Figure 6 these are shown as word clouds in colors indicating
enrichment p-values.
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Figure 6. Enrichment plots of gene ontology terms and pathways of negatively (blue; G1) and positively
(red; G2) with the MDF/MUMF correlated genes in different cancer entities are shown. For OvCa and
GBM a 10% FDR cutoff, for all other cancer entities a 5% cutoff was used. Enrichments are indicated in
word clouds by size and color (p-values). Overlaps of gene lists are shown in Figure S15.

3. Discussion

DNA methylation is an important event and factor in epigenetic gene expression regulation [21].
Globally, CpG dinucleotides are substantially under-represented in the human genome, except in a few
thousand short regions (few hundred to thousand bases long) with enriched CpG-frequencies, known as
CpG-islands (CGIs). Non-CGI CpGs are usually methylated in the human genome and CGI CpGs
unmethylated in association with active genes. Inactive genes are characterized by methylated CGIs in
promoter regions, if a CGI is present at all. Therefore, CGIs are usually involved in gene regulation
by a regulator protein (e.g., transcription factors) binding, either at promoter regions or in enhancers,
usually following the logic, higher methylation lower regulator protein binding and expression
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and vice versa. Globally, solid cancers are characterized by global genome-wide hypo-methylation,
i.e., usually methylated CpGs get less methylated in cancer tissues, and hyper-methylation of specific
CGIs, especially in front of so-called tumor suppressor genes (TSGs). These TSGs are specifically
silenced by hyper-methylation of corresponding CGIs to allow the tumor a more aggressive, malignant,
or metastasizing phenotype.

GB methylation, i.e., the methylation status of CpGs throughout the GB, including introns and
exons, is a more unclear factor. Usually it is considered that a higher GB methylation is correlated
with higher gene expression [5,7], but the concrete mechanisms are not clear. Only the inhibition of
spurious transcription initiation of GB methylation of high expressed genes was shown in mouse stem
cells [22]. GB methylations at specific regions are also correlated to splicing [8,23].

Using a global approach of correlating GB methylation levels with expression of corresponding
genes revealed no proof of a positive correlation. Only genes with high GB methylation levels showed
a slightly positive median correlation coefficient, but genes with low and intermediate GB methylation
levels showed even a slightly negative median correlation coefficient (Figure S4A).

This work is to our knowledge the first report of the analysis of a global GB methylation status
with impact on overall survival in several solid cancer entities. Using averaged methylation beta
values of GBs allows near perfect classification of the cancer entities analyzed in this work (Figure 3
and Figure S10), even as GB methylation values were highly correlated over samples and types
of tissues, fresh frozen or FFPE (Figure S2), and lists of differentially methylated GBs were rather
similar over cancer entities (Figure S11), indicating a similar GB methylation status of individual
genes over tissues. There were only few genes where GB methylation correlated to the corresponding
CGI methylation (Figure S3) or to gene expression (Figure S4). Only genes with highly methylated
GBs were less expressed as a group compared to genes with lowly or intermediately methylated
GBs, even considering gene length as possible bias for expression analysis from RNA sequencing
data. Nevertheless, a positive impact of a globally more defined/extreme state of GB methylation
(i.e., more GBs either highly or lowly methylated compared to GBs with an in-between methylation
status), represented by a methylation definition factor (MDF) on unfavorable OS, was initially shown
with our own RRBS data in OvCa (Figure 1) and validated with TCGA data in breast (BC) and colorectal
(CRC) cancer (Table 1 and Figure 2). Even the exclusive analysis of intronic and exonic regions of the
GBs revealed similar results in OvCa compared to the analysis of the complete GB, i.e., a significant
impact on OS (cf. Table 1). Interestingly, in pancreatic adenocarcinoma (PAAC), the impact on OS was
the other way round, i.e., more defined/extreme methylated GBs correlated with favorable OS (Figure 2).
All OS impact results were significant and independent, i.e., even if corrected for cancer type specific
clinicopathologic factors and for subtype in BC and for the CpG Island Methylator Phenotype (CIMP)
in CRC (even as the MDF was positively correlated to the basal subtype in BC and the CIMP-high
status in CRC). For lung cancer no correlation of GB methylation with OS was found (even with a
large patient cohort) and for glioblastoma the number of methylated GBs (averaged beta values > 0.5)
compared to the number of unmethylated GBs (averaged beta values < 0.5) correlated with favorable
OS–methylation-over-unmethylation factor (MUMF)—alone and corrected for clinicopathologic factors.
Glioblastoma is not a carcinoma (i.e., derived from epithelial cells) as the other analyzed cancer entities
above, but derived from astrocytes, with a rather different (cancer) biology. Therefore, the different
impact of GB methylation on OS is not surprising.

Our interpretation of the absence of significant correlations of single GB methylation levels with
OS but a highly significant summarized GB methylation measure (i.e., the ratio of high/low methylated
to intermediate methylated GBs, described here as MDF and MUMF) is that this measure indicates
a malignant epigenetic phenotype dysregulating the whole transcriptional process in the cell but
not tumor suppressor genes or oncogenes predominantly. However, this global dysregulation of
expression is difficult to analyze with typical RNA-sequencing experiments, as the absolute expression
levels of genes in a cell are completely unknown and even more unknowable, only relative differences
of expressions between genes and samples can be determined. Probably the epigenetic state described



Cancers 2020, 12, 2257 13 of 18

here also influences global splicing events [8], even splicing events leading to circular RNAs, known to
play a role in cancer [24]. To analyze epigenetically driven splicing, not poly(A)-enriched and much
deeper sequenced cohorts of tumors would be necessary.

The impact of the MDF/MUMF on gene expression is completely different for all cancer entities with
insignificant overlap on gene level and no overlap on dysregulated pathway level at all. Only SLC7A11,
TFAP2A, and LIMS2 are commonly regulated by the MDF in carcinomas (not in GBM), but only if the
direction of the correlation was inversed for PAAC, whose impact on OS was also inverse. A pathway
enrichment analysis also revealed very different results from all cancer entities, with either many
significantly dysregulated pathways for BC, only a few significantly dysregulated pathways for OvCa
and GMB, or even no significantly dysregulated pathways for CRC and PAAC. Therefore, we want
cite again the publication from Lee et al. [8] directly, “Intriguingly, the genes regulated by intragenic
methylation in cancer cells are related to cell type-specific functions rather than tumor suppressors”
and want add “... or oncogenes”, which seems to be proven again with our results.

The upside down impact of GB methylation in PAAC compared to OvCa, BC, and CRC remains
interesting, as does the complete independence of global GB methylation—as analyzed here—and OS
in lung cancer, even with a rather large cohort of patients.

4. Materials and Methods

4.1. Aim

Aim of this study was to examine the impact of global methylation states, i.e., global CpG islands
(CGI) methylation and global gene body (GB) methylation measures, on the outcome of patients with
solid cancers.

4.2. Patient Cohorts

Reduced representation bisulfite sequencing (RRBS) was performed with DNA isolated from
25 fresh frozen and 45 formalin-fixed and paraffin-embedded (FFPE) high grade serous ovarian
cancer tumor tissues. The 25 samples were a subset of the 45 cohort. In total all tissue samples were
from 45 patients with diagnosed high grade (grade 2 or 3), late stage (FIGO III or IV), and serous
epithelial ovarian cancer which were characterized in more detail in several publications [19,20,24–30].
Nineteen patients were already deceased. All patients signed an informed consent for providing
tissues to this study according the ethical review board (Ethics Committee of the Medical University of
Vienna) Nos. 366/2003, 793/2011, and 1076/2018.

4.3. DNA Isolation and Reduced Representation Bisulfite Sequencing (RRBS)

Total DNA from fresh frozen tumor tissues (frozen and stored in the gas phase of liquid N2) was
isolated with the DNeasy Blood and Tissue Kit (QIAGEN, Venlo, Netherlands) and from FFPE slices
after macro- (~80%) or laser capture microdissection (~20%, depending on the size and uniformity
of the epithelial tumor areas) of tumor tissues with the AllPrep DNA/RNA FFPE Kit (QIAGEN).
DNA amount was measured by NanoDrop™ 8000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and the PicoGreen® dsDNA Quantitation Reagent (Promega, Madison, WI,
USA) and the quality was assessed by the Agilent High Sensitivity DNA Kit on the 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA USA). RRBS was performed and methylation status of CpGs
called from 100 ng total DNA according to the protocols published by the Biomedical Sequencing
Facility (BSF) in Vienna [12,31].

4.4. Gene Body and CpG Island Analysis

Gene body (GB) of protein coding genes and CpG island (CGI) coordinates for HG38 and
HG19 human genomes were obtained from the UCSC genome browser and the GENCODE V25
annotation. From our RRBS data from high grade serious ovarian cancer, the average beta values
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(i.e., the methylation level using the ratio of methylated bases to all called bases at a specific CpG
position) of all CpGs mapping to either a CGI or the GB of a protein coding gene was calculated
(resulting in one average beta value per each CGI and one average beta value per each GB for each
sample). The corresponding sequencing depth (log10(calling depth + 0.1)) for each CpG was weighted
in the calculation of the beta values. Similarly, average beta values for GB were calculated using
publicly available TCGA beta values without weighting if at least eleven beta values of CpGs were
available for the GB. Beta values and clinicopathologic data from TCGA cohorts were obtained with
R-package TCGA2STAT 1.2. For every sample the sum of all GBs and CGIs whose average beta value
maps to the deciles (0–10%, 10–20%, ..., 90–100%) were summed up and the sums of all deciles for each
sample used for correlation to overall survival. The procedure is summarized in Figure 1. With this
approach a measurement for the global methylation status in CGI and GBs was introduced which was
further used in the subsequent survival analyses.

4.5. Overall Survival Analysis of Gene Body and CpG Island Decile Numbers

To assess the impact of the global methylation status (measured as sum of GBs or CpG islands
in each decile) on overall survival (OS, censored data) the robust (permutation based) Significance
Analysis of Microarrays (SAM) method (R-package samr 3.0 [32]) was used with a false discovery rate
(FDR) cutoff of 5%. Only the deciles which were significantly associated with OS were considered for
the next step, the calculation of a methylation definition factor (MDF) for each sample for carcinomas
(OvCa, BC, CRC, and PAAC): by dividing the number of unmethylated (e.g., OvCa: 0–10% decile) or
methylated (e.g., OvCa: 90–100% decile), thus extreme or defined methylated, GBs by the number of
undefined or intermediate methylated (e.g., OvCa: 50–60% and 60–70% deciles) GBs. The concrete
used deciles and formulas for each cancer entity are given in Table 1. For glioblastoma a simple
methylation-over-unmethylation factor (MUMF) was calculated, dividing all numbers of methylated
GBs (averaged beta values > 50%) by all numbers of unmethylated GBs (averaged beta values
< 50%), because all deciles over 50% showed impact on OS in one direction and all deciles below
50% in the opposite direction (cf. Table 1). To determine the optimal (most informative) cutoff to
dichotomize the MDF or MUMF, a Cox regression model was built including all relevant and available
clinicopathologic factors, thus considering in the model (shown in Table 1), and the cutoff with
the lowest p-value determined using the ‘cut-p’ function from R-package survMisc 0.5.5. Finally,
patients were dichotomized according the respective optimal cutoff and single and multiple Cox
regression analyses performed, the latter with subsequent stepwise backward selection of factors
optimizing the Akaike information criterion (AIC) using function stepAIC from R-package MASS
7.3-51_4 [33]. Factors included together with the optimally dichotomized MDF or MUMF in the final
Cox models are indicated by names without parentheses in Table 1. Kaplan–Meier estimates and
representations of the final multiple Cox models are shown in Figure 2.

4.6. Annotation of Genes with Different Methylation Status and Genes Which Expressions Correlated with the
MDF or MUMF

Isomap and T-distributed Stochastic Neighbor Embedding (tSNE) analyses were performed by
R-packages RDRToolbox 1.34.0 (function ‘Isomap’) and Rtsne 0.15 (function ‘Rtsne’ with parameters:
‘pca = FALSE, perplexity = 30, theta = 0.5, dims = 2’) [34], respectively. For biological annotation
of genes with different averaged methylation beta values for each cancer entity three lists were
composed, one with genes of mean (over all samples of one tumor type) < 0.3 averaged GB methylation
beta values (Unmethylated), one with genes of mean > 0.7 averaged GB methylation beta values
(Methylated) and the third list with all remaining genes (Undefined). Overlap of these lists were
determined and presented in Venn-like UpSet diagrams, prepared by the R-package UpSetR 1.4.0
(function upset) [35]. Furthermore, these gene lists were analyzed for enrichments in gene ontology
(GO) terms (biological processes, cellular components, and molecular functions) and KEGG and
Reactome pathways with function gosummaries from R package GOsummaries 2.22.0 [36].
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For the correlation of the MDF or MUMF with gene expression the corresponding RNA-sequencing
data were used, for OvCa own data [20] and for all other cancer entities the TCGA data,
downloaded again with the TCGA2STAT R-package. Expressed genes were filtered using 0.5 counts per
million in halve of samples and remaining raw read counts were normalized and weighted according
to quality with R-function ‘voomWithQualityWeights’ from R-package limma 3.40.6 [37] (using the
cyclicloess normalization, i.e., cyclicly applying loess normalization). These genes were correlated
to the corresponding MDF or MUMF values and gene lists composed of significantly positively or
negatively correlated genes (for OvCa and GBM with an FDR cutoff of 10% and all other cancer
entities of 5%). Overlap of these gene lists are shown in Figure S15 using the upset method as above.
GO and pathway enrichments of these gene lists were analyzed as above. Differentially regulated
KEGG-pathways were determined by a combined gene over-representation and perturbation analysis
using Signaling Pathway Impact Analysis (SPIA), implemented in the Bioconductor R-package SPIA
v2.38.0 [38], with 10,000 permutations and the normal inversion “norminv” p-value combination
method. Correction for multiple testing was done by the False Discovery Rate (FDR) method
(Benjamini-Hochberg). Significant pathways were illustrated with the Bioconductor R-package
pathview v1.26.0 [39].

5. Conclusions

Global gene body methylation measures, in carcinomas the quotient of numbers of
defined/extreme methylated GBs (either nearly complete methylated or unmethylated) to numbers
of undefined/intermediate methylated GBs—the methylation definition factor (MDF)—correlated
significantly with overall survival in ovarian cancer, breast cancer, colorectal cancer, and pancreatic
cancer, but not in lung cancer. This impact was always independent from known cancer specific
clinicopathologic factors and in the case of breast and colorectal cancer also from the molecular
subtype or the CpG island methylator phenotype (CIMP) status, respectively (nevertheless, the MDF
was correlated to both factors). Interestingly, in ovarian cancer, breast cancer, and colorectal cancer
the impact of more defined/extreme methylated genes was an unfavorable predictive factor and in
pancreatic cancer the other way round. A similar “definition” factor of CpG islands showed no such
impact on OS, at least in ovarian cancer.

In glioblastoma the quotient of numbers of methylated GBs to numbers of unmethylated GBs—the
methylation-over-unmethylation factor (MUMF)—was a significant and independent predictor, if high
for unfavorable OS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/8/2257/s1,
Figure S1: Correlation plots of averaged GB methylation values between DNA isolated from fresh frozen
tumor tissues and macro/microdissected FFPE tumor tissues of the same patients, Figure S2: (A) Histograms
of correlation coefficients of averaged GB methylation values between different samples within (fresh frozen)
FF and (formalin fixed and paraffin embedded) FFPE tissues (green color), between different samples across
FF and FFPE sample (blue color) and between the matched pairs of samples (from the same patients) from FF
and FFPE tissues (red color). The black line indicates the correlation coefficient of the MDF values between
matched pairs of FF and FFPE tissues (cf. C). (B) Histograms of the calculated “Methylation Definition
Factor” (MDF) from FF and FFPE tissues from the same patients and (C) the correlation between these MDF
values of the matched pairs of FF and FFPE tissues, Figure S3: (A) Histograms of correlation coefficients of
averaged GB methylation values with corresponding averaged CGI methylation values, split into slots of low
to high mean methylation levels, i.e., 0–10%, 10–20%, ..., 90–100% (colored white to dark grey). On the left side,
split according GB methylation levels and on the right side according CGI methylation levels. (B) Overall
correlation of corresponding averaged GB and CGI methylation levels. (C) Association of the coefficient of
variation (CV) with the averaged GB methylation level, Figure S4: (A) Histograms of correlation coefficients
between GB methylation values and corresponding gene expression values, split into slots of low to high mean
GB methylation levels, i.e., 0–10%, 10–20%, ..., 90–100% (colored white to dark grey). (B) Boxplots of log2
expression values of genes in slots of 0–10%, 10–20%, ..., 90–100% methylated GBs (different grey colors, left y-axis)
and corresponding log10 gene length of genes in these slots (different blue colors, right y-axis), Figure S5:
Histograms of methylation definition factors (MDF, calculated as follows: (no average GB betas < 0.1 + no
average GB betas > 0.9)/no average GB betas between 0.2 and 0.8) of (A) 41 normal human primary cells and
tissues (astrocyte (primary cell), foreskin fibroblast (primary cell), islet of Langerhans (tissue), placenta (tissue),
hepatocyte (primary cell), mononuclear cell (primary cell), testis (tissue), adrenal gland (tissue), zone of skin
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(tissue), mammary epithelial cell (primary cell), uterus (tissue), non-pigmented ciliary epithelial cell (primary cell),
epithelial cell of alveolus of lung (primary cell), iris pigment epithelial cell (primary cell), epithelial cell of esophagus
(primary cell), epithelial cell of proximal tubule (primary cell), pericardium (tissue), heart left ventricle (tissue),
bronchial epithelial cell (primary cell), kidney epithelial cell (primary cell), lung (tissue), renal cortical epithelial
cell (primary cell), epithelial cell of prostate (primary cell), kidney (tissue), cardiac fibroblast (primary cell),
skeletal muscle cell (primary cell), stomach (tissue), epidermal melanocyte (primary cell), myoblast (primary cell),
pancreas (tissue), skeletal muscle myoblast (primary cell), aortic smooth muscle cell (primary cell), osteoblast
(primary cell), cardiac muscle cell (primary cell), brain (tissue), skeletal muscle tissue (tissue), choroid plexus
epithelial cell (primary cell), liver (tissue), retinal pigment epithelial cell (primary cell), amniotic epithelial cell
(primary cell), breast (tissue)); (B) 43 cancer cell lines (MCF, 10A, LNCaP, K562, IMR-90, MCF-7, HEK293, H1,
HTR-8/SVneo, NB4, U-87, MG, BJ, HepG2, Caco-2, HeLa-S3, GM19240, HL-60, BE2C, T47D, CMK, Panc1, A549,
GM19239, AG09319, NT2/D1, GM06990, HCT116, SK-N-SH, GM12891, SK-N-MC, AG04450, Ishikawa, AG10803,
Jurkat, AG08470, AG09309, GM12878, UCH-1, PFSK-1, OVCAR3, HGPS, GM12892, AG04449, hTERT-HM);
(C) fresh frozen ovarian cancer tumor tissues; and (D) formalin fixed paraffin embedded (FFPE) ovarian
cancer tumor tissues, Figure S6: Distribution of average gene body methylation values (beta values ± CI95
over samples) of gene bodies of protein coding genes. (A) 45 ovarian cancer tumor tissues; (B) 43 cancer
cell lines (MCF, 10A, LNCaP, K562, IMR-90, MCF-7, HEK293, H1, HTR-8/SVneo, NB4, U-87, MG, BJ, HepG2,
Caco-2, HeLa-S3, GM19240, HL-60, BE2C, T47D, CMK, Panc1, A549, GM19239, AG09319, NT2/D1, GM06990,
HCT116, SK-N-SH, GM12891, SK-N-MC, AG04450, Ishikawa, AG10803, Jurkat, AG08470, AG09309, GM12878,
UCH-1, PFSK-1, OVCAR3, HGPS, GM12892, AG04449, hTERT-HM); (C) 41 normal human primary cells and
tissues (astrocyte (primary cell), foreskin fibroblast (primary cell), islet of Langerhans (tissue), placenta (tissue),
hepatocyte (primary cell), mononuclear cell (primary cell), testis (tissue), adrenal gland (tissue), zone of skin
(tissue), mammary epithelial cell (primary cell), uterus (tissue), non-pigmented ciliary epithelial cell (primary cell),
epithelial cell of alveolus of lung (primary cell), iris pigment epithelial cell (primary cell), epithelial cell of esophagus
(primary cell), epithelial cell of proximal tubule (primary cell), pericardium (tissue), heart left ventricle (tissue),
bronchial epithelial cell (primary cell), kidney epithelial cell (primary cell), lung (tissue), renal cortical epithelial
cell (primary cell), epithelial cell of prostate (primary cell), kidney (tissue), cardiac fibroblast (primary cell),
skeletal muscle cell (primary cell), stomach (tissue), epidermal melanocyte (primary cell), myoblast (primary cell),
pancreas (tissue), skeletal muscle myoblast (primary cell), aortic smooth muscle cell (primary cell), osteoblast
(primary cell), cardiac muscle cell (primary cell), brain (tissue), skeletal muscle tissue (tissue), choroid plexus
epithelial cell (primary cell), liver (tissue), retinal pigment epithelial cell (primary cell), amniotic epithelial cell
(primary cell), breast (tissue)), Figure S7: Correlation of the methylation definition factor (MDF), Y-axis, with the
breast cancer subtypes, determined with the PAM50 gene signature. Red line, cutoff for the optimal dichotomization
of the MDF as obtained from multiple Cox regression models, Figure S8: The CpG island methylator phenotype
(CIMP) status determined from TCGA colorectal cancer samples according to Hinoue et al. [1]. The rRR, CIMP-H;
rRL, CIMP-L; rLL, type 3; rLR, type 4, Figure S9: Correlation of the methylation definition factor (MDF), Y-axis,
with the CpG Island Methylator Phenotypes determined with the function bclTree of R-package RPMM 1.25.
Red line, cutoff for the optimal dichotomization of the MDF as obtained from multiple Cox regression models,
Figure S10: Isomap representation of all samples from all cancer entities using the averaged gene body beta values
(if present and without missing data in all samples, N = 7403), Figure S11: Overlap of (A) genes with methylated
gene bodies (mean averaged beta values > 0.7), (B) with intermediate methylated gene bodies (mean averaged
beta values < 0.7 and >0.3), and (C) unmethylated (mean averaged beta value < 0.3) over all indicated cancer
types. Only gene bodies with available averaged beta values present in all cancer entities were considered;
n = 7.801, Figure S12: Histograms showing the percentages of genes which are consistently annotated to a
specific GB methylation slot, divided into three mean GB methylation slots, low methylated (<0.3; light grey),
intermediate methylated (≥0.3 and ≤0.7; grey), and high methylated (>0.7; dark grey), Figure S13: (A) Overlap
of gene lists consistently categorized (i.e., in >90% of samples) to one of the GB methylation slots (high, >0.7;
intermediate; and low, <0.3) from different cancer entities, derived from data shown in Figure S12. (B) Subset
of the first 13 gene overlaps from (A), Figure S14: Enrichment plots of gene ontology terms and pathways of
lists of consistently as high, intermediate, or low methylated categorized genes. Enrichments are indicated in
word clouds by size and color (p-values). Overlap of gene lists across cancer entities are shown in Figure S13,
Figure S15: Overlap of genes positively (red) or negatively (green) correlated to the respective MDF/MUMF in
different cancer entities. For OvCa and GBM a 10% FDR cutoff, for all other cancer entities, a 5% FDR cutoff
was used, Figure S16: SPIA evidence plot of significantly deregulated KEGG pathways, blue and red dots
with KEGG pathway numbers (blue line: cutoff FDR < 5%). For colorectal cancer and pancreatic carcinoma,
no significant pathways were revealed (cf. S Table S1), Figure S17: Most significant KEGG pathways associated
with the Methylation Definition Factor (MDF) in ovarian and breast cancer or the Methylation-over-Unmethylation
Factor (MUMF) for glioblastoma. (A) Inhibited pathway “Systemic Lupus Erythematosus” in ovarian cancer.
(B) Inhibited pathway “Cytokine-Cytokine Receptor Interaction” in breast cancer, and (C) two identical significant
pathways, one inhibited. “Taste Transduction” and one activated, “Choline Metabolism in Cancer” in glioblastoma.
Green-to-red color bar represents log2 fold changes correlated to the MDF or MUMF, Tables S1: SPIA results tables.
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