
Tutorial

PDBj Mine: design and implementation
of relational database interface for
Protein Data Bank Japan

Akira R. Kinjo*, Reiko Yamashita and Haruki Nakamura

Protein Data Bank Japan (PDBj), Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan

*Corresponding author: Tel: 81 6 6879 4311; Fax: 81 6 6879 8636; Email: akinjo@protein.osaka-u.ac.jp

Submitted 6 June 2010; Revised 26 July 2010; Accepted 10 August 2010

...

This article is a tutorial for PDBj Mine, a new database and its interface for Protein Data Bank Japan (PDBj). In PDBj Mine,

data are loaded from files in the PDBMLplus format (an extension of PDBML, PDB’s canonical XML format, enriched with

annotations), which are then served for the user of PDBj via the worldwide web (WWW). We describe the basic design of

the relational database (RDB) and web interfaces of PDBj Mine. The contents of PDBMLplus files are first broken into XPath

entities, and these paths and data are indexed in the way that reflects the hierarchical structure of the XML files. The data

for each XPath type are saved into the corresponding relational table that is named as the XPath itself. The generation of

table definitions from the PDBMLplus XML schema is fully automated. For efficient search, frequently queried terms are

compiled into a brief summary table. Casual users can perform simple keyword search, and ’Advanced Search’ which can

specify various conditions on the entries. More experienced users can query the database using SQL statements which

can be constructed in a uniform manner. Thus, PDBj Mine achieves a combination of the flexibility of XML documents

and the robustness of the RDB.

Database URL: http://www.pdbj.org/

...

Introduction

All protein structural data must be deposited to the world-

wide Protein Data Bank (wwPDB) (1) if they are to be pub-

lished in scientific journals. After curation, the deposited

data are saved in three different formats [PDB, mmCIF (2),

and PDBML (3)] and are published at the FTP sites of the

wwPDB members, which includes RCSB PDB (USA), PDBe

(Europe) and PDBj (Japan) (together with BMRB [Biological

Magnetic Resonance Bank]). Currently, there are over 66 000

entries available at the wwPDB. Although all the informa-

tion about protein structures are available in mmCIF or

PDBML files, the protein structural data are inherently com-

plex, consisting of atomic coordinates, experimental meth-

ods and conditions, citation information and annotations of

molecular entities to name a few, so that it is not always easy

for the casual user to find necessary information. Therefore,

each member of the wwPDB provides its own interface to

the database via the worldwide web (WWW) (1).

As an enhancement to the PDBML format, we at PDBj

have been developing PDBMLplus that is a super-set of

PDBML and includes additional information related to

each PDB entry such as manually curated experimental in-

formation and cross-reference to other databases. Based on

PDBMLplus, we have recently developed PDBj Mine, a rela-

tional database (RDB) and its web interface (http://www

.pdbj.org/; the list of web resources are provided in

Table 1) to the PDBMLplus data. In this article, we describe

the design and implementation of PDBj Mine. Although it is

a RDB, PDBj Mine preserves the structure of PDBMLplus (an

XML format) so that a user who is familiar with PDBML or

PDBMLplus can easily construct SQL queries based on the

hierarchical structure of XML. PDBj Mine is implemented

using only free, open-source softwares so that interested

...

� The Author(s) 2010. Published by Oxford University Press.
This is Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited. Page 1 of 10

(page number not for citation purposes)

Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021
...

http://www.pdbj.org/
http://www
http://

power users can install the entire back-end system of PDBj

Mine to make their own mirror sites of PDBj. The basic

structure of PDBj Mine and the sample queries described

in this article will help the user to construct more advanced

queries against the PDBj to retrieve more useful informa-

tion on protein structures.

Design

As mentioned above, we attempted in the design of PDBj

Mine to embed the structure of PDBML into a set of rela-

tional tables as closely as possible so that the user who is

familiar with PDBML can construct queries based on XPath

expressions. Although the resulting design somewhat devi-

ates from conventional RDB techniques and may sacrifice

the efficiency of query processing, it makes possible to in-

corporate XML documents in a generic manner and, in

practice, achieves reasonable efficiency.

We first review the PDBML and PDBMLplus formats, and

then describe a method to represent the XML document

structures using ‘pointers’ to XML elements and attributes.

Using the pointer representation, the contents of XML

documents are stored in ‘XPath-based tables’ as described

below. After summarizing the general organization of the

relational tables in PDBj Mine, we describe some practical

tricks concerning keyword search and advanced searches.

Overview of PDBML and PDBMLplus formats

The PDBML format is the canonical XML format for PDB

data (3), which is translated from the mmCIF format (2).

Reflecting the structure of mmCIF, the structure of

PDBML is relatively simple and of shallow hierarchy

(Figure 1). In the mmCIF dictionary, related terms are

grouped into categories (‘xxxCategory’ in Figure 1), and

Table 1. List of on-line resources

Resource URL Remarks

wwPDB http://www.wwpdb.org

PDBj http://www.pdbj.org ‘Quick’ search

PDBj Mine http://service.pdbj.org/mine/ SQL interface

Advanced Search http://service.pdbj.org/mine/advanced.html

PDBj Mine Help http://doc.pdbj.org/help?PDBj%20Mine Documentation

PDBMLplus ftp://ftp.pdbj.org/XML/pdbmlplus FTP site

PDBj Mine dump ftp://ftp.pdbj.org/mine FTP site

mmCIF dictionary http://mmcif.pdb.org/

PDBML schema http://pdbml.pdb.org/schema/pdbx-v32.xsd

PDBMLplus schema http://service.pdbj.org/mine/schema.html

jV http://www.pdbj.org/jv/ Molecular graphics

JMol http://www.jmol.org/ Molecular graphics

PostgreSQL http://www.postgresql.org Version 8.4 series

Figure 1. Basic structure of PDBML. Every PDBML file is
enclosed in the ‘datablock’ element with which the
‘datablockName’ attribute indicating PDB ID is associated.
Inside the datablock element, there are a number of elements
corresponding to mmCIF category groups enclosed in the tags
‘xxxCategory’ where xxx indicates one of the mmCIF category.
There is only one xxxCategory element for each category
group (‘xxx’ can be ‘entity’, ‘citation’, ‘struct’ and so on).
Inside an xxxCategory element, there are one or more elem-
ents enclosed in the xxx tag (this ‘xxx’ is the same as in
‘xxxCategory’ up in the hierarchy). For each xxx element,
there are usually one or more attributes (denoted ‘@yyy’ in
the figure) which indicates the identifier of that element (e.g.
‘@id’ in the entity, citation categories and ‘@entry_id’ in the
struct category). These attributes serve as the primary key for
each category element. Under the xxx element, there are
elements (denoted zzz in the figure) that are specific to the
category (e.g. ‘pdbx_description’ in the entity category,
‘pdbx_database_id_PubMed’ in the citation category and
‘pdbx_descriptor’ in the struct category). In the mmCIF diction-
ary, the attributes (such as ‘@yyy’) and elements (such as ‘zzz’)
are referred to as items.

...

Page 2 of 10

Tutorial Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021
...

http://www.wwpdb.org
http://www.pdbj.org
http://service.pdbj.org/mine/
http://service.pdbj.org/mine/advanced.html
http://doc.pdbj.org/help?PDBj%20Mine
ftp://ftp.pdbj.org/XML/pdbmlplus
ftp://ftp.pdbj.org/mine
http://mmcif.pdb.org/
http://pdbml.pdb.org/schema/pdbx-v32.xsd
http://service.pdbj.org/mine/schema.html
http://www.pdbj.org/jv/
http://www.jmol.org/
http://www.postgresql.org

each category includes entities (‘xxx’ in Figure 1) specified

by the items of that category (‘yyy’ and ‘zzz’ in Figure 1).

The attributes in each category element corresponds to the

primary key of the element.

The PDBMLplus format is an extension of PDBML de-

veloped at PDBj (The XML schema is provided at http://ser

vice.pdbj.org/mine/schema.html). In PDBMLplus files, some

manually curated experimental information as well as auto-

matically associated cross-references to other database re-

sources are added. Accordingly, there are a few additional

elements that are not present in the canonical PDBML

format. Some experimental information (e.g. mmCIF cate-

gories such as refine, reflns, software, citation, etc.) that are

missing or incorrect in the original PDBML files are manu-

ally appended or corrected in PDBMLplus files by an anno-

tator at PDBj who examines the original references (These

fixes are reflected in the original PDB data in future re-

leases or remediation). Other, mostly functional informa-

tion cross-referenced by other databases to the PDB are

automatically extracted every week. These include func-

tional sites and gene ontology (http://www.geneontology

.org) mapping obtained from the UniProt (4), catalytic site

information from the Catalytic Site Atlas (5) and ligand

binding sites identified in the PDB itself. Those annotations

are appended in mmCIF categories (possibly extended) such

as struct_site, struct_site_gen and struct_ref, or in a new

category specific to PDBMLplus such as gene_ontology.

PDBMLplus files and its XML schema are available at

ftp://ftp.pdbj.org/XML/pdbmlplus. The PDBMLplus file of

each PDB entry can be also downloaded at the

‘Download/Display’ page of the corresponding entry

(Figure 3)

Representation of XML hierarchical structure of
PDBMLplus

Each PDBMLplus file, being in an XML format, has a hier-

archical tree structure defined by the PDBMLplus XML

schema. In PDBj Mine, we model the RDB tables so as to

preserve the XML structure of the PDBMLplus files. By

doing so, we mimic a native XML database using an RDB

so that the user of PDBML files can construct his query with

less difficulty. To handle the contents of XML documents

efficiently, PDBj Mine is designed to process XPath expres-

sions in a straightforward manner. For each element or

data in a PDBMLplus file, we assign a number (pointer)

ordered in a depth-first manner along the tree structure

(Figure 2). This method of assigning pointers to XML elem-

ents was originally proposed by Yoshikawa et al. (6) for

their XRel method of storing and retrieving XML

documents in a RDB. Unlike XRel, however, PDBj Mine

stores each XML element type into a unique table

named after its XPath expression. These tables are referred

to as ‘XPath-based tables’ in the following. For example,

in Figure 2, the information of the datablock,

entryCategory elements are stored in the tables named

‘E:/datablock’ and ‘E:/datablock/entryCategory’ (i.e. XPath

name with the ‘E:’ prefix), respectively. Attribute values

and PCData (parsed character data) such as

‘1A00-noatom’ in the ‘/datablock/@datablockName’ attri-

bute or ‘1’ in the ‘/datablock/struct_asymCategory/struct_

asym/entity_id’ element are stored in the corresponding

tables of the same name as the XPath name (without the

‘E:’ prefix). Thus, there are two types of XPath-based tables:

one for elements themselves, the other for attribute values

and PCData. These two types of tables are referred to as

‘container table’ and ‘content table’, respectively, in the

following. The basic structures of these tables are given in

Table 2.

The container table corresponding to an XML element

contains three columns indicating the entry and the region

of the element. Here, the region is defined as a pair of

pointers, one to that element and the other to the last

element under that element in the XML hierarchy of the

document. In the example of Figure 2, the element for

‘/datablock/entryCategory/entry’ of the PDB entry 1A00

would be represented as a triple (59616, 3, 4) where

‘59616’ is the PDB ID 1A00 interpreted as a number of

radix 36, and ‘3’ is the pointer to the element, and ‘4’ is

the maximum value of the pointers under this element (in

this case, this is the pointer to the attribute ‘/datablock/

entryCategory/entry/@id’). This triple is stored in the table

named ‘E:/datablock/entryCategory/entry’. The table names

of container tables are always prefixed with ‘E:’ as can be

seen in this example. In a similar manner, in the table

named ‘E:/datablock/struct_asymCategory/struct_asym,’ tri-

ples such as (59616,6,9) and (59616, 10, 13) are present.

The content table corresponding to an attribute or a

PCData contains three columns indicating the entry, the

pointer to the data, and the data itself (i.e. attribute

value or PCData). In the example of Figure 2, the value

‘1A00’ for the XPath ‘/datablock/entryCategory/entry/@id’

would be represented as a triple (59616, 4, ‘1A00’) and is

stored in the table named ‘/datablock/entryCategory/entry/

@id’. Note that the ‘E:’ prefix is absent from the names of

content tables.

When an element contains a PCData directly under it,

there are two tables with the same table names except

for the ‘E:’ prefix. For example, in Figure 2, the XML elem-

ent ‘/datablock/struct_asymCategory/struct_asym/entity_id’

containing the PCData ‘1’ corresponds to the container

table named ‘E:/datablock/struct_asymCategory/struct_

asym/entity_id’ containing a triple (docid, pstart, pend)

= (59616, 8, 9) and to the content table named ‘/data-

block/struct_asymCategory/struct_asym/entity_id’ contain-

ing a triple (docid, pos, val) = (59616, 9, ‘1’). However, if

an element can only contain a PCData without any attri-

butes or other elements under it, the corresponding con-

tainer table is redundant in the sense that it is not needed

...

Page 3 of 10

Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021 Tutorial
...

http://ser
http://www.geneontology
ftp://ftp.pdbj.org/XML/pdbmlplus

A

B

Figure 2. Document tree representation. (A) A sample PDBMLplus (XML) document. (B) The tree representation of the document
in (A). Each element, attribute, or PCData is uniquely indexed with a pointer (from 0 to 13 in this example) according to the tree
structure in the depth-first order.

Table 2. Basic table definitions in PDBj Mine

Column Type Example

Container tables ‘E:/datablock/entityCategory/entity’

docid INTEGER 68 271

pstart INTEGER 718

pend INTEGER 737

Content tables ‘/datablock/entityCategory/entity/pdbx_ec’

docid INTEGER 68 271

pos INTEGER 727

val typeOfData ’1.1.3.9’

Xmldoc xmldoc (this is the only instance)

pdbid TEXT ’1gof’

docid INTEGER 68 271

doc XML ’<datablock> . . .</datablock>’

kwd TEXT ’oxidation reduction . . . ’

mtime TIMESTAMP 2009-11-29 00:11:45+09

There are two kinds of XPath-based tables for storing PDBMLplus data. The container tables contain the docid (PDB ID consisting of four

alphanumerical characters interpreted as a radix 36 number), pstart (the pointer to the element) and pend (the maximum value of the

pointers under that element). The table names of the container tables are XPaths prefixed with ‘E:’. The content tables contain docid,

pos (the pointer to the data) and val (the value of the data with appropriate type). The NOT NULL constraint is imposed on all the

columns. The xmldoc table stores the PDB ID’s, docid’s, the original PDBMLplus files, keywords (kwd) and the last modified time (mtime).

Its docid column is referenced from the XPath-based tables as foreign keys.

...

Page 4 of 10

Tutorial Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021
...

for retrieving meaningful information. Therefore, to save

the required disk space, we do not keep such container

tables. Whether or not an element can contain only a

PCData can be determined from the PDBMLplus schema.

In the above example, the container table ‘E:/datablock/

struct_asymCategory/struct_asym/entity_id’ does not actu-

ally exist in the working version of PDBj Mine.

Table definitions based on XML schema

As expected, there are a large number of tables required

for storing PDBMLplus data. Nevertheless, owing to the

simplicity of PDBMLplus schema and the basic structures

of the relational tables, it is possible to generate the

table definitions automatically from the PDBMLplus

schema. Currently, there are 5368 XPath-based tables

in PDBj Mine. The definitions for the container tables are

identical for all elements except for the table names.

The definitions for the content tables may be different

for different tables due to the type of the data.

Nevertheless, the type information in the PDBMLplus

schema can be easily converted and transferred to relation-

al table definitions. Since table names can be rather long,

we also make a short-hand alias for each table as a view.

For example, the table ‘E:/datablock/entryCategory/entry’

can be referred to as ‘E://entry’, and the table ‘/datablock/

entryCategory/entry/@id’ as ‘//entry/@id’, etc. Unambiguous

assignment of these short-hand notations is possible due to

the regular structure of the PDBMLplus schema.

Terms for keyword search

The basic data types for content tables include integer, nu-

meric (real number), date and text. For keyword search,

however, we need to manually specify appropriate tables

suitable for such a purpose. In the current implementation,

we specify 23 PDBMLplus categories (out of 333) for key-

word search. That is, all tables in these categories are

indexed for keyword search if their data type is text. One

exception is the identifier of the PubMed abstract database

(http://www.ncbi.nlm.nih.gov/PubMed/), which is originally

defined as integer but indexed as keywords (PubMed ab-

stracts themselves are not available in PDBML or

PDBMLplus).

Auxiliary tables for frequent queries and updates

In addition to the tables described so far, we also compile a

table that summarizes the basic information which is quer-

ied frequently. This table, named ‘brief_summary’, contains

all the data needed for keyword search and Advanced

Search (described below).

To facilitate managing the weekly update of PDBMLplus

files, we also define a table named ‘xmldoc’ that contains

PDB ID, docid and, modified date of PDBMLplus files

(Table 2). Thus, each row of the xmldoc table corresponds

to one PDB entry, and the docid column of this table is

referenced from all XPath-based tables using foreign

keys. When a row in the xmldoc table is deleted, all data

of the corresponding entry in other tables are automatic-

ally deleted. Therefore, when a PDBMLplus file is updated,

we first delete the corresponding entry in the xmldoc table

only, and then reload the updated data into the RDB.

Although this strategy for updating entries is rather primi-

tive, this is preferred to avoid complications regarding the

manipulation of pointers for XPaths in many tables.

For convenience, we also included in the xmldoc table

the raw PDBMLplus contents so that a user can retrieve

the data using XPath expressions. However, in the current

implementation, complex queries directly using XPath are

not efficient (A few sample queries using XPath expressions

can be found at http://doc.pdbj.org/help?PDBj%20Mine).

Thus, this functionality should be used only for simple

retrieval of PDBMLplus components.

Implementation

Relational database

As the back-end database management system (DBMS), we

use PostgreSQL 8.4 (http://www.postgresql.org/), which has

been compiled with XML-related functionality enabled. At

the time of this writing, the version 8.4.4 is the latest one in

the version 8.4 series of PostgreSQL (http://www.postgresql

.org/ftp/source/v8.4.4/). We made minor modifications in

the source code of PostgreSQL so that it can handle long

table names.

The programs for converting PDBMLplus Schema to rela-

tional table definitions and for decomposing and loading

PDBMLplus documents are written in the OCaml language

(http://caml.inria.fr/) with supporting libraries to manipu-

late XML files and to interact with PostgreSQL. Several

shell scripts are also employed to manage the weekly up-

dates of PDB data.

Web interface

The user interface for PDBj Mine through the WWW is

available at PDBj’s web site (Figure 3). This web interface

is implemented using Java servlets which accept input

queries, and hand them to the back-end RDB and then con-

vert the results into a simple XML format which is further

processed with XML stylesheets to yield the final HTML

pages. Depending on the type of queries, the workflow

branches into six categories: (i) ‘Quick’ searches using

either PDB ID or keywords; (ii) advanced search with various

conditions to filter the entries; (iii) SQL queries where the

user can type in raw SQL expressions; (iv) author search to

find entries deposited by particular authors; (v) subse-

quence search where the user can specify a short segment

of a polymer sequence contained in PDB entries; and (vi)

Search for most recently updated or newly added entries.

...

Page 5 of 10

Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021 Tutorial
...

E://entry%E2%80%99%00
http://www.ncbi.nlm.nih.gov/PubMed/
http://doc.pdbj.org/help?PDBj%20Mine
http://www.postgresql.org/
http://www.postgresql
http://caml.inria.fr/

As a result of a query, a list of PDB entries is usually

obtained. The user can narrow down the result by adding

PDB ID’s, keywords, author names or subsequences. To fa-

cilitate viewing large result lists, the user can sort the list by

PDB ID, deposition/release date or keyword relevance score.

The keyword relevance score is calculated as the number of

matching terms divided by the logarithm of the number of

unique words in the keywords list of an entry (see the

PostgreSQL manual).

For each PDB entry, there are dedicated summary and

details pages (Figure 3). These pages, except for the ‘se-

quence neighbor’ page, are generated from the original

PDBMLplus files which are processed with XML stylesheets.

The sequence neighbor page is dynamically generated from

Figure 3. Entry retrieval and keyword search. From the PDBj top page, the user can input PDB ID, keywords, author names and
subsequence of polymers (top left). When there are multiple hits to the query, a list of matching entries (search results) is
returned (top right). When only one hit is found as in the case for PDB ID search or when an entry is selected in the search
results, the summary page for the corresponding entry is shown (bottom right) from which other detailed pages (Structural,
Experimental and Functional Details as well as Download/Display, and External Links) are linked.

...

Page 6 of 10

Tutorial Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021
...

the result of a BLAST (7) search (This process usually takes

less than a few seconds).

Web services

The RESTful web services are also provided. There are two

services. One is a retrieval of PDBMLplus component of

each entry based on an XPath expression embedded in a

URL (access http://service.pdbj.org/mine/xpath for a brief

instruction).

The other is the SQL search that accepts any valid SQL

queries and returns the results in one of XML, CSV

(comma-separated values), TSV (tab-separated values) or

plain text formats (access http://service.pdbj.org/mine/sql

for a brief instruction).

Database dumps

The database dump files are provided at our FTP server

(ftp://ftp.pdbj.org/mine). The dump of the whole database

is updated every week. The differential data for each week

is also provided. Thus, users can construct a mirror of PDBj

Mine provided that they have a customized PostgreSQL in-

stalled. For the compatibility, the version 8.4 series of

PostgreSQL must be used (see the Relational database sec-

tion) at the time of this writing. More detailed instructions

are provided at the above FTP site.

Database statistics

As of 21July 2010, there were 66 633 entries in the PDB. The

plain PDBMLplus files (without atomic coordinates)

amounted to �55 GB. The size of the PDBj Mine database,

including auxiliary tables and indexes, was �112 GB in total.

Out of 5368 XPath-based tables, the most populated tables

contained 40 331 637 rows and 4.4 GB of data (these were

items of the pdbx_poly_seq_scheme category). On average,

there were 213 511 rows per table but the median was 0

(corresponding to empty tables). Considering the hetero-

geneity and historical development of the PDB data, this

is not surprising (8).

Examples

Entry retrieval and keyword search

Simple entry retrieval and keyword search can be per-

formed from PDBj’s top page (http://www.pdbj.org/). In

addition, a short segment of polymer sequences and

author names can be specified in the same input form.

When a PDB ID is given in the form (Figure 3), a summary

of the entry is returned, from which pages for structural

details, experimental details functional details, sequence

neighbors, download/display and external links are linked.

In addition, interactive molecular graphics are also pro-

vided through either jV (9) or Jmol (http://www.jmol.org/).

When keywords are input, a list of entries are displayed in a

result page from which the user is directed to the summary

page of each entry in the list.

Advanced Search

The Advanced Search interface available at http://service

.pdbj.org/mine/advanced.html provides a range of condi-

tions the user can specify to find desired entries. The con-

ditions provided include release and deposition dates,

citation information such as author names, journal titles

and polymer types, ligands, cross-referenced database

entries, experimental techniques, etc. This interface is im-

plemented with a materialized view in the back-end data-

base (i.e. the ‘brief_summary’ table) to support quick

response to queries. We expect that casual users can satisfy

most of their needs by using this interface. Nevertheless,

as our experience with user interaction increases, the

Advanced Search interface will be improved accordingly.

SQL search

When users cannot satisfy their needs by using the inter-

faces mentioned above, they can resort to the SQL search

interface available at http://service.pdbj.org/mine/ (entered

by clicking the ‘PDBj Mine’ logo on the PDBj top page).

Doing so requires some understanding of the underlying

structure of PDBMLplus and the RDB of PDBj Mine. Due

to the relatively simple structure of the PDBMLplus

schema, SQL queries can be constructed in a systematic

manner. Here, we provide two examples based on the

‘entityCategory’ element of PDBMLplus files (Figure 4A).

Under this element, there are ‘entity’ elements each of

which describes a molecular entity contained in the

PDBMLplus file. The following examples are rather

low-level usage of the database, but the user can have

the full control of the query. The equivalent queries can

be greatly simplified by using the ‘category’ views

described in Appendix 1.

To retrieve a list of PDB ID’s and the descriptive names of

entries with the EC (enzyme commission) number 1.1.1.1,

the SQL query as in Figure 4B can be performed. First, PDB

ID is selected from the ‘brief_summary’ table to which three

other tables are joined (the xmldoc table can be also

used in place of brief_summary). The first joined table is

‘E://entity’ which is a short-hand for ‘E:/datablock/

entityCategory/entity’ as mentioned above. The join condi-

tion is the equivalence of the ‘docid’ column in brief_

summary and ‘E://entity’ tables. To filter by the EC

number, we join the table ‘//entity/pdbx_ec’ which contains

the desired information. This element is under the ‘entity’

element, so that the join condition is the equivalence

of ‘docid’ as well as the pointer (‘pos’) column of the

former being in the region of the latter (specified as

‘p1.pos BETWEEN e.pstart AND e.pend’ in Figure 4B).

To return the descriptive name of the entry, we also join

the ‘//entity/pdbx_description’ table in the same manner as

...

Page 7 of 10

Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021 Tutorial
...

http://service.pdbj.org/mine/xpath
http://service.pdbj.org/mine/sql
ftp://ftp.pdbj.org/mine
http://www.pdbj.org/
http://www.jmol.org/
http://service
http://service.pdbj.org/mine/
E://entity%E2%80%99
E://entity%E2%80%99

the ‘//entity/pdbx_ec’ table. Since we want the description

of the entity with the specified EC number, the elements

‘pdbx_ec’ and ‘pdbx_description’ must be under the same

‘entity’ element. This condition is naturally satisfied by

requiring that the pointers to these elements be in the

same region (spanned by ‘e.pstart’ and ‘e.pend’). Finally,

only those with EC number 1.1.1.1 are filtered by the

WHERE clause (Figure 4B).

The next example is for retrieving a list of PDB ID’s and

the total molecular weights of polymers in the decreasing

order of the latter (Figure 4C). In this query, five tables are

joined together. First, in the same way as the previous ex-

ample, the brief_summary and ‘E://entity’ tables are joined.

Next, three tables ‘//entity/type’ (for filtering whether the

entity is a polymer or not), ‘//entity/pdbx_number_of_mole-

cules’ (for counting the number of the entity in the entry),

and ‘//entity/formula_weight’ (for the molecular weight of

the single entity) are joined with the same condition as in

the previous query, that is, all being under the same ‘entity’

element. Then, only those with ‘polymer’ type are filtered

in the WHERE clause, and finally, the results are aggregated

in terms of PDB ID in the GROUP BY clause. The returned

components are the PDB ID’s and the total molecular

weights computed with the standard SQL aggregate func-

tion SUM.

A number of simple as well as complex examples of SQL

queries are provided at the PDBj help page (http://doc.pdbj

.org/help). These examples may serve as templates for

user’s specific queries, and also as a tutorial for PDBj Mine.

Benchmark

We provide benchmark results comparing PDBj Mine with

xPSSS, the previous web interface for PDBj based on a

native XML DBMS. For most of the basic queries such as

<datablock datablockName=...>
 ...
 <entityCategory>
 <entity id="1">
 <formula_weight>37591.859</formula_weight>
 <pdbx_description>NAD-dependent alcohol dehydrogenase</pdbx_description>
 <pdbx_ec>1.1.1.1</pdbx_ec>
 <pdbx_number_of_molecules>6.</pdbx_number_of_molecules>
 <type>polymer</type>
 </entity>
 <entity id="2">
 <formula_weight>65.380</formula_weight>
 <pdbx_description>ZINC ION</pdbx_description>
 <pdbx_number_of_molecules>12.</pdbx_number_of_molecules>
 <type>non-polymer</type>
 </entity>
 ...
 </entityCategory>
 ...
</datablock>

SELECT s.pdbid , p2.val AS pdbx_description
FROM brief_summary s
JOIN "E://entity" e ON s.docid = e.docid
JOIN "//entity/pdbx_ec" p1
 ON s.docid = p1.docid AND p1.pos BETWEEN e.pstart AND e.pend
JOIN "//entity/pdbx_description" p2
 ON s.docid = p2.docid AND p2.pos BETWEEN e.pstart AND e.pend
WHERE p1.val = ’1.1.1.1’

SELECT s.pdbid , SUM(p2.val * p3.val) AS weight
FROM brief_summary s
JOIN "E://entity" e ON e.docid = s.docid
JOIN "//entity/type" p1
 ON p1.docid = e.docid AND p1.pos BETWEEN e.pstart AND e.pend
JOIN "//entity/pdbx_number_of_molecules" p2
 ON p2.docid = e.docid AND p2.pos BETWEEN e.pstart AND e.pend
JOIN "//entity/formula_weight" p3
 ON p3.docid = e.docid AND p3.pos BETWEEN e.pstart AND e.pend
WHERE p1.val = ’polymer’
GROUP BY s.pdbid
ORDER BY weight DESC

A

B

C

Figure 4. SQL query examples. (A) An example of a PDBMLplus document. (B) An example SQL query that retrieves the PDB ID
and the description of molecular entities with EC number ‘1.1.1.1’ annotated in the PDBMLplus file. (C) An example SQL query
that retrieves the PDB ID and total molecular weight of polymers. Other examples of SQL queries are provided at http://doc.pdbj
.org/help?PDBj%20Mine%3aSQL%20Queries.

...

Page 8 of 10

Tutorial Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021
...

E://entity%E2%80%99
http://doc.pdbj
E://entity
E://entity
http://doc.pdbj

PDB ID pattern search, keyword search and various combin-

ations in Advanced Search, the execution speed of

PDBj Mine is comparable with that of xPSSS (Figure 5A).

In 65 out of 94 equivalent queries, PDBj Mine performed

better than xPSSS. Even for some relatively complicated

queries in Advanced Search where xPSSS performs

poorly, the performance of PDBj Mine is rather stable and

robust.

We also compared more complex queries using SQL for

PDBj Mine and XQuery for xPSSS. For half of the 10 equiva-

lent queries tested, PDBj Mine performed better than xPSSS

(Figure 5B). For the query in which PDBj Mine performed

most poorly, the execution time was 6.8 s which was two

times that of xPSSS. On the other hand, one query that took

32 s with xPSSS finished in 4 s with PDBj Mine. We conclude

that the performance of PDBj Mine is consistent and robust

although it is not always faster than xPSSS. We note that

any queries that can be executed by using XQuery can be

also executed by using SQL and vice versa. Thus, the main

advantage of PDBj Mine over xPSSS is the robust and con-

sistent performance.

Discussion

We have described the design and implementation as well

as some examples of PDBj Mine. Here, we discuss some

issues underlying the choices of our strategy.

The canonical data format for the wwPDB is the mmCIF

format (2), which is in turn based on the STAR syntax (10)

(STAR is to mmCIF what XML is to PDBML). The mmCIF

format is designed for both humans and machines to

read and interpret the contents of PDB data as unambigu-

ously as possible. Although mmCIF does achieve its goal,

the format is inherently limited to the PDB data so that

specialized softwares are necessary to manipulate mmCIF

files. On the other hand, PDBML or PDBMLplus files,

being XML formats, can be handled with a wide range of

softwares and are easily extensible (although PDBML files

somewhat sacrifice the ease of reading by humans). Indeed,

it is these features of PDBML (or XML) that motivated us to

extend the PDBML format by adding our own annotations

as well as annotations extracted from other databases.

Thus, the use of PDBMLplus is beneficial to both the users

and the developers.

Since we construct a database based on XML-formatted

PDBMLplus files, it is natural to employ a native XML DBMS.

We have provided the xPSSS interface based on a commer-

cial XML DBMS before we have developed PDBj Mine which

is based on a relational DBMS. The xPSSS interface served

well for most cases. Nevertheless, we have been confronted

with a number of problems. First, based on a commercial

DBMS, it was not practical to construct mirror sites of PDBj

by simply copying the softwares and data due to the license

issues. This would not be a problem if we had used an

open-source, free implementation of XML DBMS.

However, as far as we have tested, there were no XML

DBMSes that could meet our demand (mainly the amount

of data and performance of queries). It appears that the

technology for native XML databases is not yet mature at

present so that the performance of some complex queries is

not satisfactory (this applies even to commercial products

to some extent). In contrast, RDBs are so mature and highly

stable that non-commercial implementations can serve well

in a demanding environment. For common queries, the cur-

rent implementation of PDBj Mine exhibits a performance

comparative to xPSSS, and for some complex queries, the

performance of PDBj Mine far exceeds that of xPSSS. Thus,

while the XML-based PDBMLplus files are convenient for

adding annotations, RDB is more suitable for providing

search services.

PDBML is derived from mmCIF which has been designed

to be suitable for RDBs. In fact, each mmCIF category may

be defined as a table in a RDB. However, we did not employ

such design since it may become necessary in the future to

define more deeply nested XML elements and multiple

0

 0.5

1

 1.5

2

 2.5

3

 3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6

xP
S

S
S

 (
s)

PDBj Mine (s)

0

5

 10

 15

 20

 25

 30

 35

0 2 4 6

xP
S

S
S

 (
s)

PDBj Mine (s)

BA

Figure 5. Benchmark of PDBj Mine compared with xPSSS. (A) Comparison of execution time for basic queries involving PDB ID
search, keyword search and Advanced Search. (B) Comparison of execution time for SQL search in PDBj Mine and XQuery search
in xPSSS. The numbers are the execution time (in seconds) for equivalent queries in PDBj Mine (abscissa) and xPSSS (ordinate).
The xPSSS interface is based on a commercial native XML DBMS whereas PDBj Mine is based on a free open-source relational
DBMS (PostgreSQL). For the details of the benchmark queries, see http://doc.pdbj.org/help?PDBj%20Mine.

...

Page 9 of 10

Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021 Tutorial
...

http://doc.pdbj.org/help?PDBj%20Mine

items with the same names under the same elements to

integrate PDBML with other database resources. With the

XML-oriented design of PDBj Mine, it is a trivial matter to

add any XML-based data into PDBMLplus and expand PDBj

Mine without altering the basic design. Nevertheless, for

convenience, we also provide mmCIF category-like tables

as views (see Appendix 1). We believe that it is a good

compromise between the flexibility of XML and the robust-

ness of relational DBMSs.

Funding

Grant-in-aid from the Institute for Bioinformatics Research

and Development, Japan Science and Technology Agency

(JST). Funding for open access charge: the Institute for

Bioinformatics Research and Development, Japan Science

and Technology Agency.

Conflict of interset. None declared.

References
1. Berman,H., Henrick,K., Nakamura,H. et al. (2007) The worldwide

Protein Data Bank (wwPDB): ensuring a single, uniform archive

of PDB data. Nucleic Acids Res., 35, D301–D303.

2. Westbrook,J.D. and Bourne,P.E. (2000) STAR/mmCIF: an ontology

for macromolecular structure. Bioinformatics, 16, 159–168.

3. Westbrook,J., Ito,N., Nakamura,H., Henrick,K. et al. (2005) PDBML:

the representation of archival macromolecular structure data in

XML. Bioinformatics, 21, 988–992.

4. Bairoch,A., Apweiler,R., Wu,C.H. et al. (2005) The universal protein

resource (UniProt). Nucleic Acids Res., 33, D154–D159.

5. Porter,C.T., Bartlett,G.J. and Thornton,J.M. (2004) The Catalytic Site

Atlas: a resource of catalytic sites and residues identified in en-

zymes using structural data. Nucleic Acids Res., 32, D129–D133.

6. Yoshikawa,M., Amagasa,T. and Shimura,T. (2001) XRel: a

path-based approach to storage and retrieval of XML documents

using relational databases. ACM Trans. Internet Techno., 1,

110–141.

7. Altschul,S.F., Madden,T.L., Schaffer,A.A. et al. (1997) Gapped blast

and PSI-blast: a new generation of protein database search pro-

grams. Nucleic Acids Res., 25, 3389–3402.

8. Berman,H.M., Nakamura,H., Markley,J. et al. (2007) Realism about

pdb. Nat. Biotechnol., 25, 845–846.

9. Kinoshita,K. and Nakamura,H. (2004) eF-site and PDBjViewer: data-

base and viewer for protein functional sites. Bioinformatics, 20,

1329–1330.

10. Hall,S.R. (1991) The STAR file: a new format for electronic data

transfer and archiving. J. Chem. Inf. Comput. Sci., 31, 326–333.

Appendix 1

Category views

The basic database structure of PDBj Mine is based on

PDBMLplus and each XML data corresponding to an

mmCIF category item is saved in a distinct table. Although

this design has an advantage in that it preserves the origin-

al structure of PDBMLplus files, it can easily be tedious to

write SQL programs that combine many items. To circum-

vent this problem, we defined a view for each mmCIF cat-

egory (referred to as ‘category view’ in the following)

which combines all items in that category. A schematic def-

inition of a category view is given in Figure 6A. Sample SQL

queries corresponding to those of Figures 4B and C are

provided in Figures 6B and C, respectively.

Although category views are easier to use compared

with the XPath-based tables, a few caveats should be re-

minded. First, many columns of the category views are

empty (i.e. containing NULL values) so that some queries

might be polluted by meaningless values. Second, some

views combine many items and/or merges very big tables

so that certain queries can be significantly slow. If only a

few columns of a category view are required, then the use

of the XPath-based tables is recommended.

...

SELECT s.pdbid, e.pdbx_description
FROM brief_summary s
JOIN entity e ON s.docid = e.docid
WHERE e.pdbx_ec = ’1.1.1.1’

SELECT s.pdbid
, SUM(e.pdbx_number_of_molecules * formula_weight) AS weight
FROM brief_summary s
JOIN entity e ON e.docid = s.docid
WHERE e.type = ’polymer’
GROUP BY s.pdbid
ORDER BY weight DESC

A

B

C

Figure 6. Category views. (A) Schematic definition of a cat-
egory view. (B) An SQL query equivalent to that of Figure
4B. (C) An SQL query equivalent to that of Figure 4C.

...

Page 10 of 10

Tutorial Database, Vol. 2010, Article ID baq021, doi:10.1093/database/baq021
...

