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Abstract: Food protein-derived bioactive peptides are recognized as valuable ingredients of
functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases.
However, although peptides have been demonstrated to exert multiple benefits by biochemical assays,
cell culture, and animal models, the ability to translate the new findings into practical or commercial
uses remains delayed. This fact is mainly due to the lack of correlation of in vitro findings with
in vivo functions of peptides because of their low bioavailability. Once ingested, peptides need to
resist the action of digestive enzymes during their transit through the gastrointestinal tract and cross
the intestinal epithelial barrier to reach the target organs in an intact and active form to exert their
health-promoting properties. Thus, for a better understanding of the in vivo physiological effects of
food bioactive peptides, extensive research studies on their gastrointestinal stability and transport are
needed. This review summarizes the most current evidence on those factors affecting the digestive
and absorptive processes of food bioactive peptides, the recently designed models mimicking the
gastrointestinal environment, as well as the novel strategies developed and currently applied to
enhance the absorption and bioavailability of peptides.
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1. Introduction

In the last few years, food-derived bioactive peptides have attracted the interest of scientists
because of their safety, low cost, and benefits on health beyond the nutritive role. Bioactive peptides have
been demonstrated to positively affect the major body systems, notably, the cardiovascular, digestive,
endocrine, immune, and nervous systems, while minimizing the risks of chronic disease development [1].
Thus, they have become promising ingredients for functional foods and nutraceuticals [2,3].
A lot of in vitro biochemical assays, cell models, and animal models have been optimized and applied
for testing the bioactivity of these food bioactive peptides. However, although the research on the
development of peptides-enriched products has notably increased, the ability to translate the new
findings into practical or commercial uses remains delayed. Among the major reasons behind this
delay, one of the most important is the lack of correlation of the in vitro bioactivities of peptides with
in vivo functions due to their low bioavailability following oral administration [4]. Peptides need
to resist the action of digestive enzymes during their transit through the gastrointestinal tract and
cross the intestinal epithelial barrier to reach intact the target organs where peptides can exert their
health-promoting effects [5]. Thus, when studying the effects of bioactive peptides in our organism, it
is important to assess their under-digestive conditions, and if the peptide is absorbed, it is necessary to
evaluate its distribution, metabolism, and excretion behavior [6,7]. In this review, the most current
evidence on the in vitro and in vivo models designed to evaluate the digestibility and bioavailability
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of food bioactive peptides is summarized, focusing on those limiting factors affecting both peptides
resistance to digestive conditions and absorption capacity.

2. Bioavailability of Food Peptides

2.1. Digestibility of Food Peptides

Human digestion is a complex process that involves the concerted action of digestive enzymes on
dietary ingredients. In the case of digestion of food proteins, several factors influence this process such
as the type of proteins, gastric and intestinal pH, activity of digestive enzymes, endogenous secretions,
and motility [8]. Digestion is considered a vital process for life because nutrients released from ingested
foods are used by the body as an energy source for cell maintenance and growth [9]. During the
digestion of food proteins, peptides and amino acids are liberated, acting as signals of gastric or
intestinal motility and pancreatic secretion, and/or exerting local and systemic physiological functions.

Digestion starts with a short food chewing step in the mouth, which is relevant for the complete
digestive process, particularly for the gastric emptying rate [10]. The food bolus resulting from
mechanical and enzymatic degradations in the mouth is transported through the esophagus to the
stomach by peristaltic movements. Once the bolus reaches the proximal part of the stomach, it is
mixed with the gastric juice, which is mostly composed of hydrochloric acid (HCl), pepsin and lipases
responsible for protein and lipid digestion, respectively, and mucus that protects the mucosal surface.
In the distal part, peristaltic movements allow breaking large food particles into smaller ones by
grinding and mixing gastric contents. The stomach ends at the pylorus that pumps small particles
(chyme) to the duodenum, while the largest particles are maintained in the stomach for further
digestion. Once the chyme enters the duodenum, its acidic pH is neutralized by sodium carbonate
(NaHCO3) until reaching a pH appropriate for the activity of pancreatic (proteases, amylases, and
lipases) and intestinal enzymes, which are responsible for the subsequent digestion of molecules
contained in the chyme. Bile produced by the liver contributes to lipid digestion by emulsifying dietary
fats into small droplets that favor the activity of lipase. Once digested, released nutrients are available
for their absorption by villus enterocytes through different transport mechanisms, and non-absorbed
material travels down to the large intestine. In the colon, water and electrolytes are absorbed, bile salts
are reabsorbed, and non-digested polysaccharides and proteins are fermented by colonic microbiota,
releasing new degradation products. Finally, at the end of the large intestine, the formation, storage,
and elimination of feces occurs [11].

2.1.1. Parameters Limiting Peptides Digestibility

The digestive processes, including gastric emptying, intestinal transit, secretion of digestive fluids
and mucus, and motility are influenced by many factors such as physical and chemical characteristics,
food composition, and physiological factors [12,13]. Among physicochemical factors, low pH and
temperature, high osmolality, viscosity, fiber content, and energy density (caloric content) have been
demonstrated to delay gastric emptying, while food volume increases the gastric emptying rate.
In addition, the particle size and the degree of hydrolysis of meal constituents may also play a
significant role [14].

Regarding the type of food constituent, and specifically for proteins, the site of digestion varies
depending on their food source. As an example, while bovine casein has been found to precipitate in the
stomach where it is hydrolyzed, soluble whey and soybean proteins pass rapidly through the stomach,
reaching the duodenum where are hydrolyzed by pancreatic proteases [15]. This different behavior of
proteins under gastrointestinal digestion determines the subsequent absorption of released peptides.
Pepsin cleaves peptic bonds next to aromatic amino acids such as phenylalanine, tryptophan, and
tyrosine, while trypsin cleaves bonds next to the basic amino acids arginine and lysine. Thus, because of
the different enzyme specificity, the site of digestion will determine the type of peptides released during
gastrointestinal digestion, and consequentely, their physiological properties. The physicochemical
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properties and primary structure of peptides of food proteins may also influence the sequence
and activity of liberated peptides [16]. Moreover, Moughan and coworkers observed that peptide
hydrolyzates undergo faster gastric emptying and intestinal absorption of their constituent amino
acids than their whole source proteins [17]. Nguyen et al. reported a lower degree of hydrolysis of
soybean proteins contained in soy-based infant formulations than that for milk protein-based infant
products [18]. This could be due to the hydrophobic β-sheet structures of soy protein that made its
digestion difficult. Moreover, the effect of processing on protein digestion have been studied. Drulyte
and Orlien reported the effect of domestic (soaking, cooking, and baking) and industrial (autoclaving,
baking, and extrusion) processing methods on the legume protein digestibility [19]. Overall, the
protein digestibility increases after processing by the different methods. Since both the type of legume
and the applied methods differ, it could not be concluded which specific methods were better for the
individual legume type. Recently, Deng et al. have reported that the heat treatment of β-lactoglobulin
provokes structural modifications on the protein that increase its gastric digestibility and transport
across intestinal epithelial cells in comparison with the native protein [20]. Therefore, the chemical and
structural characteristics of protein in the natural form, in processed foods, or in purified form have an
undeniable impact.

The digestive procces is closely controlled by hormonal and neural regulatory mechanisms [21,22].
Digestive hormones may enhance or inhibit the secretory activity of glandular organs and the
contractions of smooth muscles. Moreover, both autonomic and enteric nervous systems are involved
in the regulation of digestion processes. A faster gastric emptying rate may alter the incretin and
enterogastrone response, but it may also modify the hormonal response to feeding [23]. Calbet and
Holst studied the influence of the degree of protein fractionation on gastric emptying, gastric secretion,
amino acid absorption, and enterogastrone response, after the intragastric administration to volunteers
of complete cow milk proteins or their respective peptide hydrolyzates [14]. While the rate of gastric
emptying and the plasma glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) responses to feeding
were found to be independent of the degree of protein fractionation, amino acid composition, or protein
solubility, the glucose-dependent insulinotropic polipeptide (GIP) response was accentuated when
milk proteins are ingested as hydrolyzates.

Bioactive peptides acting at the local system may also affect the gastrointestinal process.
Major studies have focused on animal proteins-derived peptides whose opioid agonist and antagonist
activity is responsible for their modulatory effects on the gastrointestinal motility and secretion
of gut regulatory signals, controlling food intake and satiety [24]. Dalziel et al. found that whey
protein concentrates decreased motility in the colon, while their corresponding hydrolyzates increased
the frequency of contrations [25]. Domenger and coworkers reported that hemorphins, a group
of opioid peptides encrypted in the beta-chain of hemoglobin, specifically, LLW-YPWT, LW-YPWT,
W-YPWT, W-YPWTQRF, and YPWTQRF had effects on intestinal peristalsis, appetite, and food intake
regulation [26].

2.1.2. Models to Evaluate Digestibility

The human and animal models provide the most physiologically relevant data on the digestion of
protein/peptides [27]. This can be achieved by aspiration of the digestion content from the stomach [28],
small intestine [29], or both [30], using imaging technologies [31] and wireless telemetric systems [29,32].
Different animals have been used for these models, including dogs, chickens, rats, and pigs [33].
Pig is the most suitable animal model to predict protein digestibility in humans because its enzymes
and the physiology of its digestive tract are the closest to those in humans [34]. However, to date, few
studies have evaluated the in vivo digestion behavior of bioactive peptides; milk proteins have been
the most studied [35,36]. Table 1 summarizes examples of recent studies on gastrointestinal models
used to evaluate the digestion of bioactive peptides derived from milk proteins.
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Table 1. Some examples of recent studies on gastrointestinal models used to evaluate the digestion of bioactive peptides derived from milk proteins.

Dairy Food Product Gastrointestinal Model Site/Type Outcomes Reference

Casein and whey proteins In vivo Human jejunum

• Identified 415 and 230 peptides from casein and
whey proteins

• Identified β-casomorphin-7, f(60–66) and various peptides
containing the same sequence, antihypertensive peptides
[β-casein f(134–138) and αs1-casein f(143–146) and f(60–66)],
hypocholesteromic β-lactoglobulin peptide f(71–75) and
DPP-IV inhibitory β-lactoglobulin peptide f(9–14)

[37]

Human milk In vivo Infant stomach • Identified 649 β-casein-derived peptides, most of them with
biological activity

[38]

Casein and whey proteins In vivo Human jejunum

• Identified 356 and 146 peptides from casein and
whey proteins

• Identified opioid β-casomorphins, f(57-, 58-, 59-, and 60–66)
and antihypertensive peptide β-casein f(198–113)

[29]

Skim mik In vivo Mini-pig duodenum • Identified a high number of resistant bioactive
peptide sequences

[39]

Skim milk In vivo Mini-pig duodenum

• Identified 400 bioactive peptides with antihypertensive,
anti-stress, antimicrobial, antioxidative, opioid agonist,
immunomodulating anti-thrombotic,
protease/peptidase-inhibitory and/or
mineral-binding properties

• The position of cleavage sites is highly conserved,
independently of the matrix ingested

[40]

Infant formula In vivo Piglet jejunum and ileum
• Identified β-casein peptides f(60–66) and f(80–89) with

immunomodulatory and antihypertensive
activities, respectively

[8]
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Table 1. Cont.

Dairy Food Product Gastrointestinal Model Site/Type Outcomes Reference

Unheated and heat skim
milk powder In vitro Dynamic: DIDGI®

• Identified antihypertensive αs1-casein peptides [f(143–149)
and f(90–94)], opioid [αs1-casein f(90–95) and k-casein
f(33–38)], and antibacterial αs2-casein peptides [f(183–207)
and f(186–206)]

[41]

Skim milk with β-casein
variants A1, A2, F and I In vitro

Static INFOGEST with
human gastric and

duodenal juices

• Quantitative differences in β-casomorphin 7, β-casein
f(60–66) due to the different milk matrices

[42]

Skim milk with β-casein
variants A1, A2 and I In vitro

Static INFOGEST with
human gastric and

duodenal juices

• Identified antihypertensive β-casein f(133–138),
ACE-inhibitory peptides f(6–14), f(59–68), f(60–68),
f(193–202), opioid peptide f(60–66) and antimicrobial and
immunomodulatory peptide f(193–209)

[43]

Grana Padano cheese In vitro
Static with porcine pepsin

and porcine pancreatin
(Pepn) and INFOGEST

• Double number of CPPs in cheese digests using the PePn
protocol in comparison with the INFOGEST method,
independently of the cheese aging

[44]

Cheddar, Gorgonzola,
Maasdam and Grana

Padano cheeses
In vitro Static INFOGEST • β-casomorphin 4, f(60–63) and β-casomorphin 7, f(60–66),

were released from all studied cheeses
[45]

Human milk and infant formula In vitro Static
• Similarities and differences in the post-digestion profiles of

human milk and infant formula
• Conserved function between bovine and human milks

[46]

Commercial dairy products In vitro Static • Comparison between peptides with satiety-influencing and
DPP-IV inhibitory properties from different dairy products

[47]

Spanish blue cheese (Valdeon) In vitro Static
• High number of bioactive peptides, including

antihypertensive, antioxidant, intestinal mucin-secretory,
and antibacterial

[48]

Gamalost and Norvegia cheeses In vitro Static but with human
gastric and duodenal juices

• Both cheeses showed an increased ACE-inhibitory activity
during gastric digestion. Norvegia cheese showed
pronounced increased activity after duodenal digestion

[49]

ACE: Angiotensin converting enzyme; CPP: Caseinophosphopeptides; DPP-IV: Dipeptidyl peptidase IV.
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Animal models generally involve animal death or surgical approaches in which cannulas are
placed into digestive organs to access the content of the gastrointestinal tract. This associates in vivo
studies with significant ethical restrictions, in addition to their high cost and long duration. In the last
few years, to overcome these limitations, several in vitro gastric and small intestinal models have been
developed and optimized.

Static models are cheap, easy to use, and do not require specific equipment, thus being the
most widespread used digestive systems. They consist in a series of bioreactors mimicking the
physicochemical and enzymatic conditions of each digestive compartment. The most simple and
common in vitro gastric digestion model is a water bath incubation model that may also include
various digestive enzymes (amylases, proteases, and lipases), mucins, and salts, depending on the food
product under investigation and the region of the gastrointestinal tract. Samples are commonly mixed
with a simulated digestion fluid (at an appropriate pH and enzyme concentration) and incubated
at 37 ◦C up to 2–3 h [50]. Some models employ agitation in an attempt to mimic the peristaltic
movements present in the gastrointestinal tract [51], and/or a pH meter to record pH of the digest
at regular intervals throughout the digestion process [18]. Numerous in vitro protocols have been
described in the literature differing in the experimental conditions (pH and duration of the different
steps, amount of digestive enzymes and bile salts, etc.), making the comparison of results very difficult.
Recently, an international consensus of the digestion conditions was reached within the European COST
Action Infogest (http://www.cost-infogest.eu/) [52,53]. This standardized method has been applied to
assess the digestion of different proteins, mainly milk proteins, showing improved inter-laboratory
reproducibility and consistency in comparison with in-house methods [54]. Moreover, the validation
of this protocol with in vivo data has been recently performed [37,39]. However, the static models are
oversimplified, are restricted to studying end digestion products, do not allow tracking the kinetic
behavior of food proteins and peptides during digestion, and do not take into account the dynamic
aspects of the digestive process. These limitations have prompted the development of dynamic models.
Recently, Mulet-Cabero et al. reported an intermediate model built upon the harmonized INFOGEST
static model and including gradual acidification, fluid and enzyme secretion, and emptying [55].

Dynamic systems are either mono-compartmental (simulate one compartment of the
gastrointestinal tract) or multi-compartmental (several compartments). The different available systems
available have been described by Guerra et al. [9], Dupont et al. [56], and Giromini et al. [57].
These models can perform continuous changes in pH and the sequential secretion of gastric or
pancreatic juices, in addition to consider gastric emptying or the removal of digestion products.
Therefore, because of their capacity to mimic both mechanical and enzymatic transformations occurring
during gastrointestinal digestion, dynamic models are considered the best systems to reproduce the
physiological conditions.

The main mono-compartmental models are the Dynamic Gastric Model (DGM) and the Human
Gastric Simulator (HGS). The DGM was developed at the Institute of Food Research (Norwich, UK)
according the physiology of the human stomach [58]. It has a truncated stomach shape where the
gastric emptying is regulated by a valve that allows the smallest particles to leave the stomach, whereas
the bigger ones are refluxed into the top chamber to be further digested. It has been shown to accurately
replicate the antral grinding forces observed in vivo [59]. This model has been applied to evaluate
the digestion of human milk proteins [60], although no bioactive peptides were identified. The HGS
model from the University of California, Davis (USA) provides a pattern of stomach forces comparable
to the in vivo situation [61], where the emptying is achieved by batches. Its design and construction
have been reported in the Master Thesis of Phinney [62]. This model has been used to study the gastric
digestion of rice and apples proteins [61] and whey proteins [63]. Both mono-compartmental models
are particularly relevant for gastric digestion studies; thus, the released products may be used for their
subsequent digestion at the intestinal level.

The main bi-compartmental models simulate the luminal conditions of the stomach and proximal
small intestine. Based on in vivo data, these computer controlled systems reproduce the temperature,

http://www.cost-infogest.eu/


Molecules 2020, 25, 4479 7 of 36

pH changes in the gastric and duodenal compartments, gastric emptying, pepsin, pancreatic juice
and/or bile salts content [64,65], and dialysis of digestion end products [66].

Different multi-compartmental models are available. TIM-1 and TIM-2, and the Simulator of the
Human Intestinal Microbial Ecosystem (SHIME®) were developed more than 20 years ago. TIM-1
and TIM-2 were designed at the TNO Nutrition and Food Research Center (Zeist, Netherlands) by
Minekus et al. [67,68]. They are composed of the stomach and the three parts of the small intestine,
integrating key parameters of human digestion including temperature, kinetics of gastric and intestinal
pH, gastric and ileal deliveries, transit time, peristaltic mixing and transport, sequential addition
of digestive secretions, and passive absorption of water and small molecules through a dialysis
system. More than 100 papers have been published applying this digestion system for drugs, foods,
and micro/macronutrients. Nowadays, this model is under continuous optimization processes, aiming
at simulating infant or elderly gastrointestinal conditions [69–71], and developing the advanced
gastric model ‘TIMagc’ [72]. The SHIME® model was developed at Ghent University (Belgium) [73].
The system is constituted by five reactors simulating different parts of the gastrointestinal tract.
Using the so-called M-SHIME®, it is possible to mimic the mucosal microbial colonization by the
incorporation of mucin-covered microcosms [74]. This model was successfully used to study the effect
of whey retentate on the microbial community [75]. The DIDGI® system has been recently built up at
the “Institut National de la Recherche Agronomique” (INRA, France). It consists of two consecutive
compartments simulating the stomach and the small intestine. It is equipped with temperature, pH and
redox sensors, and variable speed pumps to control the flow of meal, HCl, NaHCO3, bile, and enzymes,
as well as the emptying of each compartment. Flow rates are regulated by specific computer-controlled
peristaltic pumps. Anaerobic conditions can be simulated by purging air with nitrogen, and a Teflon
membrane with 2 mm holes is placed before the transfer pump between the gastric and the intestinal
compartment to simulate the sieving effect of the pylorus in human [76]. This model has been validated
and applied for the digestion of proteins from infant formulas [77], bovine skim milk [41], and human
milk [78–80]. The SIMGI® was developed in The Institute of Food Science Research (CIAL, CSIC-UAM)
at Madrid, Spain. The stomach compartment is constituted by a methacrylate jacket with a flexible
silicone membrane, where pressure is applied by water in peristaltic cycles. Recently, this model has
been used to study the gastric digestion of a whey protein concentrate, comparing the results with
those found with the INFOGEST static protocol [81]. These authors demonstrated that the protein
digestibility and the peptide profile depended on the sequential addition of pepsin, the peristaltic
movements, and the gastric emptying.

All these models are relatively complex, and their set up and maintenance costs are very
high. Moreover, they require the programming of the major parameters based on in vivo data
to accurately simulate in vivo digestion conditions [56,77]. Ultimately, in vitro models must be
compared to in vivo models to establish their accuracy [33]. Recent advances in non-invasive
medical technologies and computational fluid dynamic tools have opened new opportunities to better
understand the physicochemical conditions occurring during food digestion [82]. Complete in vivo
processes, particularly hormonal and nervous control, feedback mechanisms, mucosal cell activity,
peristaltic movements, and immune characteristics need to be mimicked [9]. Therefore, a combinatorial
approach involving in vitro models and human cultured intestinal cells to simulate both digestion and
absorption processes has been proposed.

2.2. Absorption of Food Peptides

Absorption of most of the digestion products occurrs in the jejunum, where chyme enters from
the stomach, and it is further broken down into nutrients (including peptides, fatty acids, mono- and
oligosaccharides, vitamins, and minerals) that cross the intestinal wall, reaching the systemic circulation.
Traditionally, it was thought that once ingested, all peptides and proteins were hydrolyzed by digestive
enzymes to their constituent amino acids that were absorbed across the intestinal epithelial barrier.
It was also believed that proteins and peptides were only absorbed under pathological conditions.
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However, in the last few years, it has been found that many peptides are absorbed by intestinal cells
under normal conditions, being detected in both newborn and adults’ bloodstream and/or target
organs where they exert their biological activities [83–85].

To date, four different routes of peptides absorption have been described: paracellular diffusion,
transcellular passive diffusion, transcytosis, and carrier-mediated transport. Following, the main
characteristics of these absorption pathways and examples of peptides using them are summarized.

(a) Paracellular diffusion involves the movement of molecules via water-filled pores/channels
between cells. Approximately 0.01–0.1% of the total intestinal surface area consists of water-filled
pores that corresponds to 200–2000 cm2. This surface is large enough for the absorption of small
quantities of peptides (pM–nM range); thus, it is adequate to exert their biological activity [86].
The paracellular pathway is regulated by tight junctions (TJs) that separate the apical and basolateral
membranes of the epithelial cells. TJs are multiprotein complexes containing zonula occludens-1,
occludin, and claudin proteins that form a firm biological barrier restriciting the paracellular flux of
water, ions, and solutes [87]. TJs prevent the crossing of substances through the space between plasma
membranes of adjacent cells, and they restrict the process of polar macromolecule penetration [88].
Therefore, peptides passing through the intestinal epithelium enter the cells by diffusion or active
transport. This transport is mainly dependent on the physicochemical properties of the peptide such
as molecular weight and ionic charge [86]. Thus, this route has been reported as that preferred by
hydrophilic negative charged low-molecular-weight peptides [89–91]. A variety of bioactive food
oligopeptides have been found to be transported by passive diffusion via paracellular TJs (see the
review of Xu et al. [92]). Moreover, this route was used by the 43-amino-acids peptide lunasin and its
fragment RKQLQGVN, which is released during lunasin’s gastrointestinal digestion, to cross intestinal
epithelial barrier [93].

(b) Transcellular passive diffusion involves the transport of molecules through apical and
basolateral membranes in a concentration-based and energy-independent manner [94]. The transport
of bioactive peptides through passive diffusion is dependent on peptide characteristics such as size,
charge, and hydrophobicity [95]. Thus, because of the composition of the cell membrane by a
lipid bilayer, it is widely accepted that lipophilicity plays a key role in this transport mechanism.
While hydrophilic peptides prefer paracellular diffusion to cross the intestinal epithelium, transcellular
transport is the chosen route by lipophilic peptides. Other factors, such as the peptidic chain length and
number of polar groups also seem to determine the passive diffusion of bioactive peptides. Moreover,
the transcellular absorption of a peptide depends on the energy required to break water–peptide
hydrogen bonds, allowing the molecules to enter the cell membrane [96].

(c) Transcytosis involves the energy-dependent transport of material from one side of the polarized
cell to the other. This route includes apical endocytotic uptake, transcytotic transport via internalized
vesicles called endosomes, and basolateral secretion [97,98]. Since peptides need to interact with the
apical lipid bilayer of epithelial cells through hydrophobic interactions before being internalized by the
cells, transcytosis seems to favor the transport of long-chain (more than four amino acid residues) and
hydrophobic peptides [99,100]. Thus, a recent study has suggested that the high content of hydrophobic
amino acids in the antioxidative peptide YWDHNNPQIR could determine its transport across Caco-2
cell monolayers via transcytosis [101]. In addition to the importance of hydrophobicity, other factors
have also been recognized as determinants in the transcytosis transport of peptides. Thus, cell models
have reported that the number of polar groups and the net charge of peptides, especially the positive
charge, show positive effects on their transcytosis transport [102,103].

(d) Carrier-mediated transport involves the movement of peptides against the concentration
gradient, which is mediated by specific cell membrane proteins that function via anti-, sym-, and
uniporter mechanisms. Antiporters translocate peptides in opposite directions, whereas symporters
transport them via cotransport in the same direction over the blood membrane. Uniporters function
unidirectionally, without cotransport [94]. This transport system is dependent of susbtance
concentration, susceptible to inhibition, and specific to the molecules’ structure [104]. Among peptide
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carriers, transporter 1 (PepT1) is a high-capacity and low-affinity carrier that drives peptides
from the gastrointestinal lumen into the intestinal epithelium in a proton gradient and membrane
potential-dependent manner [105–108]. Although it has been described that PepT1 preferentially
binds short-chain bioactive peptides, specially di- and tri-peptides, with neutral charge, and high
hydrophobicity, it has also been found to be able to recognize dipeptides with an extreme bulk or two
positive charges [109]. However, PepT1 is unlikely to bind hydrophilic or hydrogen regions [110].
Recently, Wang and Li used a Caco-2 cell monolayer model to study the transport routes chosen
by casein-derived peptides [89]. These authors found that PepT1 was responsible for transporting
low molecular weight peptides, while high molecular weight casein peptides crossed the intestinal
barrier through paracellular diffusion. Moreover, the bioavailability of peptides transported by PepT1
was higher than those transported through the paracellular route. PepT1 has also been described as
the carrier of angiotensin converting enzyme (ACE) inhibitory peptides IPP and LKP, which were
released from milk β-casein and fish/chicken muscle protein, respectively [111], as well as of other food
bioactive peptides [101,112–116]. In addition to PepT1, other peptide carriers present in the basolateral
membrane have been suggested to participate in the transport of hydrolysis-resistant small peptides
into blood. However, this fact has not been proven yet [117,118].

2.2.1. Limitating Factors for Peptides Absorption

In addition to the peptide characteristics such as length, primary and secondary structures,
hydrophobicity/lipophilicity, and charge that influence on the process of peptide transport across the
intestinal wall, other factors have been reported to limit/promote the absorption and bioavailability of
food-derived peptides [119,120]. Firstly, food processing can provoke undesiderable reactions between
peptides and co-existing compounds present in the food matrix, limiting peptides’ absorption [121,122].
However, the available mechanistic data are still very scarce. In a placebo-controlled crossover
human study, Foltz and coworkers reported a delay in the bioaccessibility and plasma clearance of
antihypertensive peptide IPP present in yogurt when it was consumed as the base of the breakfast
meal in comparison with the delivered peptide in a fasted state [83]. Recently, Lacroix et al. [123] have
reported the higher degradation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from whey
proteins by peptidases present at the apical side of Caco-2 cell monolayers when incorporated in a
matrix containing inorganic salts and glucose. Furthermore, interactions between free radicals formed
from food phenolic compounds through oxidation reactions and nucleophilic moieties of peptides
can result in new peptide derivatives, thus modifying their bioavailability [121,122]. In addition, the
absorption of peptides can be modified as result of the effects of co-existing compounds in the food
matrix on the peptides transport route. Thus, compounds that use the same PepT1 transport pathway
as small peptides can compete with them, reducing their absorption rate [124]. Antioxidant black tea
polyphenols have been demonstrated to down-regulate PepT1 expression, resulting in a decrease in
the dipeptides absorption across Caco-2 cell monolayers [125], while this transport was favored by
dietary amino acids and protein hydrolyzates that up-regulate PepT1 expression [126].

The peptide digestibility and bioavailability can also be modified by alterations in the luminal
environment, intestinal barrier function, and gut microbioma provoked by food components [127,128].
Even peptide products resulting from the degradation of dietary peptides by digestive enzymes
can act locally, potentiating the action of other bioactive peptides by improving pathway signaling,
as well as the morphology and functionality of intestinal cells [128,129]. Detailed peptidomics and
transcriptomics studies focusing on investigating the bioaccesibility and bioavailability of bioactive
peptides into the complex food matrix and the development of enhancement strategies of peptides
stability would eliminate the need for the intense purification of protein hydrolyzates. In addition to
food properties, other non-dietary factors also affect the bioavailability of bioactive peptides. It has been
demonstrated that an altered intestinal environment provoked by diseases such as ulcerative colitis
or colon cancer, pharmacological treatments, or endogenous hormones can influence the peptides’
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absorption [130]. Thus, these physiological factors should be taken in account to interpret data from
in vivo studies focused on assessing the bioavailability of bioactive peptides.

In addition to the digestive enzymes present in the gut lumen and the brush border peptidases
of the microvilli that can degrade bioactive peptides into smaller molecules and free amino acids,
other barriers are encountered by peptides during their transit through the gastrointestinal tract that
can affect their absortion rate and bioavailability. The first physical obstacle found by peptides is the
mucus barrier, which is a hydrogel layer composed of large glycoproteins, mainly mucins, whose major
function is to lubricate the passage of chyme and to protect the epithelium against mechanical damage
and pathogens [131,132]. The internal surface of the small intestine is covered by a monolayer of
epithelial cells, mostly enterocytes, and mucus-secreting goblet cells. The apical side of enterocytes,
called the brush border, is covered by microvilli that increase the intestinal surface area involved in the
digestion and absorption of molecules [133]. Once peptides reach the epithelium, they can be degraded,
transformed, or absorbed, depending on their properties. Below the intestinal epithelium, peptides
find the subepithelial tissue divided into the lamina propria and mucosa muscularis. In vivo, this
highly vascularized connective tissue is not a limiting barrier to the absorption of small peptides [134].

2.2.2. Models of Peptide Absorption

To measure the in vitro bioavailability of peptides, two major approaches are currently used.
The common strategy without using cells involves the simulation of gastrointestinal digestion of
proteins/peptides with digestive proteases (as explained in Section 2.1.) combined with the use
of semipermeable membranes of different cut-off values (1–10 kDa) during the intestinal phase to
estimate the content of peptides available for absorption [135]. However, because of the lack of
reproducibility of these cell-free systems, in the last few years, new approaches combining in vitro
gastrointestinal digestion and intestinal cell models have been optimized and applied for estimation of
the bioavailability of peptides. The American Type Culture Collection (ATCC) offers a broad array
of commercially available human intestinal cell lines, of which Caco-2 and HT-29 cells are the most
commonly used [94].

Caco-2 cells are derived from human colonic adenocarcinoma, but once cultured on semipermeable
inserts, they differentiate into an enterocyte-like phenotype, with a characteristic apical brush border
with microvilli, TJs, digestive proteases, and active receptors and transport systems [119,136]. Since its
introduction in the 1990s [137–139], the use of this cell model for permeability studies in drug discovery
and development as well as in the drug absorption, distribution, metabolism, and excretion (ADME)
sciences has exponentially risen. In the field of bioactive peptides, over the past 10 years, a high number
of studies have evaluated the absorption of these peptides and the mechanisms of transport across
Caco-2 cell monolayers (Table 2). Thus, the absorption of intact sequences across Caco-2 cells monolayers
has been demonstrated for antioxidant peptides derived from soybean protein [140], corn gluten [141],
milk proteins [89,142,143], and dry-cured Xuanwei ham [144], and for antihypertensive peptides
derived from lactoferrin [145], ovotransferrin [114], and ovoalbumin [146]. Similarly, this model has
been used to demonstrate the efficient transport of multifunctional soybean peptide lunasin or its
derived fragment RKQLQGVN by paracellular diffusion [96], and of multifunctional peptides released
from lupin storage proteins by digestive enzymes [147]. However, in spite of the numerous articles
published, the conditions used such as cell density, seeding time, or time of incubation with the samples
differ among them, making the comparison of the results difficult. Therefore, inter-laboratory studies
should be needed to harmonize and improve the overall data interpretation. Moreover, although
differentiated Caco-2 cells present a proteome expression similar to jejunal enterocytes, important
differences exist between both cells. Thus, it has been demonstrated that the level expression of brush
border enzymes is lower in Caco-2 cells, being some of these proteinases and peptidases below the
limit of detection. This makes the metabolism of peptides lower when they are cultured with Caco-2
cells compared to that in the human intestine [88].
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Table 2. Recent studies on cell models used to evaluate the absorption of food bioactive peptides.

Protein/Peptide Substrate Biological Activity Cell Model

Absorption Study Conditions

Outcomes ReferenceDensity
(cells/cm2)

Seeding Time
(days)

Sample
Concentr.

Time
(min)

Simulated digest from Alcalase®

soybean protein hydrolyzate
Antioxidant Caco-2 1.2 × 105 18–21 1.0 c 120 Absorption of antioxidant peptides

across cell monolayer [140]

Soybean peptides IAVPTGVA, LPYP,
and IAVPGEVA

Hypocholesterolemic
Hypoglycemic Caco-2 3.5 × 105 17 0.5 d 15–120

Inefficient intestinal transport
Remarkable hydrolysis by brush
border enzymes

[148]

Peptide LSW from soybean protein ACE-inhibitory
Anti-inflammatory Caco-2 1.0 × 105 21 5.0 d 60

Transport of intact LSW across cell
monolayer by paracellular
diffusion via TJs and
PepT1 pathway

[149]

Peptide lunasin and RKQLQGVN
from soybean protein Multifunctional Caco-2 1.5 × 105 a 9 0.010–1.0 d 60

Absorption of intact peptides
across cell monolayer by
paracellular diffusion

[93]

Tryptic and peptic peptides from
lupin protein Multifunctional Caco-2 3.5 × 105 18 1.0 c 240

Efficient absorption of eleven
tryptic and eight peptic bioactive
lupin peptides

[147]

Peptide YDFYPSSTKDQQS from lupin
hydrolyzate by pepsin Hypocholesterolemic Caco-2 3.5 × 105 18 1.0 c 240 Efficient absorption of peptide [150]

Peptide fractions from Phaseolus
vulgaris L. ecotype Controne beans

ACE-inhibitory
Antioxidant

α-amylase inhibitory
Caco-2 2.0 × 105 a 21 0.1–1.0 c 120 Partial absorption of peptides

across cell monolayer [151]

Peptide YWDHNNPQIR from
rapeseed protein Antioxidant Caco-2 1.0 × 105 a 21 0.025–0.25 d 120

Partial absorption of peptide
across cell monolayer via
intracellular transcytosis
Susceptibility to hydrolysis by
cell peptidases

[101]

Peptides LY, RALP, and TF from
rapeseed protein hydrolyzate

by Alcalase®
ACE-inhibitory
Renin inhibitory Caco-2 1.0 × 105 a 21 1.0–3.0 d 180

Highest absorption for peptide LY
and lowest for peptide RALP
Susceptibility to cell peptidases

[152]

Peptides YFCLT and GLLLPH from
corn gluten Antioxidant Caco-2 1.0 × 105 a 21 4.0 d 120

Absorption of intact peptides
across cell monolayer via
TJs-mediated paracellular diffusion
and energy-dependent transcytosis
Susceptibility of peptides to brush
border peptidases

[141]

≤3 kDa hydrolyzate from cowpea
bean protein Hypocholesterolemic Caco-2 5.0 × 104 21 5.0 c 120

Absorption of peptide
MELNAVSVVHS across
cell monolayer

[153]



Molecules 2020, 25, 4479 12 of 36

Table 2. Cont.

Protein/Peptide Substrate Biological Activity Cell Model

Absorption Study Conditions

Outcomes ReferenceDensity
(cells/cm2)

Seeding Time
(days)

Sample
Concentr.

Time
(min)

Peptide RLSFNP from whey protein
hydrolyzate with proteinases of Lb.

helveticus LB10
ACE inhibitory Caco-2 2.0 × 105 21 1.0 d 60

Absorption of intact RLSFNP and
fragments F, FNP, SFNP, and RLSF
Transport via paracelullar route

[154]

Peptide fractions from simulated
digests of common bean milk

and yogurt
Anti-inflammatory Caco-2 clone

(C2BBe1) — 5–7 — 360

Anti-inflammatory peptides
transported across the
cell monolayer
Yogurt samples showed higher
transport efficiency than
milk samples

[155]

Milk peptides LKPTPEGDL, LPYPY,
IPIQY, IPI and WR DPP-IV inhibitory Caco-2 2.5 × 105 21 1–6 d 120

Low absorption capacity
of peptides
High susceptibility to brush border
cell membrane enzymes

[123]

Milk peptide RLSFNP ACE inhibitory Caco-2 2.0 × 105 21 1–6 d 120 Transport of peptide across cells
via energy-dependent transcytosis [156]

Peptide mixture from whey protein
hydrolyzed by immobilized Lb.

helveticus proteinase
ACE inhibitory Caco-2 2.0 × 105 21 1.0 c 60

Transport of peptides KA, EN, DIS,
EVD, LF, AIV, and VFK across
cell monolayer

[157]

Simulated digests from whey proteins Antioxidant
Immunomodulatory

Co-culture of
Caco-2 (70%)

and HT-29
(30%)

4 × 104 10 175 e 120

Bioactive peptides (ALPM, GDLE,
TKIPA, VEELKPT, VGIN and
AVEGPK) were transported across
cell monolayer

[158]

Lactoferrin-derived peptides WQ,
RWQ, and RRWQWR Antihypertensive Caco-2 7.5 × 104 21 1.0 d 120

Absorption of peptides RWQ and
WQ via paracellular diffusion
Susceptibility of three peptides to
brush border peptidases

[145]

Peptides EAMAPK and AVPYPQ from
simulated digests of Stracchino”

soft cheese
Antioxidant Caco-2 6.0 × 104 14–15 0.5–4.0 d 240

Absorption of peptides across
cell monolayer
Resistance to brush
border peptidases

[142]

Peptide fraction from simulated digest
of “Mozzarella di Bufala

Campana DOP”
Antioxidant Caco-2 6.0 × 104 14–15 0.5–4.0 d 240 Absorption of intact peptides

across cell monolayer [159]

Peptide VLPVPQK from
casein hydrolyzate

ACE-inhibitory
Antioxidant Caco-2 3.0 × 105 a 21 0.38 d 60

Partial absorption of peptide
across cell monolayer via
PepT1-like transporters

[160]

Peptide fractions from casein
hydrolyzate by Alcalase® and its

simulated digest
Antioxidant Caco-2 1.0 × 106 b 21 40.0 c 120 Higher bioavailability for

negatively charged peptides [143]
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Table 2. Cont.

Protein/Peptide Substrate Biological Activity Cell Model

Absorption Study Conditions

Outcomes ReferenceDensity
(cells/cm2)

Seeding Time
(days)

Sample
Concentr.

Time
(min)

Peptide fractions from casein
hydrolyzate by Alcalase® Antioxidant Caco-2 4.0 × 105 21 15.0 c 120

Amino acid sequence affects
peptide bioavailability
Absorption via paracellular route
Susceptibility to brush
border peptidases

[89]

Peptide fractions from simulated
digest of casein hydrolyzate

by Alcalase®
Antioxidant Caco-2 1.0 × 105 b 21 25.0 c 120 High bioavailability for high

hydrophobic peptide fractions [161]

Peptides RYLGY and AYFYPEL from
casein hydrolyzate by pepsin Antihypertensive

Caco-2,
HT-29-MTX and

co-culture
Caco-2

(75%)/HT-29-MTX
(25%)

5.0 × 105 a 21 — 60

Absorption of intact peptides
across cell monolayer
Susceptibility of peptide RYLGY to
cell peptidases

[162]

Simulated digests from collagen
hydrolyzates by different proteases Immunomodulatory Caco-2 1.0 × 105 21 6.0 c 120

Greater transport efficiency of
collagen hydrolysates due to the
lower MW profile

[163]

Simulated digests from egg ovalbumin
hydrolyzate (Tensiocontrol®) Antihypertensive Caco-2 1 × 105 a 21 0.1 c 62

Protection of food matrix against
bioactive peptides
luminal digestion

[146]

Synthetic egg peptides IVF, YAEER,
YAEERYPIL, RADHPFL, and RADHP Antihypertensive Caco-2 1.0 × 105 a 21 1.05 f 25 Absorption of five egg peptides

Faster transport for peptide IVF [146]

Ovotransferrin RVPSL Antihypertensive Caco-2 1.0 × 105 a 21 5.0 d 120

Partial transport of peptide across
cell monolayer via TJs-mediated
paracellular pathway
Susceptibility to brush
border peptidases

[114]

Peptides IWHHT, IWH, and IW from
spent hen ACE inhibitory Caco-2 1.0 × 105 21 5.0 d 120

Partial absorption across
cell monolayer
Partial degradation by
cell peptidases

[164]

Peptides hemorphins from simulated
hemoglobin digest Opioid Caco-2/TC7

clone 6.0 × 104 21 5.0 a 60 Absoprtion of intact hemorphins
across cell monolayer [28]

Simulated digests from cooked
chicken muscles ACE inhibitory Caco-2 2.5 × 105 21 15.0 c 120

Higher permeability and
bioactivity for samples heated at
70 ◦C than at 121 ◦C

[165]

Peptide DLEE from Chinese dry-cured
Xuanwei ham Antioxidant Caco-2 2.0 × 105 b 22 1.0–10.0 d 150 Peptide absorption via

paracellular transport [144]
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Table 2. Cont.

Protein/Peptide Substrate Biological Activity Cell Model

Absorption Study Conditions

Outcomes ReferenceDensity
(cells/cm2)

Seeding Time
(days)

Sample
Concentr.

Time
(min)

Peptide fraction from tilapia
hydrolyzed by V. halodenitrificans

SK1-3-7 proteinases and its
simulated digests

ACE inhibitory Caco-2 2.3 × 105 a 21 1.0 c 360
In vitro gastrointestinal digestion
enhanced the transport of
hydrolyzate across cell monolayer

[166]

Peptides IQP and VEP from
Spirulina platensis ACE inhibitory Caco-2 1.0 × 105 21 1.0–5.0 d 120

Absorption of intact peptides
through cell monolayer by
paracellular diffusion

[167]

a: density expressed as cells/well; b: density expressed as cells/mL; c: mg/mL; d: mM; e: µg protein; f: µg/mL; ACE: Angiotensin converting enzyme; DPP-IV: dipeptidyl peptidase IV; MW:
molecular weight; PepT1: transporter 1; TJs: tight junctions.
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Caco-2 cells are also characterized by the absence of a protective mucus layer that, sometimes, is
compensated by the co-culture of these cells with different mucus-secreting globet cells. The sub-culture
Caco-2/HT-29 has been recognized as a more physiological relevant model compared to Caco-2
monoculture because Caco-2 cells provide the barrier function and absorptive enterocyte population,
and HT-29 cells present the mucus producing goblet cells [168]. This co-culture model has been
employed to evaluate the absorption of peptides from whey proteins [158] (Table 2). However, these
two cell lines do not mix well in co-culture, and HT-29 tend to grow as colonies embedded in Caco-2
cells, resulting in an irregular mucus layer [169]. This makes Caco-2/HT-29 co-cultures showing
lower transepithelial electrical resistance (TEER) and increased permeability compared with Caco-2
mono-cultures [169,170]. Moreover, HT-29 mono-cultures are not suitable for absorption studies due
to their inability to form a tight barrier when cultured under standard conditions. However, prolonged
cultivation under modified culture conditions leads to the generation of subclones such as HT-29-MTX,
which is produced after the addition of methotrexate to the culture media [171]. This subclone is able
to form a tight monolayer and express brush border enzymes, becoming a common model to study the
role of goblet cells on peptide absorption [162]. Another aspect limiting the utility of Caco-2 cells for
studies of peptide absorption is the low level of endocytosis and transcytosis due to the reduced level
of expression of caveolins, which are proteins that are involved in these mechanisms of transport [88].

This limitation has been solved by co-culturing Caco-2 cells with human hematopoietic Raji B
cells that induce an M-cell-like phenotype in Caco-2 cells, stimulating the expression of caveolins and
the transcytosis capacity of the intestinal cells [172,173]. In recent years, three-dimensional culturing
systems are being developed combining physiological relevant parameters such as microbiota and
shear stress with peristaltic intestinal movements. In these systems, called gut-on-a-chip, Caco-2 cells
are cultured on a semipermeable membrane with the apical and basolateral sides facing two different
fluid-filled channels simulating intestinal lumen and blood, respectively. Moreover, important changes
in the cell phenotype such as mucin expression and the formation of villous- and crypt-like structures are
induced by pressure pulses to mimick both heart beat and peristaltic movements [174,175]. Although
these systems are generally accepted for their ease of use and moderate cost, their application for peptide
absorption studies is still limited, and further studies confirming their utility are needed. On the contrary,
three-dimensional intestinal mini-guts, also called organoids, are presented as a promising in vitro
model for nutrient and drugs absorption, enteroendocrine secretions, and intracellular signaling [176].
Organoids, as obtained from isolated intestinal tissue, contain all types of intestinal epithelium cells
and exhibit most of the epithelium functional properties, including absorptive functions. The potential
of this model to reduce the number of animal experiments and complement the existing information of
peptide absorption has been suggested [177]. Thus, organoids have been successfully applied to study
the absorption and transport of dipeptides [178]. However, no studies on the application of this model
for studying the bioavailability of food bioactive peptides are yet available.

It has been recognized that the cell-based experiments used to determine the kinetics and systemic
activities of bioactive food peptides are not consistent with in vivo data because the doses used are
generally higher than those used in animal and human models, and the in vitro studies do not consider
digestive and metabolic processes that occur before peptides reach their target organs [179]. Thus, in
the last years, the necessity of in vivo models considering the ADMEs features of bioactive peptides at
physiologically relevant concentrations and times has been emphasized. However, although several
animal and human studies have provided evidence on the absorption of bioactive peptides (see
the recent review of Xu et al. [92]), the existing data on their stability, kinetics, and bioavailability
are still scarce. To design rationale and consistent animal and human studies, different aspects
need to be taken into account. Firstly, potential interactions between bioactive peptides and other
components of the food matrix may result in changes in the bioavailability and bioactivity of food
peptides [2,179]. Moreover, safety issues should be considered to avoid toxic effects at the doses
used [179]. The inter-individual variability due to age, sex, race, and/or diseases may also influence
the bioavailability of bioactive peptides [180,181]. Finally, the development of optimized techniques to
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identify and quantify bioactive peptides in plasma and organs at low concentrations will be required
to increase the sensibility of human studies.

2.3. Effects of Gastrointestinal Endogenous Protein-Derived Peptides

Gut endogenous proteins represent a larger and more constant supply of protein in the
gastrointestinal tract in comparison with dietary protein [182]. They are constituted by gastrointestinal
tract epithelial turnover, gut microflora proteins, and soluble secreted proteins such as mucins,
digestive enzymes, hormones, serum albumin, immunoglobulins, and lysozymes, among others [183].
Although these endogenous proteins have been exhaustively studied to estimate the dietary amino
acid requirements and digestibility, the data on their potential as a source of bioactive peptides are
still scarce. However, given the high amount of endogenous proteins present in the gastrointestinal
tract, a wide array of potentially bioactive peptides are expected to be liberated during the digestion
process. In a preliminary in silico gastrointestinal digestion prediction model, 26 gut endogenous
proteins were evaluated as a source of bioactive peptides [184]. The total number of bioactive peptides
predicted to be released ranged from 1 (secretin) to 39 (mucin-5AC), of which ACE-inhibitory peptides
were the most frequently observed. These results were confirmed by an in vitro digestion assay of
endogenous proteins, resulting in the release of a high number of antioxidant, ACE, and DPP-IV
inhibitory peptides [185,186]. Similarly to dietary bioactive peptides that have been demonstrated to
bind to specific receptors in the gut modulating gut motility, satiety, and the secretion of gastrointestinal
endogenous proteins, peptides released from these endogenous proteins might also have effects on gut
physiology and functions [187]. Therefore, little modifications of both dietary and endogenous sources
of bioactive peptides offers a great opportunity to modulate gut processes.

2.4. Strategies to Improve Bioavailability of Food Peptides

Once the mechanisms involved in the transport of bioactive peptides and the factors influencing
their absorption are known and understood, it is possible to design valuable strategies that improve
the bioavailability of peptides and maintain their potent in vivo bioactivities. These strategies aim
at achieving the following objectives: (i) reduction of the detrimental effects of food processing on
peptides bioactivities; (ii) promotion of the desiderable interactions between peptides and other
food matrix components, reducing the undesiderable ones; (iii) protection of bioactive peptides from
gastrointestinal conditions and digestive enzyme activity; (iv) control of the sustained peptides’ release
directed at their target organs; and (v) improvement of the transport of bioactive peptides across the
intestinal epithelium and target cells [188].

Following, the existing evidence on systems developed and currently applied to enhance the
absorption and bioavailability of food-derived bioactive peptides is summarized.

2.4.1. New Food Processing Techniques

Thermal processing techniques, including sterilization, pasteurization, drying, and evaporation,
have been generally used to ensure food preservation and microbial safety. However, the detrimental
effects that the temperature provokes on food components, specifically damaging the structure of
peptides and affecting their bioactivity, are well known. Thus, in the last few years, novel non-thermal
techniques have been designed and optimized to mitigate these negative effects and enhance the
bioaccesibility, bioavailability, and bioactivity of food-derived peptides [122]. Strategies such as
ultrahigh hydrostatic pressure, pulsed electric field, microwave, irradiation, and ultrasound have the
ability to inactivate microorganisms at near-room temperature, preserving the sensory, functional,
and nutritional quality of food products [189]. However, due of the current limited data on the
potential effects of non-thermal processing techniques on the bioavailability and bioactivity of food
peptides [190], further studies should be conducted.
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2.4.2. Modifications in Peptides Structure and Properties

In order to protect food-derived peptides from the action of digestive enzymes, improve
their intestinal permeability, or retain/potentiate their biological activity, different modifications
of the peptide’s structure have been suggested. Changes in N- and C-amino acid terminals by
acetylation/amidation have been demonstrated to protect the peptide from the action of amino- and
carboxipeptidases, respectively [191,192]. Cyclization is another particular biochemical feature that
increase peptide resistance to exopeptidases degradation, enhancing their stability and half-life in the
gastrointestinal environment [193]. In addition, modifications inside the peptide chain can result in
improvements of the biological activity of peptides. Thus, the phosphorylation of hydroxyl groups
of serine in caseinophosphopeptides prevent their hydrolysis by digestive enzymes, enhance their
absorption, and protect their mineral-binding capacity [194]. Tanzadehpanah et al. investigated
the effect of two peptides (KDEDTEEVP and KDEDTEEVH) differing in the last amino acid [195].
The presence of proline favored the ACE-inhibitory activity of peptide KDEDTEEVP, while the highest
antimicrobial and antioxidant activities were shown by the peptide KDEDTEEVH. Changes in the
structure and molecular mass of peptides-based drugs have also been suggested to have a positive
impact on their permeation across the intestinal mucosa [196,197]. However, data about the influence
of these modifications on the absorption capacity of food derived peptides are not still available.

2.4.3. Protease and Peptidase Inhibitors

The co-administration of peptides with protease/peptidase inhibitors can prevent peptides from
degradation in the gastrointestinal tract, thereby facilitating intestinal absorption [198–200]. Although
synthetic enzyme inhibitors have been widely used to protect peptide-based drugs, naturally occurring
inhibitors such as Bowman–Birk protease inhibitor (BBI) and Kunitz trypsin inhibitor are currently
preferred because of their lower side effects and compatibility with food derived peptides. Thus, BBI
has been demonstrated to protect soybean peptide lunasin from in vitro gastrointestinal digestion,
improving its absorption capacity and bioavailability [201]. However, major drawbacks have been
associated with the use of protease inhibitors. As a result of their own susceptibility to enzymatic
degradation in the gut, high doses need to be co-administered with peptides to exert protective effects.
The chronic and prolonged use of high doses of enzyme inhibitors may alter the metabolic pattern of
the gastrointestinal tract, leading to the inappropiate digestion of nutritive proteins, and they can also
provoke an endogenous regulatory mechanism stimulating the production of digestive peptidases [96].

2.4.4. Absorption Enhancers

Absorption enhancers are substances that allow bioactive compounds to permeate across the
intestinal epithelium into systemic circulation and reach the target organ to exert their biological
activity [202]. Several mechanisms of action have been described for absorption enhancers, including
the short-term disruption of the structural integrity of the intestinal barrier, the reduction of the
mucus viscosity, the aperture of TJs, and the increase of the membrane fluidity [96]. They should be
safe, pharmacologically and chemically inert, non-toxic, non-irritant, and non-allergenic [203,204].
However, similarly to protease inhibitors, the major limitation of the long-term use of penetration
enhancers is the potential damage to intestinal membranes, resulting in local inflammation [205].
Moreover, the administration of these permeation enhancers can potentially introduce undesiderable
substances into the bloodstream [188].

Among absorption enhancers that are potentially useful to improve the oral bioavailability of
proteins and peptides, the most commonly investigated are surfactants, chelating agents, bile salts,
cationic and anionic polymers, and fatty acids and their derivatives. Although permeation enhancers
have been widely used in the pharmacological field, improving the bioavailability of peptide-based
drugs such as insulin, interferon-gamma, and recombinant human growth hormone [206], their
application in the food industry is still very limited. However, some food-grade permeation enhancers,
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such as citric acid, fatty acids, and chitosan are recognized promising candidates to be applied in the
development of bioactive peptides-based functional foods and nutraceuticals.

2.4.5. Delivery Systems of Food Bioactive Peptides

As it has been previously described in this review, food bioactive peptides are labile compounds
that are sensitive to the light, oxygen, and temperature, capable of interacting with other components
when they are dispersed in the food matrix, and susceptible to the harsh conditions of the gastrointestinal
tract. Therefore, similarly to other nutrients and food bioactives, the incorporation of peptides into
carriers has been demonstrated to increase their stability and bioavailability [207]. These systems show
multiple mechanisms of action such as mucoadhesion, permeation enhancement across absorptive
epithelium and TJs, high total surface area, targeted delivery, and affinity to specific intestinal
cells [208]. Effective delivery systems must protect bioactive peptides from adverse conditions
(variations of pH and temperature, enzymatic activity, etc.) inherent to food processing, storage,
and gastrointestinal digestion. Moreover, these systems must be able to maintain peptides’ activity
and stability until their controlled and sustained release at the target site. Additionally, they should
not modify the physicochemical and organoleptic properties of the peptide-based food products.
Finally, because of the high demand by consumers of “clean-label” food products, carriers manufactures
are limited to the use of natural ingredients and biodegradable, generally recognized as safe (GRAS)
alternatives [209,210]. This has made it much more difficult to produce food-based delivery systems
with the required functional attributes. Therefore, the design of the most suitable delivery systems
requires extensive knowledge of the physicochemical and molecular attributes of bioactive peptides
(molecular dimmension, electrostatic effects, polarity, solubility, and surface activity) as well as the
environmental factors, ingredients interactions, and digestive conditions that can negatively alter
the structure and bioactivity of peptides [210,211]. The most recent delivery systems applied for the
encapsulation of food bioactive proteins and/or peptides and the effects on their stability, bioavailability,
and bioactivity are summarized in Table 3.

Among the factors determining the encapsulation efficiency, the peptide charge, the type and
purity of the carrier material, and the core-to-wall ratio have been extensively investigated [212].
The encapsulation of negatively charged intact proteins such as bovine seroalbumin has been reported
to result in lower encapsulation efficiency (34%) than that found for liposomes prepared with positively
charged lactoferrin (46%) [213]. Low encapsulation efficiency has been also described for negatively
charged caseinophosphopeptides [212]. The kind and purity of carrier material are also recognized
important factors that determine encapsulation efficiency, although information on the encapsulation
of protein hydrolyzates or peptides is very limited, making it difficult to draw final conclusions.
Lipids, polysaccharides, and protein-based carriers have been employed for the encapsulation of
food bioactive peptides. Among lipid-based systems, lipospheres are appropriate for encapsulating
hydrophobic peptides, while liposomes are compatible with a wide variety of bioactive peptides of
hydrophilic, hydrophobic, and amphiphilic nature [214]. This breadth of utility along with the lesser
content of high saturated fatty acid content has made liposomes gain popularity as a delivery system
of bioactive peptides (Table 3). However, several shortcomings have been associated with the use of
liposomes in the functional food industry such as their thermal instability, which limits their use in
processed food products, the cholesterol added to increase the stability of the system, and the risk of
lipid oxidation during the production, processing, and storage of the food products [215]. Therefore, in
order to develop the most suitable lipid-based systems to encapsulate bioactive peptides, both health
and product quality challenges must be considered and overcome.
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Table 3. Recent encapsulation systems developed for the delivery of food bioactive proteins/peptides.

Protein Source Hydrolyzate/Peptide Substrate Encapsulation Method Outcomes Reference

Lactoferrin Apo-, native- and holo-lactoferrin Alginate micro-gel particles by the
aerosol technique

Protection of encapsulated apo- and
native-lactoferrin from pepsin action and release in
the intestinal content

[216]

Lactoferrin Lactoferrin Commercial microencapsulated (Progel)
lactoferrin (InferrinTM)

Improvement of encapsulated lactoferrin
absorption in humans
Beneficial effects on the human microbiome and
immune system

[217]

Lactoferrin Lactoferrin Pectin-based colloidal delivery systems
with and without chitosan coating

Retention of antimicrobial activity of systems
Protection from pepsin digestion [218]

Lactoferrin Lactoferrin
Rapeseed phospholipid, stigmasterol,

and/or HPC liposomes by
thin-layer dispersion

High and moderate protection against gastric and
intestinal digestion, respectively [219]

Camel lactoferrin Lactoferrin Encapsulation into alginate nanocapsules Gradual release of lactoferrin at
gastrointestinal level [220]

Bovine seroalbumin Seroalbumin Encapsulation into liposomes of
phosphatidylcholine

Protection of encapsulated seroalbumin from
pepsin action and release of protein during
intestinal phase

[213]

Bovine seroalbumin Seroalbumin Encapsulation within xanthan gum/poly
N-vinyl imidazole hydrogel

Retention of the structural integrity of protein
Controlled release of seroalbumin [221]

Seroalbumin Seroalbumin Encapsulation into Arabic gum-based
and chitosan-based hydrogels

Slightly more efficient release of protein from the
Arabic gum-based hydrogel [222]

Azocasein Azocasein hydrolyzate with trypsin Encapsulation in water-in-oil-in-water
double emulsions

Slow down of the release of peptides from
encapsulated azocasein in the gastric phase and
promotion of the peptides release in the
intestinal phase

[223]

Casein Antioxidant casein hydrolyzate
by papain

Encapsulation into a
maltodextrin–Arabic gum blend

Reduction of bitterness of
encapsulated hydrolyzates
Retention of antioxidant activity

[224]

Whey protein
Antihypertensive <3kDa fraction from

hydrolyzates by proteinase from
Bacillus subtilis

Biopolymers based on the sodium
alginate matrix and filler materials

(gelatin, Arabic gum, collagen)

Controlled release of ACE-inhibitory peptides
from capsules subjected to simulated
gastrointestinal digestion

[225]
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Table 3. Cont.

Protein Source Hydrolyzate/Peptide Substrate Encapsulation Method Outcomes Reference

Whey protein Peptide fraction from hydrolyzates
by papain

Encapsulation into liposomes of soybean
lecithin by film hydration

Similar encapsulation efficiencies in liposomes,
despite differences in the molecular weights,
heterogeneities and surface hydrophobicities of
whey peptides

[226]

Whey protein Peptide fraction from hydrolyzates
by papain

Encapsulation into liposomes of
soybean lecithin

Lower encapsulation efficiency for anionic whey
peptides than for cationic peptides [227]

Sheep whey protein

Antioxidant and ACE-inhibitory activity
of peptide fractions from ovine whey

protein hydrolyzate with a
B. subtilis proteinase

Encapsulation into liposomes of
phosphatidylcholine Retention of bioactivities in encapsulated systems [228]

β-lactoglobulin ACE-inhibitory peptide RLSFNP Encapsulation into liposomes of
soybean lecithin

Significant sustained release and storage capability
Increase of intestinal absorption of
encapsulated peptide

[156]

Actinopyga lecanora
(stone fish) protein

Antihypertensive hydrolyzate
by bromelain

Chitosan nanoencapsulation by
ionotropic gelation

Higher in vivo antihypertensive efficacy in
encapsulated systems [229]

Actinopyga lecanora
(stone fish) protein

Antihypertensive peptides from
hydrolyzate with bromelain

Sodium TPP cross-linked chitosan
nanoencapsulation by ionotropic gelation

Higher in vivo antihypertensive efficacy in
encapsulated systems [230]

Onchorhynchus mykiss
(rainbow trout)

skin gelatin

Antioxidant peptide fraction from
hydrolyzate with Alcalase®

Encapsulation into
phosphatidylcholine liposomes

Sustained and prolonged peptide-release behavior
in a concentration-dependent manner [231]

Onchorhynchus mykiss
(rainbow trout)

skin gelatin

Antioxidant < 30 kDa peptide fraction
from hydrolyzate with Alcalase®

Encapsulation into chitosan-coated
nanoliposomes

Sustained in vitro release of peptides
Retention of antioxidant activity [232]

Dosidicus gigas (giant
squid) collagen

ACE-inhibitory hydrolyzate
with Alcalase®

Encapsulation into
phosphatidylcholine liposomes

Improvement of the activity of liposomes
Protection during simulated
gastrointestinal digestion

[233]

Sparus aurata (sea
bream) scales

Antioxidant and ACE-inhibitory <3kDa
peptide fraction from hydrolyzates by

Esperase® 8.0 l

Encapsulation into liposomes of soybean
lecithin by film hydration

Retention of the multifunctionality of hydrolyzates
during storage [234]

Asian sea bass
skin collagen Antioxidant collagen hydrolyzates

Encapsulation into soybean
phosphatidylcholine liposomes by

film hydration

Retention of stability and antioxidant activity
under simulated gastrointestinal digestion [235]
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Table 3. Cont.

Protein Source Hydrolyzate/Peptide Substrate Encapsulation Method Outcomes Reference

Cyprinus carpio (carp)
skin gelatin

Antioxidant hydrolyzates by Protamex®

enzymatic mixture
Encapsulation into

furcellaran-coated microcapsules
Decrease in the in vitro and in vivo antioxidant
activity of encapsulated hydrolyzates [236]

Egg white protein Egg white derived peptides from
hydrolyzate with Alcalase® Chitosan–TPP nanoencapsulation Optimized conditions for peptides entrapment

with controlled properties [237]

Soybean 11S globulin DPP-IV inhibitory peptide IAVPTGVA Encapsulation into ionic
self-complementary peptide hydrogels

Increase of stability under digestion conditions
and bioavailability [238]

Flaxseed protein Antioxidant hydrolyzates (alcalase,
pancreatin, trypsin, pepsin)

Maltodextrin encapsulation
by spray-drying

Retention of the antioxidant activity of
alcalase hydrolyzates [239]

Flaxseed protein Antioxidant hydrolyzates Alcalase®,
pancreatin, trypsin)

Encapsulation into liposomes by
thin-film hydration

High encapsulation efficiency
Appropriate physicochemical, functional, and
stability properties

[240]

Flaxseed protein Antioxidant peptide fractions from
hydrolyzates by trypsin

Maltodextrin microencapsulation by
spray drying

Lower hygroscopicity, higher production yield,
and better retention of antioxidant activity by
spray-dried peptides

[241]

Phaseolus lunatus protein

Antidiabetic and antihypertensive
peptides from Phaseolus lunatus

hydrolyzate with Alcalase®

and Flavourzyme®

Maltodextrin/Arabic gum
microencapsulation by spray drying

Retention of the bioactivities after simulated
gastrointestinal digestion [242]

Peanut protein
ACE-inhibitory peptide fraction from

peanut protein hydrolyzate with B.
subtilis proteinases and pepsin

Nanoliposome prepared by high
pressure microfluidization

Increase of bioavailability and ACE-inhibitory
activity of encapsulated peptides [243]

Peanut protein
ACE-inhibitory peanut meal

hydrolyzates with Protamex®

and Neutrase®
Encapsulation in water-in-oil-in-water

multivesicular liposomes

Controlled release of bioactive peptides
from liposomes
Outstanding thermal stability of liposomes
Retention of ACE inhibitory activity

[244]

Citrus sinensis (orange)
seed protein

Antioxidant hydrolyzates by Alcalase®

and pepsin
Encapsulation into soybean and chitosan

liposomes by film hydration
Protection, control of release and maintaining of
the antioxidant activity of peptides [245]

Avena sativa (oat)
globulin

DPP-IV inhibitory hydrolyzates
by trypsin

Solid lipid (triglycerides, fatty acids,
steroids, and waxes) nanoparticles

Retention of stability and bioactivity of peptides
under simulated gastrointestinal conditions [246]

Brewers’ spent grain
peptides ACE-inhibitory peptides

Microencapsulation with locust bean
gum, Pyropia columbina phycocolloids or

their mixtures

Higher ACE-inhibitory activity of
encapsulated peptides [247]

ACE: Angiotensin-converting enzyme; DPP-IV: Dipeptidyl peptidase IV; HPC: hydrogenated phosphatidylcholine; TPP: tripolyphosphate.
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The structural stability, abundance in nature, and low cost have made polysaccharides ideal
delivery agents for food bioactive compounds. Polysaccharides derived from animals, plants,
and microorganisms, such as Arabic gum, chitosan, cyclodextrin, and maltodextrin have been
commonly used for food proteins and peptides encapsulation (Table 3). Chitosan is a natural
non-toxic, biocompatible, and biodegradable polymer [248]. As a result of its permeation-enhancing
effects, chitosan-based systems have been recognized as among the most promising matrices for
bioactive peptide entrapment and delivery. Thus, these systems have been recently proven to increase
the in vivo antihypertensive efficacy of stone fish protein hydrolyzates [229,230] and to retain the
antioxidant activity of rainbow trout protein [232] and seed protein [245] hydrolyzates. Additionally,
tripolyphosphate (TPP) is the most accepted crosslinker to prepare chitosan hydrogels through ionic
crosslinking [249,250]. Consequently, combinations of chitosan with TPP have attracted the interest
because of their properties such as biocompatibility and mucoadhesiveness, and their soft preparation
procedure [251]. Thus, chitosan–TPP combinations under optimized conditions have been described as
good peptides entrapment systems with controlled properties [237]. Maltodextrin is other commonly
used polysaccharide-based carrier, alone or in combination with Arabic gum to retain the biological
activity of casein [252], flaxseed protein [239,241], and Phaseolus lunatus protein [242] hydrolyzates.

Despite the popularity of protein-based carriers for delivering other food bioactive compounds
such as flavonoids, vitamins, and β-carotene, their use in bioactive peptide encapsulation is limited.
The main reason is the instability caused by the structural similarity of core and wall materials [252].
Soybean and whey protein isolates have become the main alternative to encapsulate bioactive peptides
from casein and whey proteins [253,254], whereas actylated and high-pressure treated rapesed protein
isolate has been used to encapsulate peptides from the same vegetal material [255].

The purification of carrier materials provides an additional important advantage to increase the
encapsulation efficiency. However, this does not seem to be economically possible in the functional
food industry because of the extra cost of obtaining and purifying processes of the wall material [256].
Thus, further studies are needed to identify and adapt processes increasing the encapsulation efficiency
for bioactive peptides without increasing the costs. Generally, encapsulation involves the use of higher
amounts of wall materials than the active core compounds. The core-to-wall ratio influences the
encapsulation efficiency; thus, it decreases when the core concentration increases [257]. However,
controversial results from studies encapsulating different protein hydrolyzates/peptides indicate that
in addition to the influence exerted by the core-to-wall ratio, the nature and molecular composition of
the encapsulated material, and the type of the wall material, another factor to take into account is the
encapsulation technique [208]. The most relevant techniques applied for the encapsulation of food
protein hydrolyzates and peptides include film hydration, spray drying, coacervation, and ionotropic
gelation (Table 3).

Film hydration is a simple and effective encapsulation procedure where phospholipids
self-assemble by heating, agitation, and sonication, thereby trapping the aqueous core containing
bioactive peptides. This procedure has been recently used to retain the stability, bioavailability, and
bioactivity of peptide fractions from fish [234,235] and vegetal proteins [240,241] under simulated
gastrointestinal conditions. In spite of the popularity of this technique, the major limitation is the
uncontrolled assembly mechanism resulting in low and variable reproducibility and encapsulation
efficiency. Moreover, organic solvents require to be removed prior to the use of encapsulated products
in functional foods, also affecting the efficiency and increasing the costs of the process.

Spray drying is a procedure involving the formation of droplets and spraying at high temperature
that results in dried particles. This technique is commonly used to achieve encapsulation by using
protein and polysaccharide-based carriers because of its low cost and simplicity. Although the
biopeptides microencapsulation using spray-drying is the oldest technique used to protect them against
deterioration [258], in the last few years, this procedure has applied to encapsulate bioactive peptides
released from vegetal proteins by enzymatic hydrolysis [236,238].
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Coacervation and ionotropic gelation are also efficient delivery systems based on electrostatic
interactions of the encapsulation materials. As shown in Table 3, the nanoencapsulation of peptides
from fish protein by ionotropic gelation has been recently reported to increase the bioavailability
of encapsulated ACE-inhibitory peptides generated from stone fish proteins. Indeed, after being
administrated to spontaneoulsy hypertensive rats, higher antihypertensive activity was determined
for encapsulated peptides in comparison with non-encapsulated peptides [229,230].

In the last few years, different delivery systems (nanoliposomes from soybean lecithin, chitosan
nanoparticles, microspheres, and microgels generated from alginate and chitosan) have been designed
and developed, becoming promising bioactive peptides carrier candidates [211,226]. To select the
most appropriate systems to encapsulate bioactive peptides, aspects such as cost, ease of fabrication,
effects on product quality, stability, bioavailability and bioactivity, and organoleptic attributes should
be considered. Moreover, further research on the in vivo physiological repercusion of these delivery
systems is needed.

3. Conclusions

It has been recognized worldwide that food-derived bioactive peptides are valuable ingredients
of functional foods and/or nutraceuticals to promote health and reduce the risk of chronic diseases.
However, although oral administration is the preferred route for bioactive peptides, the translation
of in vitro activity to in vivo effects when peptides are orally ingested is not always realistic.
These discrepancies are due to the molecular characteristics of peptides as well as to both dietary and
non-dietary factors. Molecular mass, amino acid sequence, and additional structure modifications are
determinant properties for the resistance of peptides to digestive enzymes and the preferred transport
route to cross the intestinal barrier. Among dietary factors, the interactions between peptides and
other compounds of the food matrix are considered relevant, since these components may reversibly
or irreversibly react with bioactive peptides, modulating their digestibility and/or altering the routes
of absorption of peptides, influencing their bioavailability. However, to date, the existing evidence
on the effects of the food matrix is still limited. In addition, the behavior of peptides during their
transit through the gastrointestinal tract depends on health and pathological conditions that can
alter the digestive and absorptive gut environment. Thus, for a better understanding of the in vivo
physiological effects of food bioactive peptides, extensive research studies on their gastrointestinal
stability and transport are needed. Combined in vitro studies simulating gastrointestinal digestion
conditions and cell culture mimicking the intestinal absorptive environment are being optimized,
becoming an interesting and valuable approach to confirm the beneficial role of peptides on health at
doses that are physiologically relevant. Due to the low bioavailability of most food peptides, efforts are
being focused on the design of new strategies that increase their resistance to the action of digestive
enzymes during their transit through the gastrointestinal tract and allow the controlled release of
intact and active peptides in the target organs where they exert their biological activity. Among these
strategies, delivery systems with natural, safe, and biocompatible materials are becoming the most
promising; thus, further research should be needed to optimize the encapsulation conditions enhancing
the digestibility and bioavailability of food bioactive peptides.
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