
DREAM3: Network Inference Using Dynamic Context
Likelihood of Relatedness and the Inferelator
Aviv Madar1, Alex Greenfield2, Eric Vanden-Eijnden2,3, Richard Bonneau1,2,4*

1 Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America, 2 Computational Biology

Program, New York University School of Medicine, New York, New York, United States of America, 3 Department of Mathematics, Courant Institute of Mathematical

Sciences, New York University, New York, New York, United States of America, 4 Department of Computer Science, Courant Institute of Mathematical Sciences, New York

University, New York, New York, United States of America

Abstract

Background: Many current works aiming to learn regulatory networks from systems biology data must balance model
complexity with respect to data availability and quality. Methods that learn regulatory associations based on unit-less
metrics, such as Mutual Information, are attractive in that they scale well and reduce the number of free parameters (model
complexity) per interaction to a minimum. In contrast, methods for learning regulatory networks based on explicit
dynamical models are more complex and scale less gracefully, but are attractive as they may allow direct prediction of
transcriptional dynamics and resolve the directionality of many regulatory interactions.

Methodology: We aim to investigate whether scalable information based methods (like the Context Likelihood of Relatedness
method) and more explicit dynamical models (like Inferelator 1.0) prove synergistic when combined. We test a pipeline where a
novel modification of the Context Likelihood of Relatedness (mixed-CLR, modified to use time series data) is first used to define
likely regulatory interactions and then Inferelator 1.0 is used for final model selection and to build an explicit dynamical model.

Conclusions/Significance: Our method ranked 2nd out of 22 in the DREAM3 100-gene in silico networks challenge. Mixed-
CLR and Inferelator 1.0 are complementary, demonstrating a large performance gain relative to any single tested method,
with precision being especially high at low recall values. Partitioning the provided data set into four groups (knock-down,
knock-out, time-series, and combined) revealed that using comprehensive knock-out data alone provides optimal
performance. Inferelator 1.0 proved particularly powerful at resolving the directionality of regulatory interactions, i.e. ‘‘who
regulates who’’ (approximately 93% of identified true positives were correctly resolved). Performance drops for high in-
degree genes, i.e. as the number of regulators per target gene increases, but not with out-degree, i.e. performance is not
affected by the presence of regulatory hubs.
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Introduction

For decades the biological community has had a keen interest in

characterizing the genetic regulatory networks that are largely

responsible for an organisms ability to adapt to its constantly

changing environment. An ever increasing number of functional

genomics projects continue to make this a key problem in modern

biology. It remains, however, unclear what constitutes the most

efficient paradigm for characterizing regulatory networks, i.e. what

experiments to perform, data to collect, and methods to use for

learning biological regulatory networks. Moreover, the number of

proposed methods for learning regulatory networks from systems

data is growing and it is difficult to compare the relative merit of

these methods unless methods are evaluated on similar datasets

using similar metrics. The DREAM (Dialogue for Reverse

Engineering Assessments and Methods) project [1,2] aims to shed

light on which paradigm is most useful for characterizing

regulatory networks. It does so by posing a set of challenges to

the computational biology community at large, allowing for the

comparison of different methods on identical footing.

There are several broad classes of regulatory network inference

methods that aim to reconstruct and model the underlying

regulatory networks at varying degrees of detail. It is beyond the

scope of this introduction to review more than a small subset of

these methods, as they represent a very large body of work, for a

more thorough review of network reconstruction methods we refer

the reader to [3–10]. Here we focus on two classes of methods,

namely: Mutual Information (MI) and Ordinary Differential

Equation (ODE) based methods.

Mutual information based methods [11–17] are often formulated

such that it is not necessary to assume a functional form for the effect

of a regulator on its target(s); mutual information does not assume a
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linear relationship between any given pair of genes (or any parametric

relationship, for that matter). These methods often scale well to

genome-wide regulatory networks, providing advantages over more

detailed models in cases where the functional forms of regulatory

interactions are unknown, complex, or when there is insufficient data

to learn more intricate models. However, MI based methods as

previously formulated, provide limited insight into the dynamic

behavior of the system, and hence have limited use in predicting new

observations—a key property for estimating a model’s relevance

when the ground truth is unknown.

Ordinary Differential Equation based methods [18–30], aim to

learn a set of ODEs describing the time evolution of target genes as

a function of their likely regulators. These methods can provide

deeper understanding of the system’s dynamic behavior, and can

be used to predict new observations. However, they can be

computationally demanding, and may require accurate measure-

ment of a large number of parameters.

Here we employ a modified version of the MI based method

Context Likelihood of Relatedness (CLR) [14] (modified to use time-

series data) to reduce the space of possible regulatory interactions for a

more detailed, scalable, ODE based method, Inferelator 1.0 [25].

CLR is an easily scalable MI based method for network

reconstruction. In order to identify regulatory interactions CLR

computes the MI between the expression levels of every possible

regulator-target gene pair, and then computes a score for each pair.

The score for a pair is a function of two z-scores resulting from

comparing the pair’s MI value with: all MI values involving the

regulator (to generate the regulator z-score), and all MI values

involving the target (to generate the target z-score). CLR takes

advantage of the fact that biological networks are, on average, quite

sparse and assumes the majority of MI values involving a given target

or regulator are insignificant, and thus constitute a background MI

distribution. The method has been successfully used in the past to

learn previously validated, as well as novel, transcriptional regulatory

interactions in E. coli [14]. This method, as originally published,

cannot resolve causality, i.e. which gene is the regulator and which

gene is the target for a given significant interaction, as it relies solely

on the symmetric MI matrix and can not take advantage of the

kinetics represented in time series data.

The Inferelator 1.0 is a scalable method that uses an additive

ODE model to approximate regulatory dynamics. At the core of

the method is an l1-norm constrained regression algorithm,

LASSO [31] (implemented using Least Angle Regression (LARS)

[32]), that is used to efficiently choose a parsimonious set of likely

regulators for each target gene, and to estimate the kinetic

parameters associated with these interactions. Inferelator 1.0, like

CLR, takes account of the sparsity found in biological networks by

imposing an l1 constraint on the kinetic parameters, resulting in a

sparse (parsimonious) regulatory model. The method has been

used successfully in the past to learn a large portion of H. salinarum

transcriptional regulatory network, and was able to predict mRNA

levels of 85 percent of the genes in the genome over new

experimental conditions [33]. Two similar methods have also been

successfully applied to the learning of human regulatory networks

mediating TLR-5 response in macrophages [34], and to the

DREAM2 50-gene in silico network challenge [27]. The Inferelator

1.0 as originally published included interactions between regula-

tors in the ODE model.

Several network reconstruction methods, including the method

described here, restrict the number of considered regulatory

interactions using a correlation or MI based pre-processing step.

For example, the Sparse Candidate Algorithm, a Bayesian

network approach for learning biological regulatory networks,

employed a mutual information pre-processing step, aimed at

reducing complexity and improving the scaling of the algorithm to

the genome scale [35]. Here, we describe and test an overall

pipeline in which a modified version of CLR, a version that

computes dynamic and static mutual information values for

regulator-target pairs (mixed-CLR), is used as a pre-processing

step for a more detailed ODE based method—Inferelator 1.0. We

show that this overall dynamic pipeline identifies more directed

true regulatory interactions when compared to pipelines that are

based on a static model.

Methods

Here we describe the three step pipeline (Figure 1) that we have

applied to the DREAM3 in-silico network challenge [1,2].

Figure 1. Method outline. For each regulatory interaction, xj?xi , we define a confidence score sm
i,j , where m~1,2,3 indicates the step in our

pipeline. We store these confidence scores in a corresponding N|N matrix, Sm (eq. 2), which we depict in the figure as a sorted list (from high to
low confidence) of regulatory interactions. We schematically represent true positives (TPs) density (within any subset) as a gray scale, where black
indicates high TP density. All possible pair-wise regulatory interactions are first scored using mixed-CLR, resulting in a matrix S1. We then filter out the
least likely regulatory interactions based on the knock-out and knock-down steady-state observations, resulting in a matrix S2 (the confidence score
of each removed regulatory interaction was set to minus one, and thus sent to the back of the list). Lastly, we evaluate regulatory interactions in the
TP enriched subset using Inferelator 1.0, by building an ODE model for each target gene. The kinetic weights from these ODE models were converted
into confidence scores (S3) and combined with S2 to produce the final ranked list, S (eq. 32). The regulatory interactions scored in S, when ranked
from high to low, represent our final ranking for each regulatory interaction.
doi:10.1371/journal.pone.0009803.g001

Mixed-CLR and Inferelator
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Problem Set Up
The dynamical variables available from observations are the

simulated mRNA levels of genes:

x tð Þ~ x1 tð Þ, . . . ,xN tð Þð ÞT : ð1Þ

We are given data sets that contain observations taken from

five different networks [36]. Each data set is composed of

multiple sets of time series observations—where the system was

perturbed and then measured at equal time intervals—and

steady state observations—where the system was perturbed

and then measured once it reached a steady state. Perturba-

tions for time series observation consist of changing the initial

expression levels of all genes. Perturbations for steady state

observation consist of either knocking out one gene at a time,

i.e. one of the gene’s initial expression level is set close to zero,

or knocking down one gene at a time, i.e. one of the gene’s

initial expression level is set close to half its wild-type

expression level.

The DREAM3 in silico network challenge required participants

to produce a ranked list of all possible pair-wise regulatory

interactions, xj?xi (xj regulates xi), ordered by confidence. A

perfect ranking would have all of the true regulatory interactions,

i.e. true positives (TPs), ranked before all of the false regulatory

interactions, i.e. true negatives (TNs). This paper does not

address the relative strengths of the regulatory interactions or the

kinetic constants learned by Inferelator 1.0, as predicting

topology of a regulatory network was the main focus of this

challenge.

To determine rankings, we will define a confidence score,

s xi,xj

� �
, at each step in our pipeline to indicate our confidence in

any given regulatory interaction, xj?xi. We store these values in

the form of a N|N matrix of confidence scores:

Sm~

sm(x1,x1) sm(x1,x2) � � � sm(x1,xN )

sm x2,x1ð Þ sm x2,x2ð Þ � � � sm x2,xNð Þ
..
. ..

.
P

..

.

sm xN ,x1ð Þ sm xN ,x2ð Þ � � � sm xN ,xNð Þ

0
BBBB@

1
CCCCA ð2Þ

where the superscript, m[ 1,2,3f g, indicates our measure of

confidence after steps, one, two, and three in our pipeline,

respectively. Note that columns in Sm correspond to regulators,

and rows correspond to targets.

Without loss of generality we can assume that time-series

observations resulted from one perturbation experiment, i.e. we

can write them in the form of a N|K matrix of observations

X ts~

x1 t1ð Þ x1 t2ð Þ � � � x1 tKð Þ
x2 t1ð Þ x2 t2ð Þ � � � x2 tKð Þ

..

.
P P

..

.

xN t1ð Þ xN t2ð Þ � � � xN tKð Þ

0
BBBB@

1
CCCCA ð3Þ

where t1,t2, . . . ,tKð Þ are the observation times.

There are two main sets of steady-state experiments:

measurements of all genes when one gene (per experiment),

xi, is knocked out, which we denote as x xi {={ð Þð Þ; and

measurements of all genes when one gene (per experiment), xi,

is knocked down, which we denote as x xi {=zð Þð Þ. For diploid

cells, cells that contain two sets of chromosomes (one set

donated from each parent), the notations {={ð Þ and {=zð Þ
are often used to indicate that both copies of a gene are non-

functional or that one copy of a gene is non-functional,

respectively. These two sets of experiments are complemented

with one steady-state experiment that describe the system at the

lack of any perturbation, so called wild type expression levels,

which we denote as x w:t:ð Þ.
Denote by e the vector of all steady-state experiments, i.e.

e~ w:t:,x1 {={ð Þ, . . . ,xN {={ð Þ,x1 {=zð Þ, . . . ,xN {=zð Þð Þ, ð4Þ

then we can write all of the steady-state observations in the form of

a N|M matrix

X st~

x1 e1ð Þ x1 e2ð Þ � � � x1 eMð Þ
x2 e1ð Þ x2 e2ð Þ � � � x2 eMð Þ

..

. ..
.

P
..
.

xN e1ð Þ xN e2ð Þ � � � xN eMð Þ

0
BBBB@

1
CCCCA: ð5Þ

where M~2Nz1 indicates the total number of steady-state

experiments.

Note that unlike typical genome-wide mRNA observations, the

observations given in DREAM3 ranged from zero to one (e.g.

microarray and RNA-seq can exhibit multiple log10 units of

range). This suggested to us that the DREAM3 data set, as

provided, was properly normalized and thus we did not take any

further data-normalization steps.

Step 1.a: Computing static and dynamic Mutual
Information between Regulators and Targets

As the first step in our pipeline we apply our modified CLR

algorithm (mixed-CLR) to reduce the number of likely regulators

for each target (i.e. gene). This procedure has two parts: 1)

computing static and dynamic Mutual Information (MI) between

each potential regulator and target pair, followed by 2) a

background correction step, for which we use the procedure

originally described in [14].

We use MI as a metric of statistical dependency between two

genes. MI between two random variables X and Y can be defined

as [37,38]

I X ; Yð Þ~
X
x[X

X
y[Y

p x,yð Þlog
p x,yð Þ

p xð Þp yð Þ ð6Þ

where p x,yð Þ is the joint probability distribution function of X and

Y , and p xð Þ and p yð Þ are the marginal probability distribution

functions of X and Y , respectively, i.e. the probability that X~x
and Y~y, respectively.

When computing MI from continuous data a binning

approach is often used [11]. Binning can lead to crude estimates

of the probabilities involved, especially for small data sets. Fuzzy

binning (smoothing), where each point is assigned to a number of

bins with an associated weight, can alleviate this situation, leading

to better estimates of probabilities. Here, we compute mutual

information using a smoothing B-spline approach proposed by

[39], with ten bins, and third-order B-splines (for a detailed

description we refer the reader to [39]). An R [40] package for

this method is available from the authors upon request (code is

based in part on [14,39]).

Using both time-series and steady-state observations (the full

set of provided experiments) we compute the static MI between

Mixed-CLR and Inferelator
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the observed expression levels of every gene pair, I xi; xj

� �
, and

store their values in the form of a N|N matrix,

Mstat~

I x1; x1ð Þ I x1; x2ð Þ � � � I x1; xNð Þ
I x2; x1ð Þ I x2; x2ð Þ � � � I x2; xNð Þ

..

. ..
.

P
..
.

I xN ; x1ð Þ I xN ; x2ð Þ � � � I xN ; xNð Þ

0
BBBB@

1
CCCCA: ð7Þ

Computing MI between the expression levels of genes with

the purpose of characterizing regulatory interactions has two

major limitations: 1) a pair of genes can often have a high MI

value due to many reasons other than a regulatory interaction,

e.g. a pair of genes can share a regulator; and 2) MI between the

expression levels of two genes is a symmetric quantity, and thus

can not resolve causality, i.e. can not resolve the directionality of

the regulatory interaction. To partially resolve these limitations

we compute dynamic MI values, derived from a linear additive

ODE model, motivated by our previous work on Inferelator 1.0

[25].

We assume that the time evolution in the x’s can be

approximated by the linear ODE:

dxi tð Þ
dt

~{aixiz
XN

j~1

j=i

bi,jxj tð Þ, i~1, . . . ,N ð8Þ

where aiw0 is the first-order degradation rate of xi, and

b~

b1,1 b1,2 � � � b1,N

b2,1 b2,2 � � � b2,N

..

. ..
.

P
..
.

bN,1 bN,2 � � � bN,N

0
BBBBB@

1
CCCCCA

ð9Þ

is a set of parameters to be estimated. Note that the matrix b is

typically sparse, i.e. most entries are 0, and that it is given that

auto-regulatory interactions do not exist in any of the DREAM3

networks, i.e. bi,i~0 for all i.

The next two steps aim to separate the terms in (8) that

involve the putative regulators (i.e. the explanatory variables)

from the terms in (8) that involve the target (i.e. the response),

first for time-series experiments and then for steady-state

experiments.

For time-series experiments we can write (8) using a finite

difference approximation as

ti
xi tkz1ð Þ{xi tkð Þ

tkz1{tk

zxi tkð Þ~ti

XN

j~1

j=i

bi,jxj tkð Þ,

i~1, . . . ,N k~1, . . . ,K{1

ð10Þ

where ti~
1
ai

is related to the half-life of xi by t1=2~ti ln 2ð Þ, and

is set throughout this work to 10 minutes (i.e. half-life time of

7 minutes). This value is in the range of many known mRNA

half-life times for E. coli [41], and previous work has shown that

error in ti can be compensated for via an overall scaling of b

(Bonneau et al., unpublished). Thus, for every regulator (xj )

target (xi) pair we can define a time-series response variable,

yi tkz1ð Þ, as

yi tkz1ð Þ~ti
xi tkz1ð Þ{xi tkð Þ

tkz1{tk

zxi tkð Þ, ð11Þ

with a corresponding explanatory variable, xj tkð Þ; both derived

from the left- and right-hand-sides of (10), respectively.

For steady state experiments we can write (8) by setting the

derivative to zero as

xi elð Þ~ti

XN

j~1

j=i

bi,jxj elð Þ, i~1, . . . ,N, l~1, . . . ,M: ð12Þ

Thus, for every regulator (xj ) target (xi) pair we can define a

steady-state response variable, yi elð Þ, as

yi elð Þ~xi elð Þ, ð13Þ

with a corresponding explanatory variable, xj elð Þ; both derived

from the left and right-hand-sides of (12), respectively.

Combining the time-series and steady-state response variables,

we get the response vector:

yi~ yi t2ð Þ, . . . ,yi tKð Þ,yi e1ð Þ, . . . ,yi eMð Þð Þ: ð14Þ

Combining the corresponding time-series and steady-state

explanatory variables together, we get the explanatory variables

vector:

xj~ xj t1ð Þ, . . . ,xj tK{1ð Þ,xj e1ð Þ, . . . ,xj eMð Þ
� �

: ð15Þ

Note that for time-series, each explanatory variable (xj tkð Þ) is time-

lagged with respect to its corresponding response variable

(yi tkz1ð Þ). Given well-sampled time series, it is easy to see how

this may help resolve causation. However, we also consider the MI

between the pair xj tkð Þ,yi tkz1ð Þ
� �

helpful at reducing statistical

dependencies that are not due to direct regulatory interactions

(when compared to the MI between the pair xj tkð Þ,xi tkð Þ
� �

). This

is based on the simple, yet biologically relevant, assertion that a

transcription factor (xj ) directly affects the rate of change of its

target mRNA (approximated by yi) and not the accumulated

amount of that target gene mRNA. In the Result section we shall

see that for DREAM3 100-gene networks this is indeed the case.

We compute the dynamic MI between every pair of response-

vector and explanatory-variable vector, I yi; xj

� �
, and store their

values in the form of a N|N matrix,

Mdyn~

I y1; x1ð Þ I y1; x2ð Þ � � � I y1; xNð Þ
I y2; x1ð Þ I y2; x2ð Þ � � � I y2; xNð Þ

..

. ..
.

P
..
.

I yN ; x1ð Þ I yN ; x2ð Þ � � � I yN ; xNð Þ

0
BBBB@

1
CCCCA: ð16Þ

Note that static- and dynamic-MI values are estimated using the

same number of observations. Next we describe how to use

Mixed-CLR and Inferelator
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dynamic MI values as part of a modified CLR background

correction.

Step 1.b: Context Likelihood of Relatedness (CLR). At

the core of both the original CLR method and our modified CLR

variant, mixed-CLR, is a background correction step that

computes the significance of a given regulator-target MI value

by comparing that value to all MI values for that regulator and all

MI values for the given target. This background correction step

can be briefly described as follows:

Let M be a N|N matrix, with each entry, Mi,j , equals the

pair-wise MI between a pair of variables, I xi; xj

� �
. In order to

derive a CLR score for that pair of variables, z xi,xj

� �
, first

compute a positive Z-score for Mi,j with respect to the entries in

the i’th row of M, i.e.

zi xi,xj

� �
~max 0,

Mi,j{

X
j’

Mi,j’

N
si

0
BB@

1
CCA, ð17Þ

where si is the standard deviation of the entries in the i’th row of

M. Second, compute a positive Z-score for Mi,j with respect to the

entries in the j’th column of M, i.e.

zj xi,xj

� �
~max 0,

Mi,j{

X
i’

Mi’,j

N
sj

0
BB@

1
CCA, ð18Þ

where sj is the standard deviation of the entries in the j’th column

of M. Lastly, combine the previous two positive Z-scores into a

CLR pseudo Z-score, as:

z xi,xj

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi xi,xj

� �2
zzj xi,xj

� �2
q

: ð19Þ

We have computed the pseudo z-scores in three variations:

CLR: We have applied CLR background correction to Mstat

(7), resulting in a N|N matrix of CLR pseudo Z-scores,

Zstat~

z x1,x1ð Þ z x1,x1ð Þ � � � z x1,xNð Þ
z x2,x1ð Þ z x2,x2ð Þ � � � z x2,xNð Þ

..

. ..
.

P
..
.

z xN ,x1ð Þ z xN ,x2ð Þ � � � z xN ,xNð Þ

0
BBBB@

1
CCCCA: ð20Þ

dynamic-CLR: We have applied CLR background correction to

Mdyn (16), resulting in a N|N matrix of dynamic-CLR pseudo

Z-scores,

Zdyn~

z y1,x1ð Þ z y1,x2ð Þ � � � z y1,xNð Þ
z y2,x1ð Þ z y2,x2ð Þ � � � z y2,xNð Þ

..

. ..
.

P
..
.

z yN ,x1ð Þ z yN ,x2ð Þ � � � z yN ,xNð Þ

0
BBBB@

1
CCCCA: ð21Þ

Mixed-CLR, using dynamic and static MI values: Here, we

propose and describe a CLR background correction that is

based in part on Mstat, and in part on Mdyn. The motivation to

use dynamic MI values is that they may be more appropriate to

resolve true regulatory interactions from spurious dependen-

cies. Although dynamic MI values may reduce false dependen-

cies in the data, they will not completely remove them. The

expected distribution of false or indirect dependencies is best

represented by the static MI values. For these reasons we

decided to evaluate a mixed (dynamic z static) CLR

procedure.

To apply this procedure we first, as was done for dynamic-CLR

above, compute the Z-score of M
dyn
i,j with respect to the entries in

the i’th row of Mdyn, i.e.

z’i yi,xj

� �
~max 0,

M
dyn
i,j {

X
j’

M
dyn
i,j’

N
si

0
BB@

1
CCA, ð22Þ

where si is the standard deviation of the entries in the i’th column

of Mdyn.

Second, we compute the Z-scores of M
dyn
i,j with respect to the

background distribution of MI entries in the j’th column of Mstat,

i.e.

z’j yi,xj

� �
~max 0,

M
dyn
i,j {

X
i’

Mstat
i’,j

N
sj

0
BB@

1
CCA, ð23Þ

where sj is the standard deviation of the entries in the j’th column

of Mstat. Note that z’j compares the dynamic MI value with the

observed distribution of static MI values, and in order for this

background correction step to be effective, it assumes that both

dynamic and static MI values are in the same range (this was a

wrong assumption as later we show that, at least for the DREAM3

100-gene networks, static MI values are in general larger then

dynamic MI values).

Lastly, we combine the previous two Z-scores into a pseudo Z-

score, z’ yi,xj

� �
, as described in (19), resulting in a N|N matrix of

mixed-CLR Z-scores,

Zmix~

z’(y1,x1) z’(y1,x2) � � � z’(y1,xN )

z’ y2,x1ð Þ z’ y2,x2ð Þ � � � z’ y2,xNð Þ
..
.

P
..
.

z’ yN ,x1ð Þ z’ yN ,x2ð Þ � � � z’ yN ,xNð Þ

0
BBBB@

1
CCCCA: ð24Þ

Note that Zstat is symmetric, and thus can not be used to resolve

directionality of regulatory interactions, while Zdyn, and Zmix are

not symmetric.

In order to decide which CLR variant to use for DREAM3

predictions, we evaluated the performance of all three CLR

variants, on the two DREAM2 50-gene networks, applying the top

method from this test to the DREAM3 challenge. Mixed-CLR

outperformed both CLR and dynamic-CLR. Thus, our matrix of

confidence scores after step one is:

S1~Zmix: ð25Þ

The regulatory interactions scored in S1, when ranked from high

to low, represent our ranking for the regulatory interaction list

Mixed-CLR and Inferelator
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after step one. Note, S1 sets the confidence scores of many

regulatory interactions to zero, thus removing them from

consideration, while ranking the remaining interactions.

Step 2: Using Genetic Perturbations to Remove Least
Likely Regulatory Interactions from Consideration

For our second step we perform crude filtration to remove

the most unlikely regulatory interactions given our knowledge

of gene knock-outs and knock-downs. This step is solely based

on the genetic perturbations collected as steady-state observa-

tions.

For each interaction, xj?xi, we compute the relative change in

mRNA level of xi when xj is knocked out:

r xj?xi Dxj {={ð Þ
� �

~
Dxi w:t:ð Þ{xi xj {={ð Þ

� �
D

xi w:tð Þ : ð26Þ

Similarly, we compute the relative change in mRNA level of xi

when xj is knocked down:

r xj?xi Dxj {=zð Þ
� �

~
Dxi w:t:ð Þ{xi xj {=zð Þ

� �
D

xi w:tð Þ : ð27Þ

Given a cutoff, c[½0,1�, we filter out an interaction, xj?xi, iff

r xj?xi Dxj {={ð Þ
� �

vc AND r xj?xi Dxj {=zð Þ
� �

vc. In other

words, we filter out a regulatory interaction, xj?xi, if a large drop

in expression levels of xj have only resulted in a smaller than c%

change in expression levels of xi. For every regulatory interaction,

xj?xi, that was filtered this way, we have set si,j~{1. The actual

value of {1 does not matter, as negative scores are sent to the end

of the ranked regulatory interaction list and not considered

further. We denote the matrix of confidence scores, S1, after

applying filtration as S2.

The regulatory interactions scored in S2, when ranked from

high to low, represent our ranking for the regulatory interaction

list after step two. We now apply the final step of our procedure,

an ODE-based constrained linear regression approach—Infer-

elator 1.0.

Step 3.a: Inferelator 1.0
Here we use the results of the previous two steps, contained in

S2, to remove low ranked regulatory interactions from consid-

eration by Inferelator 1.0 [25], improving overall model selection

performance. Furthermore, we want to force Inferelator 1.0 to

consider only high confidence regulatory interactions (i.e. high

rank regulatory interactions), strengthening the connection

between mix-CLR and Inferelator 1.0. Thus, as possible

regulators (explanatory variables) of xi, we consider the P highest

confidence regulators from S2, i.e. the P xj ’s corresponding to the

highest strictly-positive si,j ’s, where j~1, . . . ,N. We denote

Pi
ƒP to represent the actual number of regulators chosen, as

in general a target gene, xi, may have less than P regulators with

si,jw0. We denote this xi specific subset of likely regulators as

xi tð Þ.
We use Inferelator 1.0 to learn a sparse ODE model for each

xi tð Þ as a function of xi tð Þ by assuming that the time evolution in

the xi’s is governed by

dxi tð Þ
dt

~{aixiz
XPi

j~1

bi,jx
i
j tð Þ, i~1, . . . ,N ð28Þ

which is exactly (8) with the modification that we only consider a

subset of regulators (high confidence ones) for each target gene.

Least Angle Regression (LARS) [32] is used to efficiently

implement an l1 constraint [31] on b, which minimize the

following objective function, amounting to a least-square estimate

based on the ODE (28):

E bð Þ~
XN

i~1

Ei bð Þ ð29Þ

where

Ei bð Þ~
XK{1

k~1

xi tkz1ð Þ{xi tkð Þ
tkz1{tk

zaixi tkð Þ{
XPi

j~1

bi,jx
i
j tkð Þ

������
������
2

ð30Þ

under an l1-norm penalty on regression coefficients,

XPi

j~1

Dbi,j Dƒs
XPi

j~1

Dbols
i,j D ð31Þ

where bols is the over-fit ordinary least-squares estimate (i.e. the

minimizer of (30) with no penalty), and s is a number between 0

and 1 referred to as the shrinkage parameter; setting s~1
corresponds to ordinary least-square regression. Note that,

as before, we use steady-state observations by setting the first

term under the summation on the right-hand-side of (30) to

zero.

Ten fold cross validation is used to select the minimum value

of s that results in models with good generalization, i.e. good

predictive performance on new data. Each resulting model is

then an ODE describing the time evolution of xi tð Þ. The full set

of models, one for each target, constitutes the full network

model. For Inferelator 1.0 we have assumed that each target

gene has no more than ten regulators, i.e. we have chosen

P~10 corresponding to Piƒ10 in (28). This assumption turned

out to be very wrong for one out of the five 100-gene networks

(Yeast3), which had genes that were regulated by as many as 24

regulators.

To produce the ranks required by the challenge we combine the

Inferelator 1.0 model weights (b) with the mixed-CLR measures of

confidence (S2) using a simple heuristic designed to give each

method roughly equal influence. We describe this heuristic in the

following two sub-sections.

Step 3.b: Converting Inferelator 1.0 Weights into

Confidence Scores. Regulatory interactions that were

supported by mixed-CLR and not filtered out all have

corresponding confidence scores s2
i,jw0, in S2. The previous,

Inferelator 1.0, step gave us a sparse matrix, b, with a small

number of entries Dbi,j Dw0, chosen from the regulatory interactions

with s2
i,jw0.

To ensure that Inferelator 1.0 confidence scores are on equal

footing with the previous confidence scores, stored in S2, we first

assigned all Inferelator 1.0 weights to S3, i.e. S3~b, and then

replaced the non-zero values (weights) in S3 with a corresponding

confidence scores of equal rank in S2. For example, the regulatory

interaction with the highest absolute value, Ds3
i,j D in S3, was assigned

the highest value from S2, while the interaction with the second

highest absolute value in S3, was given the second highest value

from S2. We continued in such a way until we assign a confidence

Mixed-CLR and Inferelator
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score from S2 to each interaction in S3 that had a non-zero

weight.

Step 3.c: Combining Results from Mixed-CLR and

Inferelator 1.0 to Produce Final Ranks. We store our final

confidence scores for regulatory interactions that were supported by

mixed-CLR and Inferelator 1.0, in S, with every entry si,j equal to

si,j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

i,j

� �2

z s3
i,j

� �2
r

i~1,2, . . . ,N j~1,2, . . . ,N: ð32Þ

Note that most confidence scores in S3 equal zero (the Inferelator 1.0

weight was zero) and thus have no effect on the final confidence

scores. This step can be considered as re-organization (pushing up the

ranking list) of regulatory interactions with s2
i,jw0 that also had an

Inferelator 1.0 model weight Dbi,j Dw0.

The regulatory interactions scored in S, when ranked from high

to low, represents our final ranking for the regulatory interaction

list. It is given that auto-regulatory interactions do not exist in the

DREAM3 challenge networks, thus we have not considered auto

regulatory interactions, xi?xi, for all i.

We have implemented all the steps in our pipeline using the R

statistical language [40]. Code is freely available from the authors

upon request.

Comparing Results to Inferelator 1.0 alone
Inferelator 1.0 as previously described in [25] used a dynamic

correlation matrix, similar to Mdyn (16) (with the only difference

being that dynamic correlation was used as a measure of similarity

instead of dynamic mutual information), to initially choose high

confidence regulators. In order to compare performance of

Inferelator 1.0 alone to the pipeline described above, we also

computed the correlation between every dynamic pair, cor yi; xj

� �
(see equations (14) and (15)), and stored the values in the form of a

N|N matrix, Cdyn. We then performed step 3.a using Cdyn

instead of S2 and ranked chosen regulatory interactions, i.e.

regulatory interactions corresponding to Dbi,j Dw0, based on

absolute value weights. The resulting ranked list was used to

evaluate the performance of Inferelator 1.0 alone.

Judging Performance
After a network inference method suggests potential regulatory

interactions, validation of these interactions typically requires

significant effort (often requiring the coordination of multiple

experiments). Hence, a regulatory network inference method

should ideally produce a small number of false positives (FP) even

at the expense of a higher false negative (FN) rate. When testing

such a method, the performance metric should be sensitive to the

method’s ability to avoid FPs. Therefore, throughout this section

we used area-under-curve of precision ( TP
TPzFP

) vs. recall

( TP
TPzFN

) plot, where TP stands for true positives, as a measure

of performance, since it degrades quickly with FPs.

Results

Mixed-CLR and Inferelator 1.0 Proved Complimentary,
Outperforming Other Methods and Combinations of
Methods

We used the DREAM2 50-gene data for testing our pipeline prior

to the DREAM3 100-gene challenge. On both this pre-competition

data and the actual DREAM3 data, Mixed-CLR with Inferelator 1.0

outperformed other potential pipelines we evaluated, and was thus

the method we initially used for the DREAM3 competition. From

Figure 2 we can see that: 1) mixed-CLR outperformed dynamic-CLR

and CLR, regardless of filtration cutoff (for the DREAM3 networks

we used a mean filtration cutoff of c&0:1, so as to filter

approximately one third of all regulatory interactions for each

network); 2) our simple knock-out filtration step boosted performance

of any method combination we tested but did not alter the

performance ranks of the methods tested for any cutoff value; and

3) Mixed-CLR and Inferelator 1.0 are complimentary, providing

superior performance when compared to each method alone.

The same trend, in which mixed-CLR coupled with Inferelator

1.0 outperforms the other evaluated method combinations for a

large range of tested filtration cutoffs, holds for DREAM3 50-gene

networks (for which our method ranked 4th out of 27) and 10-gene

networks (for which our method ranked 5th out of 29) (data not

shown). As for the DREAM3 50-gene networks, our pipeline did

not outperform the DREAM2 50-gene challenge best performers

[27–29,42] (data not shown). Note that our method is based in-

part on computing z-scores. As network (or system) size decreases,

our estimates for underlying probability distributions decreases as

well, making our z-score estimates crude. This perhaps explains

the decline in performance (relative to other participating methods

in DREAM3) for the smaller networks in this challenge.

For DREAM3 100-Gene Networks, Knock Out
Observations Contributed Most to Performance

One important question that the DREAM initiative aims to

answer is what data sets are most useful for characterizing

Figure 2. Mean area-under precision vs. recall curves for DREAM3
five 100-gene networks. We evaluated the performance of Inferelator
1.0 and three different versions of CLR—namely: original-CLR (CLR),
dynamic-CLR, and mixed-CLR—with or without Inferelator 1.0, at three
levels of knock-out filtration, c~0,0:1,0:2. To make DREAM3 predictions
we used mixed-CLR with Inferelator 1.0 (with filtration cutoff c&0:1),
resulting in area-under precision vs. recall curve of 0:20 (p-value, 10{56),
and area-under receiver operating characteristic curve of 0:78 (p-value,
10{36). We show that the pipeline we used to make DREAM3 predictions
produced optimal performance, compared to other tested CLR/Inferelator
1.0 combinations. Error bars for methods involving Inferelator 1.0
(variability due to cross validation) are approximately within 1% of
Precision vs. Recall area-under-curve values and are thus not shown.
doi:10.1371/journal.pone.0009803.g002
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regulatory network. We compared the performance of five

methods (CLR, mixed-CLR, Inferelator 1.0, and mixed-CLR or

CLR with Inferelator 1.0) over four partitions of the full range of

provided experiments, namely: knock-down, knock-out, time-

series, and the former three combined. From Figure 3 we can see

that: 1) the dynamical methods, mixed-CLR and Inferelator 1.0

were more powerful at utilizing time-series observations than the

static method CLR; 2) for all dataset partitions tested, mixed-CLR

and Inferelator 1.0 proved complimentary and had optimal

performance; and 3) for all tested methods, knock-out data (100
observations) was most instrumental for learning the regulatory

networks, followed by time-series and knock-down data (966 and

100 observations, respectively).

Inferelator 1.0 and Use of Knock-out Information
Effectively Resolved Causation

Determining causation (the directionality of regulatory interac-

tions) is one of the tougher problems to solve when inferring

regulatory networks. In practice, a priori knowledge is often used to

suggest which genes are regulating a given target or target set (for

example knowing that one gene codes for an enzyme and one for a

transcription factor gives us the ability to resolve directionality).

However solving for the directionality between pairs of regulators

remains a critical challenge. It could be argued, for example, that

determining regulatory interactions between pairs of regulators is a

more important problem than resolving other regulatory interac-

tions, as interactions between regulators are key to the cell’s ability

to process and integrate information.

We compared the relative merit of five methods (CLR, mixed-

CLR, Inferelator 1.0, and mixed-CLR or CLR with Inferelator

1.0) with or without knock-out filtration to determine causation.

From Figure 4 we can see that: 1) Out of the five methods,

Inferelator 1.0 best resolved causation (&93%); 2) mixed-CLR

had some power at resolving causation when compared to the

static version of the algorithm; and 3) removal of unlikely

regulatory interactions based on the knock-out filtration, was very

useful for resolving causation and complimentary to the other

methods we tested.

Performance Degrades with Increasing Network In-
Degree

Biological regulatory networks are typically sparse, i.e. they have

a relatively small number of regulatory edges when compared to

the total number of possible edges. Network sparsity is commonly

used to glean at what the dynamic complexity of that network

would be if it could be simulated or observed (where the more

Figure 3. Performance as a function of data set used. We
evaluated the contribution of each data set (namely: knock-down (‘kd’),
time-series (‘ts’), knock-out (‘ko’), and all three combined (‘all’)) to
performance of CLR, mixed-CLR, Inferelator 1.0, and CLR or mixed-CLR
with Inferelator 1.0 (no filtration was used, c~0). Note, mixed-CLR is a
generalization of CLR that takes advantage of time-series data, when
time-series data is not used (i.e. for ‘kd’ and ‘ko’) the two are equivalent.
For all tested methods ‘ko’ data contributes the most to performance
(followed by ‘ts’ and ‘kd’ data respectively). The inclusion of a dynamical
model allowed mixed-CLR and Inferelator 1.0 to take advantage of ‘ts’
data (compare to CLR above ‘ts’ and ‘all’ data partitions). Mixed-CLR and
Inferelator 1.0 are complimentary, as evidenced by the improvement in
performance when the two methods are combined. For ‘ts’, ‘ko’, and
‘all’ data partitions, mixed-CLR with Inferelator 1.0, the method we used
to make predictions for DREAM3, gave optimal performance. Error bars
for methods involving Inferelator 1.0 are drawn at one standard
deviation (estimated from ten Inferelator 1.0 runs).
doi:10.1371/journal.pone.0009803.g003

Figure 4. Resolving causation of regulatory interactions. We
present the relative merit of five methods, with and without knock-out
filtration, to resolve causation (i.e. directionality of regulatory interac-
tions). For each method we computed the fraction of correctly resolved
true regulatory interactions (true positives, TPs) out of the total number
of TPs the method had identified. We define a TP interaction, xj?xi , as
correctly resolved, if its score, si,j (according to each method or method
combination), was bigger than the confidence score of the reverse
(false) regulatory interaction, sj,i . The original CLR method without
filtration results in symmetric confidence scores, si,j~sj,i , and thus
cannot resolve causation (fraction correct = 50%). In each bar plot we
report the absolute number of correctly (incorrectly) resolved
interactions. We show that, without filtration, Inferelator 1.0 has the
most power at resolving causation (&93% correct), and that for all
methods knock-out filtration helps resolve causation. For Inferelator 1.0
filtration helps recover more TPs. Error bars for methods involving
Inferelator 1.0 are less than 1% and are not shown.
doi:10.1371/journal.pone.0009803.g004
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sparse a network is, the simpler its dynamic behaviour becomes).

Network sparsity in turn can be separated into two more detailed

measures: network in-degree distribution, derived from the

distribution of regulatory edges entering each target gene, and

network out-degree distribution, derived from the distribution of

regulatory edges leaving each regulator. Each distribution when

summed equals to the number of regulatory edges in the network.

We find that, as expected, our method’s median error increases

with genes median in-degree (see Figure 5) (R2~0:976), i.e.

performance drops for targets under the control of many

regulators, but interestingly is not correlated to median out-degree

(R2~0:017), i.e. performance does not drop for regulators

controlling many target genes.

For DREAM3 100-Gene Networks, Mixed-CLR Did Not
Effectively Correct for Background

One unexpected problem with mixed-CLR (that the DREAM3

challenge revealed) is that we have no guarantee that static and

dynamic MI values will be in the same range for a given data set

(which we assumed when constructing mixed-CLR). Indeed, from

Figure 6 we can see that the majority of dynamic-MI values were

below the mean static MI value. Since for background correction

mixed-CLR computed the positive z-score of each regulatory

interaction’s dynamic MI value, assuming it was taken from the

distribution of static MI values, most of these z-scores ended up

being zero. Thus, for DREAM3 100-gene networks mixed-CLR in

practice was the result of determining z-scores for each regulatory

interaction based on the dynamic MI values alone (dynamic MI z-

scores).

Also, we can see from Figure 6 that the dynamic MI distribution

had a smaller standard deviation (2:68) than the static MI

distribution (3:57), possibly making it easier to resolve true

regulatory interactions from false regulatory interactions.

Dynamic MI Identified True Regulatory Interactions
Better Than Static MI

We hypothesized that dynamic-MI will decrease false statistical

dependencies between gene pairs (i.e. dependencies that are not

due to direct regulatory interactions), assisting in the identification

of true regulatory interactions. To test this hypothesis we

computed MI between the expression levels of every gene pair

(static MI), and between every pair of dynamic response and

explanatory-variable (dynamic MI). For both static and dynamic

MI values, we computed a z-scores for each true regulatory

interaction (true positive, TP) and false regulatory interaction (true

negative, TN) by assuming its MI value is taken from the

distribution of MI values involving the target in that interaction,

i.e. the first z-score from dynamic-CLR or mixed-CLR. Indeed,

from Figure 7 we can see that TPs are better separated from TNs

by dynamic MI z-scores than by static MI z-scores.

Top Ranked Predictions are Largely Correct
As mentioned previously, in biology it is desired that methods

have high precision even in the expense of recall (completeness).

Here we take a look at precision for several recall values ranging

from low to high recall (2%{50%). We show in table 1 the

performance for the method’s best predicted network, Ecoli 2, and

in table 2 the performance for the method’s worst predicted

network, Yeast 3. Our full pipeline produced good precision

results, especially for the lower recall values. The boost in

performance by Inferelator 1.0, that seems to be mostly apparent

in the lower recall values, is probably confounded by an overly

strong sparsity penalty at higher recall values for more complex

models, i.e. Inferelator 1.0 identifies interactions with a high

precision, but it seems to be too parsimonious to identify a

substantial portion of the true regulatory interactions for high in-

degree networks, e.g. the Yeast 3 network (where target genes

Figure 5. Error as a function of gene in degrees and gene out degrees. Here we evaluate the performance of mixed-CLR, filtration cutoff of
c~0:1, and Inferelator 1.0—the pipeline we applied to make DREAM3 predictions. Box plots for error distributions for each of the five predicted
networks are shown in black in both panels, gray box plots show in-degree and out-degree distributions for a. and b. respectively. We estimated
error in the following manner: Denote by L the total number of possible regulatory interactions, and by l the rank we gave to a regulatory

interaction, xj?xi , the relative rank (error) of xj?xi is defined to be
l

L
. a) Median relative rank (Error) increases as the networks’ median in-degree

increases (R2~:976). b) Median relative rank (Error) is not correlated with median out-degree (R2~:0173).
doi:10.1371/journal.pone.0009803.g005
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exhibit in-degrees exceeding 5{10, see Figure 5). Nevertheless

our high accuracy in these low-recall settings is well matched to

typical biological laboratory settings.

Discussion

We have shown that explicitly modeling dynamics using a

simple ODE model increases the ability of our pipeline to identify

true regulatory interactions (when compared to a static model),

and help resolve the directionality of these interactions. Specifi-

cally, analysis of our performance on the DREAM3 100-gene

networks show that: 1) the full pipeline (mixed-CLR followed by,

knock-out filtration and Inferelator 1.0) outperformed other tested

combinations of dynamic and static methods (Figure 2); 2) knock

out data was instrumental for learning regulatory interactions

(Figure 3); 3) Inferelator 1.0 was instrumental for resolving

regulatory causation (&93% of identified regulatory interactions

were correctly resolved, Figure 4). 4) mixed-CLR and Inferelator

1.0 proved complimentary (Figure 2 and 3); and 5) dynamic MI

values (mixed-CLR) separated true regulatory interactions from

false, but otherwise dependent, pair-wise interactions better than

static MI values (Figure 7).

We observed a drop in performance as the median in-degree of

a network increases (Figure 5.a). This is to be expected and could

be due to many reasons, including: 1) the dynamic behavior of a

target gene becomes more condition-dependent as the number of

regulators increases, fragmenting the data set among distinct

conditions, and making it harder to resolve regulatory interactions

from expression data no matter the method used (dynamic or

static). This is supported by the observation that any method

combination we have tested under-performed on the high in-

degree networks (e.g. table 2), compared to low in-degree networks

(e.g. table 1); 2) the model we have used was too simple to describe

the dynamic behaviour of high in-degree target genes; 3) with

Inferelator 1.0 we have imposed an l1 constraint on model weights

(i.e. a constraint on in-degree) that may have been too restrictive

for high in-degree target genes; and 4) with this use of the

Inferelator 1.0 we enforced a strict ten predictor cutoff that proved

Figure 6. Distributions of static vs. dynamic mutual information
values. We computed static and dynamic Mutual Information (MI) values
for every possible regulatory interaction. Vertical lines represent distribu-
tion means. We present the combined probability densities for the five
100-gene networks. We show that: 1) both dynamic and static MI densities
are right skewed, consistent with the assumption that MI values of true
positives would be higher than MI values of true negatives; 2) the standard
deviations for static MI z-scores, 3:57, is larger than for dynamic MI z-scores,
2:68, possibly making it easier to recover TPs from the dynamic MI z-scores;
and 3) most dynamic MI values are smaller than the mean of the static MI
values; this shift confounds mixed-CLR. Note that both static- and
dynamic-MI values were estimated from the same number of observations,
using the same number of bins. Thus, dataset size or bin number
differences do not explain the shift in distributions.
doi:10.1371/journal.pone.0009803.g006

Figure 7. Probability densities of static and dynamic mutual information values for true positive and true negative regulatory
interactions. We computed static and dynamic Mutual Information (MI) values for every possible regulatory interaction for all five 100-gene
networks. For both static and dynamic MI values, we computed z-scores for true regulatory interactions (true positives, TPs) and false regulatory
interactions (true negatives, TNs). We present the static (a.) and dynamic (b.) z-scores densities (combined over the five 100-gene networks) for TPs
(red) and TNs (green). Vertical lines represent median z-scores. We show that TPs are better separated from TNs by the dynamic MI z-scores,
consistent with the improved performance of mixed- and dynamic-CLR.
doi:10.1371/journal.pone.0009803.g007
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too stringent for two of the 100-gene networks, which had a

significant number of target genes under the control of more than

ten regulators.

Interestingly, we have not observed a similar drop in

performance as networks median out-degree increased

(Figure 5.b). In principle, as a networks’ median out degree

increases one expects that the number of indirect regulatory

interactions (mediated through regulators of regulators) will

increase, and with it the underlying complexity of the system’s

dynamic behaviour. However, there may be many reasons why

this was not observed, including: 1) a change in a regulator’s

mRNA, followed by a corresponding change in a target gene’s

mRNA requires a time delay (note that for the DREAM3 in silico

challenges mRNA and protein levels were modeled, albeit

observations were only given for mRNA). This time delay will

increase for indirect regulatory interactions. Since our method uses

consecutive observations (here sampled every 20 minutes) a

change in an indirect regulator’s mRNA levels may not have the

time to effectively propagate to its indirect targets. In other words,

the observations were sampled finely enough to make direct

regulatory interactions resolvable from indirect ones; 2) our

approach was centered around the target gene; we modeled the

change in rate of expression of each gene separately, i.e. we

assumed an un-coupled system of ODEs. Thus our model

complexity is largely determined by the number of regulators a

gene has (in-degree), but not by number of targets a regulator has

(out-degree); and 3) two (out of five) of the networks, the ones

responsible for the observed lack of correlation between out-degree

and performance, were based on E.coli’s topology. There is

evidence that for E.coli the number of indirect regulatory

interactions (and thus complexity) is much smaller than expected

by its out-degree distribution [43,44], and that its transcriptional

network has primarily a feedforward structure, resulting in less

complex dynamics due to the relative lack of feedbackward loops

that would otherwise keep information propagating in the network

(and thus increase complexity) [43,44].

We learned that the Inferelator 1.0 l1-norm regularizer (LARS

[31,32]) proved to be too parsimonious for the two most complex

(in terms of target in-degree) 100-gene networks, leaving many

true regulatory interactions out of the model. One limitation of

using an l1 constraint is that in cases where several explanatory

variables are correlated (or anti-correlated), the procedure will

tend to pick either one of them or none, potentially leading to

overly sparse models. This suggests that using a method which is

more robust to the ‘‘one or none’’ problem, such as the elastic-net

[45] (an l1 and l2 norm constrained regression), will improve

performance.

We were encouraged to see that even a very simple dynamical

model was able to significantly increase performance (compared to

static model) at identifying true regulatory interactions and

resolving their causation. Moreover, the two dynamic methods

mixed-CLR and Inferelator 1.0 proved complimentary.

Knock-out observations were instrumental for characterizing

the DREAM3 100-gene regulatory networks (Figure 3). This is in

line with our observation that even the crude filter we used (based

in part on knock-out data) to remove the least likely regulatory

Table 1. Network 2 (E.coli-2): Methods precision for low-to-high recall values.

2% 5% 10% 20% 30% 40% 50%

mixed-CLR+Inferelator 1.0 100 100 100 75 39 12 10

mixed-CLR 100 100 92 48 17 13 9

dynamic-CLR+Inferelator 1.0 100 100 86 49 29 13 7

dynamic-CLR 75 86 75 42 17 7 6

CLR+Inferelator 1.0 75 86 71 29 17 8 5

Inferelator 1.0 100 100 100 69 14 7 5

CLR 75 60 29 16 6 4 4

In this table we present a more detailed view of performance for our method’s best predicted network (119 total regulatory interactions with up to 3 regulators

controlling each gene). The table inline method precision [%] at varying degrees of completeness (recall [%]).
doi:10.1371/journal.pone.0009803.t001

Table 2. Network 5 (Yeast-3): Methods precision for low-to-high recall values.

2% 5% 10% 20% 30% 40% 50%

mixed-CLR+Inferelator 1.0 92 51 34 20 13 12 10

mixed-CLR 75 50 31 18 13 12 10

dynamic-CLR+Inferelator 1.0 75 51 36 20 17 12 10

dynamic-CLR 67 36 25 20 15 12 10

CLR+Inferelator 1.0 57 34 18 15 12 10 9

Inferelator 1.0 86 54 25 5 5 5 5

CLR 28 22 17 13 12 10 9

In this table we present a more detailed view of performance for our method’s poorest predicted network (551 total regulatory interactions with up to 24 regulators

controlling each gene). The table inline method precision [%] at varying degrees of completeness (recall [%]).
doi:10.1371/journal.pone.0009803.t002
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interactions proved very effective in identifying true regulatory

interactions (Figure 2) and resolving their direction (Figure 4).

Importantly, when knock-out data was used alone, all tested

methods achieved optimal performance (Figure 3). Furthermore,

only 100 knock-out observations were needed, compared to the

966 provided time-series observations (46 time-series experiments,

each containing 23 observations). In our previous works we

assumed that Inferelator 1.0 would implicitly use genetic

information (e.g. knock-out data) by incorporating the steady-state

data into the learning procedure, hence not requiring explicit

constraints to be derived from genetic perturbations. The

DREAM3 results suggest that we need to develop better explicit

methods to incorporate constraints from such genetic perturba-

tions into Inferelator 1.0 or similar methods. However, it is

typically not possible to obtain knock-out information for each

gene in such a comprehensive manner. Even when knock-out

information can be obtained, the knocked out gene may not be

active under the ‘‘wild type’’ conditions, thus not revealing any

regulatory information. Therefore, it will prove helpful to also

incorporate other types of constraints, for example constraints

derived from TF-DNA binding experiments such as ChIP-chip

[46] and ChIP-seq [47,48].

To conclude, the pipeline we have described here was

developed with the aim of producing a sorted, enriched subset

of true direct regulatory interactions. We find that our full pipeline

was able to find a significant fraction of the true positive regulatory

interactions. We also find that our top ranked predictions have

very low error rate, suggesting that our method is useful in the

context of an active genomics consortia, where network models are

improved in an iterative manner: highly ranked predictions of

target-gene interactions are validated with new data collection,

causing the generative model to be re-updated, allowing for new

predictions and validation, etc.
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