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Abstract

Keratin are among the most abundant proteins in epithelial cells. Functions of the keratin
network in cells are shaped by their dynamical organization. Using a collection of experi-
mentally-driven mathematical models, different hypotheses for the turnover and transport of
the keratin material in epithelial cells are tested. The interplay between turnover and trans-
port and their effects on the keratin organization in cells are hence investigated by combin-
ing mathematical modeling and experimental data. Amongst the collection of mathematical
models considered, a best model strongly supported by experimental data is identified. Fun-
damental to this approach is the fact that optimal parameter values associated with the best
fit for each model are established. The best candidate among the best fits is characterized
by the disassembly of the assembled keratin material in the perinuclear region and an active
transport of the assembled keratin. Our study shows that an active transport of the assem-
bled keratin is required to explain the experimentally observed keratin organization.

Introduction

The epithelial cytoskeleton is characterized by abundant keratin intermediate filaments (Fig 1).
The cytoplasmic keratin filament network is responsible for the mechanical stress resistance of
epithelial cells and contributes significantly to epithelial stiffness [1, 2]. The importance of ker-
atins for epithelial tissue stability is reflected by a large group of genetic skin blistering diseases
that are caused by point mutations in keratin-encoding genes [3, 4]. The mechanical functions
not only rely on static resilience but also necessitate a high degree of plasticity, for example in
migrating cells during wound healing [5]. The current view is that keratins act as general stress
absorbers protecting epithelial cells not only against mechanical insults but also against irradia-
tion or osmotic and microbial challenges. Thus, keratins are involved in heat shock response,
apoptosis and organelle homeostasis [6]. Furthermore, functions affecting processes such as
proliferation, differentiation and inflammation are also dependent on keratins (see recent re-
views in [4, 7]).
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All of these functions are tightly coupled to the keratin network dynamics (see S1 Video).
Examination of cultured epithelial cells producing fluorescent keratins has provided evidence
for the different mechanisms that are involved in the continuous renewal and reshaping of the
keratin system [9]. On the basis of these observations, a biological model of the keratin cycle
has been proposed by Leube and Windoffer et al. in [10, 11]. This biological model takes into
account the assembly/disassembly and transport of keratins. In this study, it was proposed that
assembly and disassembly occur in topologically defined regions with assembly taking place
predominantly in the cell periphery while disassembly takes place primarily in the perinuclear
region. The biological model further postulates active transport of insoluble assembly stages of
keratins toward the nucleus and rapid diffusion of soluble subunits throughout the cytoplasm.
To the best of our knowledge, how these different processes are coupled and regulated is not
yet known.

In a previous work we developed methods to examine and quantify the keratin transport
and turnover in epithelial cells [12]; the spatial distribution of the assembled keratin material
in epithelial cells was available at 24 hours and 48 hours after seeding. The current effort is to
use the available qualitative and quantitative observations to derive, from first principles, ex-
perimentally-driven mathematical models that could yield hypothetical predictions testable in
laboratories. Our approach is unique, it translates experimental observations and data into a se-
ries of alternative plausible mathematical models or scenarios to further advance our under-
standing of the critical parameters in keratin cycling. Fundamental to this approach is the fact
that optimal parameter values for each scenario are established and out of this set, a single sce-
nario is identified that best fits experimental observations and data.

Hence, a collection of mathematical models resulting from different assumptions of the ker-
atin transport, assembly and disassembly is designed to investigate the effects of the interplay
between turnover and transport on the keratin organization. The collection is built as a well-
designed scientific experiment by considering control and knockout of processes. To highlight
and confirm the importance or existence of a given process, scenarios in which the process is
absent are also considered and tested. Model responses are then compared to experimental ob-
servations and data published in [12] to identify optimal parameter values that yield the best fit
of each of the models to the experimental data. Finally, we identify, using an information-theo-
retic approach, the best scenario or model given the data and candidate models under study.

By employing this reductionist phenomenological approach and systematic evaluation of
the different scenarios we not only confirm the proposed transport features of the keratin cycle
and the restricted disassembly in the perinuclear region but also find that the assembly
throughout the cytoplasm fit best to the experimental data. Furthermore, our particular ap-
proach allows us to demonstrate that the inward motion experimentally observed is not an
emergent behavior but is an inherent property of the keratin material organization and it is due
to an active transport thereby confirming recent experimental observations [10, 11].

Methods
Experimental data

In Moch et al. [12], the spatial distribution of the assembled keratin material in epithelial cells
is measured for 15 minutes at 24 hours and 48 hours after seeding. The shape of each epithelial
cell is normalized to fit a circle of fixed radius [13]. The average normalized spatial distribution
is calculated over 50 cells at 24 hours (resp. 84 cells at 48 hours). The average speed and direc-
tion of the motion of the assembled keratin material are measured and determined at every lo-
cation within the normalized cell. Finally, at every spatial location, the net assembly/
disassembly is calculated. Hence, regions with preferential assembly and disassembly are
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Fig 1. Keratin network. Image taken from a time-lapse fluorescence recording of a single hepatocellular carcinoma-derived PLC cell of clone PK18-5 [8]
stably expressing fluorescent fusion protein HK18-YFP consisting of human keratin 18 and enhanced yellow fluorescent protein. Bar 10 um.

doi:10.1371/journal.pone.0121090.g001

identified. We will refer to regions of assembly as Sources and regions of disassembly as Sinks.
More details on the experimental data can be found in [12, 14].

In the present work, cells are represented as one-dimensional cross-section domains. A di-
ameter of the normalized cell is used as the spatial domain which is centered at the center of
the cell and is of length 2L with L = 22.5um. Moch et al. recorded the fluorescence intensity of
fluorescent protein-labeled keratins in cells. Assuming a proportionality between fluorescences
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Fig 2. Experimental data adapted from [12]. 2.1: The spatial distribution of the assembled keratin material. The mean concentration of the keratin material
used in the conversion of fluorescence intensities to concentrations is estimated to be equal to 520uM in [15]. Circles represent raw experimental data;
curves are fits of experimental data. Details on P(x) and f;,4(x) can be found in Appendix 4. 2.2: The speed of the assembled keratin material at 24 hours. 2.3:
Regions of assembly and disassembly denoted Sources and Sinks respectively. In all figures, the cell is represented by a one-dimensional cross-section
domain centered at the center of the cell; plasma membrane positions are at £L = £22.5um, the nuclear envelope is located at £7.5um and the center of the
cell is located at zero.

doi:10.1371/journal.pone.0121090.9002

and concentrations, and knowing from [15] the mean concentration for keratin in keratino-
cytes, we convert fluorescence intensities to concentrations (¢M) as follows:

Concentration = Fluorescence x (Mean Concentration / Mean Fluorescence). In Fig 2, the av-
erage spatial distribution, the speed of the assembled keratin, regions of assembly (Sources)
and regions of disassembly (Sinks) on the one-dimensional cross-section domain

are displayed.

Mathematical models

To study its organization in cells, the keratin material is categorized into a soluble pool com-
posed of the soluble keratin, and an insoluble pool representing the assembled keratin materi-
al. The state variables used to represent the soluble and insoluble pools are:

« S(x, t) denotes the concentration of the soluble keratin material at position x at time ¢,
o I(x, t) denotes the concentration of the assembled keratin material at position x at time ¢.

From here onwards, the one-dimensional spatial domain representing the cell is defined by
Q={x:—-L<x<L}

where x = 0 is the center of the cell and x = +L are the boundary positions of the plasma mem-
brane (Table 1). The general framework of the model, derived from first principles based on ex-
perimental observations, takes into account the turnover and transport for both soluble and
insoluble pools and can be stated verbally as:

Rate of change of § = Transport of S — Assembly of S in I 4 Disassembly of I in S,
Rate of change of I = Transport of I + Assembly of S in I — Disassembly of I in S-
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Table 1. Model parameters.

Parameter

L
fo(x)
Ds
D,

u

v(x)
ux)

kass

kass (X)

kdis
Kais(X)

ki

Definition Value (Unit) Reference
Half-length of spatial domain Q 22.5 (um) [12]
Initial distribution of assembled keratin in cells at 24 hours Eq (17) (uM) [12]
Diffusion coefficient of soluble pool 0.88+0.08 (Um?/s) [9]
Diffusion coefficient of insoluble pool <1072 Dg (um?/s)
Speed of insoluble pool 0.002 - 0.008 (um/s) [12, 16—
18]

Almost constant speed of active transport of insoluble pool Eq (12) (um/s) [12, 18]
Variable speed of active transport of insoluble pool Eq (13) (um/s) [12]
Rate of assembly of soluble pool TBD (linear model: s, nonlinear model: uM.s™")
Localized rate of assembly of soluble pool Eq (14) with k,ss TBD (linear model: s~!, nonlinear model:

uM.s™)
Concentration for half-saturation of assembly rate (nonlinear TBD (uM)
model)
Rate of disassembly of insoluble pool into soluble pool TBD (linear model: s~', nonlinear model: uM.s™")
Localized rate of disassembly of insoluble into soluble pool Eq (15) or (16) with kg TBD (linear model: s=!, nonlinear

model: uM.s™")
Concentration for half-saturation for disassembly rate TBD (uM)

(nonlinear model)

The model parameters used in all the scenarios. (TBD = To Be Determined by fitting model solutions to experimental data).

doi:10.1371/journal.pone.0121090.t001

Hence, the generalized model has the following expression; stated mathematically as:

oS

= = T(S) — A(S) + D(I),

ot (1)
oI

5= T +AES) - D),

where Tg(-) (resp. Ty(-)) is the functional term describing the transport of the soluble pool
(resp. insoluble pool). For example, T¢(S) = — 2 Ji(x, t) (resp. T,(I) = — 2], (x, t)) where J5(x,
t) (resp. Ji(x, t)) describes the flux of the soluble pool (resp. insoluble pool) at position x from
the left (x = —L) to the right (x = L) at time t. The function .A(S) (resp. D(I)) is the assembly
term (resp. disassembly term). To investigate the interplay between turnover and transport on
the organization of the keratin material several assumptions are proposed for each of the func-
tionals T, Tp, A and D.

Modes of transport. Molecules of the soluble pool are assumed to be subjected to the
Brownian motion; the soluble pool is diffusible with a diffusion coefficient Ds. The functional
term of transport for the soluble pool is given by

oS
T5(8):=Ds 7 (2)

Passive transport for both pools is assumed in all models. Diffusion is assumed for the insoluble
pool to describe the wiggling motion of the keratin filaments in cells. The diffusion coefficient
of the insoluble pool is set to be much smaller than that of the soluble pool: 0 < D; < 107> Ds.
It is assumed that only the insoluble pool can be driven by an active transport. Experimental
evidence show that the assembled intermediate filament proteins in the form of filament
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precursors, squiggles or filaments move along microtubules and actin filaments by interacting
via molecular motors [11, 18-21]. An active transport (also called the inward drift) of the insol-
uble pool from the plasma membrane to the center of the cell is hypothesized based on reports
of the motion of the assembled keratin material mostly towards the nucleus in epithelial cells
[11, 17, 18]. The speed of the active transport is set to be almost constant v(x) everywhere or
variable u(x) everywhere (Fig 3). Based on experimental observations, both speeds are assumed
to decay around the nucleus towards the center of the cell. The variable speed u(x) is estimated
using the profile of the average speeds measured in [12] (Fig 2.2). The magnitude of the almost
constant speed v(x) is set to be the average value of the variable speed over the cell. Details on
the derivation of the estimates of v(x) and u(x) are given in Appendix 1. Hence, the functional
term for the transport of the insoluble pool can take three different forms:

oI
et no drift,
=) or .
T,(I) =19 D, = + sgn(x)v(x) —, inward drift with almost constant speed ,  (3)

T Ox2 Ox’
2

I I
D, 2 + sgn(x)u(x) %, inward drift with variable speed ,

where v(x) is given in (12) and u(x) in (13); the two functions representing the speeds of the ac-
tive transport are graphed in Fig 3. The function sgn(x) defined by

1 x>0,
sgn(x) =

-1 x<0,

describes the inward direction of the active transport at any location of the spatial domain Q
centered at zero.

Combining the modes of transport for the soluble and insoluble pools, three types of trans-
port are considered for the keratin material in the epithelial cell.

Expressions of assembly / disassembly reactions. In the present work, the turnover is
composed of two reactions: the assembly / aggregation / polymerization of units of the soluble
pool to grow the insoluble pool and the disassembly / solubilization / depolymerization of the
insoluble pool into units of soluble pool. It is assumed that the assembly process is a function
of the soluble pool only, whereas the disassembly process is a function of the insoluble pool
only. The simplest case is to consider a linear model that assumes linear exchanges between the
two pools. The linear model can be stated as follows:

£(AS) = D)) = = (ko ()S = ke ()D), (4)

where k,¢(-) (resp. kg;s(+)) is the rate of assembly of the soluble pool (resp. disassembly of the
insoluble pool). Both rates can either be constant, k, and k;,, or space-dependent k,,(x) and
kais(x).

In the second case, the turnover is assumed to depend on the enzymatic activities [22]. For
instance, the solubilization of the insoluble pool into soluble proteins (disassembly) is triggered
by a kinase activity and the assembly of insoluble pool is induced by the dephosphorylation of
soluble proteins by a phosphatase [23]. The turnover term is assumed to be of the Michaelis-
Menten form stated as:

+ (A(S) - D(z)) =+ (’;Si)ss - I;{dli)f > (5)
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where k,4(-) (resp. ky;s(+)) is the maximum rate of assembly of the soluble pool (resp. disassem-
bly of insoluble pool) and kg (resp. kj) is the concentration at which the assembly (resp. disas-
sembly) rate is half of k() (resp. kgis(-)). When Michealis-Menten dynamics are used, the
model is called nonlinear. Both rates can either be constant or space-dependent describing the
intracellular localization of the post-translational modification enzymes.

Profiles of assembly and disassembly rates. As previously mentioned, the assembly and
disassembly rates, k() and kz;(-), used in the linear and nonlinear models can be constant or
space-dependent functions. The profile (shape) of the space-dependent function k,(x) is de-
rived from the spatial profile of regions of assembly (Sources) measured in [12] (Fig 2.3). De-
tails of the derivation of the Sources k,(x) are given in Appendix 2.

Two types of shapes for k;(x) are assumed to represent two types of localization of the dis-
assembly in cells. First, similarly to the assembly rate, the profile of the disassembly rate is de-
duced from the experimental data published in [12] (Fig 2.3); the spatial profile of the
disassembly regions, Sinks, is used to build the shape of the first space-dependent disassembly
rate. This disassembly rate is called of type Sinks. Second, it is assumed that disassembly is lo-
calized around the nucleus; a mollified step-function is designed to describe this assumption.
This second space-dependent disassembly rate is called of type Mollify. Details on the deriva-
tion of the two k;,(x) rates are given in Appendix 3.

3.5

P " _'V(X) o'- .
== == u(x) :' .

w
'

™
o N o,

Speed (1L m /s)

o
(3

Location (i m)

Fig 3. Profiles of the active transport speeds u(x) and v(x) for the insoluble pool both of which are
derived from the experimental measurements in [12]. The function u(x) is derived from the profile of
speeds and v(x) is approximated as the average value of these speeds. Details on the derivation of u(x) and v
(x) are given in Appendix 1.

doi:10.1371/journal.pone.0121090.g003
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Fig 4. Possible profiles for the assembly and disassembly rates. 4.1: k..; = 1072 s~" when the linear model is used (resp. uM.s~" when the nonlinear
model is used) and k.ss(x) is computed using (14). 4.2: kyis = 107 57" when the linear model is used (resp. uM.s~! when the nonlinear model is used) and
kqis(x) are computed using (15) for Sinks and (16) for Mollify, respectively. Details on the derivation of k,ss(X) and kg;s(x) rates are given in Appendix 2 and
Appendix 3, respectively. Parameter values in (14), (15) and (16) are chosen in such a way that their profiles give the same total amount of assembly /

disassembly over the spatial domain Q.

doi:10.1371/journal.pone.0121090.g004

For the sake of illustration, the two profiles of k,.(-) and the three profiles of k;,(-) are
shown in Fig 4.

Accounting for the three modes of transport and considering the turnover described by ei-
ther linear and nonlinear models with 6 possible combinations of the profiles for the assembly
and disassembly rates, a collection of 36 scenarios (models) is defined; each scenario follows
the general form stated by system (1). Details of the 36 scenarios are given in Fig 5. All scenari-
os are considered with the same initial conditions given by

0-05
S<x? to) = mﬁ)(x)’ for all x € Q, (6)
I(x,t,) = fy(x),

where fy(x), defined in (17), is chosen to be a mollified version of the profile of the assembled
keratin at time f, = 24 hours averaged over all the normalized cells (Fig 6). Details of the deriva-
tion of fo(x) are given in Appendix 4. Initial conditions describe the observed fact that the solu-
ble pool (resp. insoluble pool) represents 5% (resp. 95%) of the total keratin material [24]. All
scenarios are considered with boundary conditions describing the impermeability of the plas-
ma membrane for the keratin material

J(£L,t) =0 =J/(£L,1),  t =4, (7)

where Js is the flux of the soluble pool and J; is the flux of the insoluble pool as defined below

system (1). The model parameters used in all the scenarios are listed in Table 1.

Comparison between mathematical models and experimental data

Parameter estimation. Let p denote the set of all the model parameters for each scenario.
To estimate the optimal set of parameter values p for each scenario, the solution of each
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Fig 5. The 36 scenarios to be considered. Top: Number in parentheses is the scenario index i. Bottom: The numerical value 1 denotes that the process of

interest is in Scenario /.

doi:10.1371/journal.pone.0121090.9005
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Fig 6. Initial profile of the insoluble pool fy(x) defined in (17).
doi:10.1371/journal.pone.0121090.g006

scenario is compared to experimental data using the following objective function (an estima-
tion of the distance between the experimental data and the model response):

N,

X

W(p) = D I s P) = Frna ()]s (8)

i=1

where t4,,4 is equal to 48 hours. The experimental data at t4,,4 is represented by f4,4(x) and the
model solution at ¢, of the considered scenario evaluated with the parameter values p is
I(x, tfnan p)- To obtain the model solution for each scenario, the corresponding system is nu-
merically integrated from #, = 24 hours to 50 hours using the MATLAB solver for partial differ-
ential equations, pdepe [25]. Solutions are computed at N, locations of the spatial domain Q
with N, = 200. To carry out computations, the raw data in which the concentration of the as-
sembled keratin material is known at 623 spatial locations is approximated by f5,q(x) defined
in Appendix 4 by (18); fana(x) is the fit of the average profile of the assembled keratin measured
after 48 hours on the normalized cells (see the black profile in Fig 2.1).

The estimation of the parameter values for the 36 scenarios, i.e. the determination of param-
eter values p that provide the best fit to the experimental data, is done by minimizing the objec-
tive function, ¥ (p), such that

¥(p) = min ¥(p) - (9)

Minimization of the objective function is done by a parallelizable genetic algorithm described
in [26].

In this study, only constant parameter values of the turnover reactions are optimized. When
the linear model is considered, for each scenario, two parameters k,, and k ;; are estimated.
When the nonlinear model is considered, four parameters, k,, ks, k4 and kj, are estimated for
each scenario. In all scenarios, the diffusion coefficients for the soluble and insoluble pools as
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well as the active transport speeds v(x) and u(x) are considered as fixed/known parameters or
functions and are set to values measured in previous studies [9, 11, 12] (Table 1). The diffusion
coefficients are taken as Dg = 0.88ym2/s and D; = 9.5 x 10~* Dy, and the “constant speed” u in
v(x) as defined in (12) is set to be u = 0.0025um/s [9, 18].

Model selection. In order to select the best model out of the 36 scenarios, we use an infor-
mation-theoretic approach. Specifically, we employ the Akaike information criterion (AIC)
[27, 28] to select from all the scenarios, the best model that best captures experimental observa-
tions given the collection of models considered in this study. Since we use the Least Squares
principle to estimate the values of the constant free parameters (2 free parameters for linear
models and 4 for nonlinear models), the Akaike criterion for Scenario i, AIC;, takes the follow-
ing form:

AIC, = N, In (62) + 2K, (10)

where 62 = \PI‘V—(") is the estimate of the variance with W,(p) the residual (9) estimated for Scenar-

io i and N, the size of the sample (N, = 200). K is the number of estimated parameters; i.e. the
number of free parameters in Scenario i plus one for the estimate of the variance (K = 3 for lin-
ear model and K = 5 for nonlinear models). The scenario with the lowest AIC value is the best
model. The AIC selects a model with the least number of parameters that best fits experimental
observations. To rank and compare scenarios the Akaike weights w; are calculated and these
are known as the weights of evidence in favor of Scenario i being the actual best model given
the experimental data and the collection of scenarios considered. The Akaike weights are ex-
pressed as follows:

w— —CPEL2A) A = AIC,—min AIC (11)

2 exp(=1/24,) ' ’

where R represents the number of scenarios considered (R = 36) and A, being the difference in
AIC with respect to the AIC of the preferred scenario min; AIC; = AIC,,,;,,. It must be noted
that the Akaike weights w; sum to 1 and are interpreted as the probability that Scenario i is the

best model given the experimental data and the collection of scenarios considered. The models,
ranked from the largest to the smallest Akaike weights, whose Akaike weights sum to 0.95 form
the confidence set of the models that captures, more faithfully, experimental data. The ratio of
the Akaike weights w;/w; (also known as the evidence ratio) is used to compare model pairs.
Furthermore, the relative importance of a process can be estimated by summing the Akaike
weights of all scenarios involving the process of interest. We will denote by w the sum of the
Akaike weights of the scenarios including the process of type *. This sum can be interpreted as
the probability that the process of type * is the best type of the process given the experimental
data and the collection of models considered.

Results
Best scenario

We employ a two-step process in order to find the best scenario. First, the best fit for each sce-
nario is found by minimizing the objective function (9). Secondly, the Akaike information cri-
terion (10) is used to select the best of the best fits out of all the scenarios.
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Fig 7. Best fit for each of the 36 scenarios. Red curve is the response /,(x, t,,,,, p) at 48 hours of Scenario i. Black circles are data at 48 hours as in Fig 2.1.

doi:10.1371/journal.pone.0121090.g007

The best fit for each of the 36 scenarios is presented in Fig 7 in the following order:
1. Row-wise:
« Scenarios in the first three rows (1 to 3) have linear terms for turnover.

o Scenarios in the last three rows (4 to 6) have Michaelis-Menten type turnover terms.
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o Rows 1 and 4 are scenarios with constant disassembly rate.
o Rows 2 and 5 are scenarios with localized disassembly rate of type Sinks.
« Rows 3 and 6 have scenarios with localized disassembly rate of type Mollify.
2. Column-wise:
o The first two columns (1 and 2) include scenarios with diffusion alone without drift.
o Columns 3 and 4 display scenarios with drift with an almost constant speed.
o The last 2 columns (5 and 6) are scenarios with drift with variable speed.
+ Odd columns (1, 3 and 5) are scenarios with constant assembly rate.
« Even columns (2, 4 and 6) are scenarios with localized assembly rate of type Sources.

According to the AIC; values, the best model, the best of the best fits, is identified as being
Scenario 21, AIC,; = min; AIC; (3" column of Table 2). Since Scenario 21’s Akaike weight is
over 0.95 (5™ column of Table 2), it is the only model out of the set considered that satisfies the
confidence criterion; Scenario 21 matches very well experimental observations and data. The
second best model is Scenario 31. The evidence ratio of scenarios 21 and 31 w,,/ws3, is equal to
36.67 x 10% i.e. Scenario 21 is about 36 millions times more likely than Scenario 31 to be the
best model given the experimental data and the collection of models considered. We consider
this to be strong evidence in support of Scenario 21.

Scenario 21 is characterized by an inward drift with an almost constant speed for the insolu-
ble pool, turnover terms of Michaelis-Menten type, a constant assembly rate and a disassembly
rate of type Mollify. The profiles of assembly and disassembly rates are displayed in Fig 8. For
this scenario, the estimated optimal parameter values are k¢ = 9.3819uM/s, ks = 570.73uM,
kais = 0.9998uM/s leading to k,,,,, = 1.976pM/s in (16) and k; = 976.07uM. Based on the Mi-
chaelis-Menten constants for the assembly and disassembly processes, since kg < kj, an enzyme
that would be involved in the solubilization of the assembled keratin material requires a higher
substrate concentration to achieve a given reaction speed than an enzyme that would be in-
volved in the assembly of soluble proteins. Snapshots of the soluble and insoluble pool profiles
taken every 30 minutes from ¢, to t7,,; are displayed in Fig 8. After only 2 hours, the solution
stabilizes to its final profile. Scenario 21 preserves the repartition of the keratin material be-
tween the soluble and insoluble pools over time, about 95% of the keratin material is assembled
to form the insoluble pool. Finally, the characteristic time scales of the passive transport
(Tpiffusion)> active transport (7p,ip) and turnover (Tgeacrion) for Scenario 21 are estimated by
using an adimensionalization of system (1) corresponding to Scenario 21. Details on calcula-
tions are given in Appendix 5. The time scales of the processes included in Scenario 21 are or-
dered as follows:

Theaction(10°5) < Tls)zﬂusion (10%) < TDrgft(104S) < Tlumsion(lo(js)'
Using Peclet’s number (Pe = Tpigsion/ Torife > 1), it is found that the transport of the assembled
keratin material by drift is faster than by diffusion, the dominant mode of transport is the ac-
tive transport. Using Damkohler number (Da = tp,i/ Treaction > 1), it is found that the active
transport time scale is greater than the reactive time scale; overall, Scenario 21 is controlled by
active transport.

The complete ranking based on the Akaike weights w; of all the scenarios is given in the 6™
column of Table 2. It is worthwhile remarking that differences in AIC;, A;, could have been
used for ranking purposes; in this case, we would have obtained the same ranking. The
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Table 2. Results of the model selection for the best fit of each of the 36 scenarios.

Scenario i K AIC; A; w; Rank
1 3 2012.996 510.3519 0 13
2 3 2019.144 516.4999 0 19
3 3 2018.634 515.9895 0 18
4 3 2512.249 1009.604 0 36
5 3 2283.252 780.6081 0 28
6 3 2340.069 837.4254 0 31
7 5 2011.436 508.7923 0 11
8 5 2011.724 509.0804 0 12
9 5 2013.609 510.9647 0 14
10 5 2014.842 512.1975 0 15
11 5 2015.148 512.5043 0 16
12 5 2017.034 514.3897 0 17
13 3 1839.930 337.2861 0 7
14 3 2479.026 976.3817 0 35
15 3 1738.738 236.0939 0 5
16 3 2114.919 612.2750 0 23
17 3 2458.497 955.8532 0 34
18 3 2002.972 500.3279 0 9
19 5 1668.771 166.1274 0 3
20 5 2387.721 885.0770 0 32
21 5 1502.644 0 0.99999 1
22 5 2073.809 571.1653 0 21
23 5 2338.356 835.7119 0 29
24 5 1893.875 391.2309 0 8
25 3 1703.773 201.1292 0 4
26 3 2410.565 907.9213 0 33
27 3 2006.784 504.1403 0 10
28 3 2067.488 564.8442 0 20
29 3 2243.066 740.4220 0 27
30 3 2145.639 642.9953 0 26
31 5 1537.479 34.83477 27x1078 2
32 5 2339.200 836.5561 0 30
33 5 2119.447 616.8033 0 24
34 5 2074.025 571.3811 0 22
35 5 1834.186 331.5420 0 6
36 5 2143.595 640.9505 0 25

The numerical value 0 in the 5" column denotes a value lower than 1072, In the 6" column, “Rank” denotes the ranking of scenarios, i.e. the descending
order of Akaike weights w;. The use of weights allows the “quantitative” comparison of the adequacy of scenarios because of the normalization to 1.

doi:10.1371/journal.pone.0121090.t002

rationale of using w; is that it allows us to quantify how preferably each candidate model is via
the normalization to 1.

Importance of the type of process

Using the sums of the Akaike weights, w, we investigate several questions to evaluate the rela-
tive importance of the different types considered for a process (Tables 3 and 4). The set of the
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Fig 8. Details about the best model Scenario 21. 8.1: Snapshots from 24 hours (gray) to 48 hours (black) taken every 30 minutes of the profile of the
soluble pool over the cell. 8.2: Snapshots from 24 hours (gray) to 48 hours (black) taken every 30 minutes of the profile of the insoluble pool over the cell. 8.3:
The distribution of the keratin material between the soluble and insoluble pools over time. 8.4: The profiles of assembly and disassembly maximal rates used
with the Michaelis-Menten type turnover terms in Scenario 21. The estimates are k,ss = 9.3819uM/s, ks = 570.73uM, kyis = 0.9998uM/s leading to Kpjax =
1.976uM/s in (16) and k, = 976.07uM/s.

doi:10.1371/journal.pone.0121090.9008

Table 3. Importance of the type of process.

Type of Transport Type of Turnover Term Type of Assembly Type of Disassembly

_ + — -8 + — + — + — + — -8 + +
WI\J;oDrift =0 WCstDrift =1l w\-;aanff =2.7x10 WLr'near =0 WNonlinear =1 WCstAss =1 WSource =0 Wéstu,‘s =272 x10 WSr'nk =0 WMoll =1

w; denotes the sum of the Akaike weights of scenarios including the type * of the process. Type of transport—No drift for the insoluble pool (No drift) vs
Drift with almost constant speed (Cst drift) vs Drift with variable speed (Var. drift). Type of turnover terms—Linear vs Nonlinear. Type of assembly—Non-
localized (constant) vs Localized of type Sources. Type of disassembly—Non-localized (constant) vs Localized of type Sinks vs Localized of type Mollify.

doi:10.1371/journal.pone.0121090.t003
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Table 4. Importance of the type of process.

Scenario i Cst Ass. Dis. Cst Ass. Sinks Cst Ass. Moll. Sources Cst Dis. Sources Sinks Sources Moll.
1 1

2 1

3 1

4 1

5 1

6 1
7 1

8 1

9 1

10 1

W W W W W wWwwMNDNMNDMNDMNDNMNDDMNDNDMNDN S 2 2 d
O 00 WO -+ O © 00 NO OO P WM - O © 0N O b OWON =
- —_ —_ —_
- - - -
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- - - - -
- —_ - —_

1

Ar — —8 + — + — + — + = + —
WCstAssD/s =2.7x10 WCstAssSink =0 WCstAssMol! =1 WSourceDis =0 WSourcsSmk =0 WSoun:eMo/l =0

Combinations of assembly/disassembly rate profiles—Constant assembly and disassembly rates vs constant assembly rate and disassembly rate of type
Sinks vs constant assembly rate and disassembly rate of type Mollify vs assembly rate of type Sources and constant disassembly rate vs assembly rate of
type Sources and disassembly rate of type Sinks vs assembly rate of type Sources and disassembly rate of type Mollify. Top: The numerical value 1
denotes that the combination of processes of interest is in Scenario i. Bottom: w;" denotes the sum of Akaike weights of scenarios including the process
combination as indicated at the top.

doi:10.1371/journal.pone.0121090.t004
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36 scenarios is partitioned into categories with respect to the types of processes considered. For
instance, considering the transport process, the collection of the 36 scenarios is partitioned into
3 categories (Fig 5): scenarios with no drift (Scenarios from 1 to 12), scenarios with an almost
constant speed drift (Scenarios from 13 to 24) and scenarios with a variable speed drift (Scenar-
ios from 25 to 36). The sum of the Akaike weights of each category is then calculated, com-
pared and ordered to characterize which type is more likely to be present. In what follows the
sign > denotes the relative importance, measured in probabilistic terms, of the type of process.

What is the most likely type of transport for the keratin material in cells given the experi-
mental data and the model collection considered? Is it that there is no drift of the insoluble
pool (diffusion only for both pools), drift with an almost constant speed for the insoluble pool
or drift with a variable speed for the insoluble pool? Each category includes 12 scenarios (see
3™ to 5™ columns in Fig 5). From the Akaike weights, it is obvious that scenarios including
diffusion only (with no drift) are not supported by experimental data since W;DDri/i =0

(Table 3). Diftusion alone is not enough to explain the experimental data. Given the data and
the model collection, the type of transport can be ordered as follows (Table 3):

Drift with almost constant speed > Drift with variable speed > No drift.

What is the most likely type of turnover between the soluble and insoluble pools given
the experimental data and the model collection considered? Is linear exchange or Michae-
lis-Menten type (underlying an enzyme activity) more likely? Each category includes 18 sce-
narios (see 6™ to 7" columns in Fig 5). From Table 3, enzymatic activities are more likely to
be present. Hence

Nonlinear exchange > Linear exchange.

What is the most likely rate profile of the assembly process of the keratin material in cells
given the experimental data and the model collection considered? Is a constant assembly
rate or assembly mainly localized at the cell membrane periphery more likely? Each category
includes 18 scenarios (see 8" to 9" columns in Fig 5). From Table 3, the non-localized rate of
assembly is preferred to the rate of the localized assembly; w(,,.. > W¢, ... Hence

Non-localized assembly > Assembly localized at cell membrane periphery.

What is the most likely rate profile of the disassembly process of the keratin material in
cells given the experimental data and the model collection considered? Is a constant disas-
sembly, disassembly of type Sinks or disassembly localized around the nucleus more likely?
Each category is composed of 12 scenarios (see 10" to 12 columns in Fig 5). From Table 3,
none of the scenarios that include the disassembly rate of type Sinks is supported by experi-
mental data.

Disassembly localized around the nucleus > Non-localized disassembly
> Sinks-type profile.

What is the most likely combination of the assembly and disassembly rate profiles given
the experimental data and the model collection considered? Is a combination of constant
assembly and disassembly rates, a constant assembly rate and disassembly rate of type Sinks, a
constant assembly rate and disassembly rate of type Mollify, an assembly rate of type Sources
and constant disassembly rate, an assembly rate of type Sources and disassembly rate of type
Sinks or an assembly rate of type Sources and disassembly rate of type Mollify more likely?
Now, interactions between the assembly and disassembly processes are investigated. Six cate-
gories are defined. In each category, there are 6 scenarios as listed in the top of Table 4.
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Overall, as in Scenario 21, the combination of non-localized assembly and disassembly local-
ized around the nucleus is preferred (Table 4).

Non — localized assembly and disassembly localized around the nucleus
> Non-localized assembly and disassembly > Any other combination.

Discussion

The primary aim of the present work is to investigate, through mathematical modeling driven
by experimental observations, mechanisms contributing to the organization of the keratin ma-
terial in epithelial cells and subsequently to test the biological model for the keratin dynamics
proposed by Leube and Windoftfer et al. in 2011 [10, 11]. From first principles, we formulate a
collection of mathematical models capturing various combinations of biological processes de-
scribing the spatio-temporal dynamics of the keratin material in epithelial cells. By using tech-
niques in parameter estimation, we find optimal reaction kinetic parameter values for each
model that best captures experimental observations. We go one step further and employ an in-
formation-theoretic approach for model selection to determine the best model among all the
best fit models that captures the key processes of the experimental data.

As previously highlighted, the model framework and the description of processes consid-
ered are driven by experimental data and observations. Experimental data used in this study
provide the spatial distribution of the assembled keratin concentration at 24 and 48 hours. As
only macroscopic information on the keratin organization is available, the models only de-
scribe the keratin material as soluble or assembled and consider exchanges between these solu-
ble and insoluble pools combined with transport events. For instance, as experimental data
identify the existence of regions with preferential assembly and disassembly (Fig 2.3), the as-
sembly and/or disassembly processes are assumed to be localized in some scenarios. When ob-
serving the perpetual inward motion of the keratin network (see S1 Video), the “natural
assumption” for the transport of the assembled keratin would be the existence of an inward ac-
tive transport. However, we decide to consider scenarios with only passive transport (no active
transport). Why? First, it is well known that combining appropriate reaction terms and diffu-
sion (only) can lead to the emergence of complex behavior such as traveling waves and/or pat-
tern formation (see some examples in [29]). Secondly, to reinforce the predictive power of our
study. In our approach, we do not only design mathematical models but also calibrate models
(parameter estimation) and then evaluate (model selection) how each model performs. To
highlight and confirm the importance or existence of a given process, scenarios in which the
process is absent must also be considered and evaluated. Our strategy of considering “unrealis-
tic scenarios” and “realistic scenarios” in the collection of models to be evaluated mimics the bi-
ological experimental protocols such as knockout and controls. For instance, it has been shown
that the keratin assembly / disassembly depend on post-translational modifications of keratins
due to enzymatic activities [23]. In our study, a total of 36 scenarios that divide into 18 scenari-
os with a turnover of type linear (no enzymatic activities) and 18 scenarios with a turnover of
type nonlinear (enzymatic activities) are investigated. There is a one-to-one correspondence
between the 18 scenarios of the 2 groups. When model performances (Akaike weights) are
compared, scenarios having a nonlinear turnover perform better than the corresponding ones
with a linear turnover. Hence, the enzymatic activity is detected by the model selection as exist-
ing but also preferable. This outcome allows us to judge that our approach combining the
mathematical modeling and model selection performs correctly, it gives us the confidence and
trust in our conclusions.
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Following this methodology, it turns out that Scenario 21 was the best of the best fits. Sce-
nario 21 is in good agreement with the biological model proposed in [10, 11]. Scenario 21 and
the biological model share the following common key features: diffusion of the soluble pool, in-
ward active transport of the insoluble pool and disassembly of the insoluble pool localized around
the nucleus. Moreover, as experimentally observed, Scenario 21 preserves the repartition of the
keratin material over time; the keratin material is mainly insoluble in epithelial cells. Both the
proposed biological model and Scenario 21 hypothesize an inward active transport for the as-
sembled keratin material. Examining the Akaike weights of the models with no active transport
(Scenarios 1 to 12 in Table 2, 1 and 2" columns in Fig 7 and 1* to 3" columns in Table 3), we
go one step further and show that the active transport is a requirement to explain the experi-
mental data and that the experimentally observed inward motion of the assembled keratin is
not an emergent phenomenon but it is due to an active transport. Furthermore, comparing the
characteristic time scales of processes, we establish that the keratin dynamics are mainly con-
trolled by the active transport in Scenario 21. Interestingly, Scenario 21 concurs with the pro-
posed biological model about the existence of a disassembly localized in the perinuclear region.
An experimental protocol must now be developed to further work out the details of this con-
clusion. It is worth pointing out that some characteristics of the proposed biological model
were not tested due to the form of the mathematical models. For instance, the scenarios consid-
ered here describe the turnover in terms of the assembly of soluble proteins and disassembly of
aggregated proteins. In the biological model, the nucleation of filaments, i.e. the initiation of fil-
aments, is explicitly described and localized at the cell periphery. However, the nucleation pro-
cess is not explicitly described in any of the present models. It is worth mentioning that at the
beginning of this work a nucleation term was included in the models; the effect of this term did
not change significantly the results; hence, to reduce the complexity of models and the number
of parameters the nucleation term was subsequently dropped. Investigation, by mathematical
modeling, of the nucleation process is currently being carried out in a separate and on-
going study.

When only scenarios with a variable drift are considered (Scenarios 25 to 36, 5" and 6™ col-
umns in Fig 7), the preferred combination of assembly and disassembly rate profiles is a con-
stant rate of assembly and disassembly as in Scenario 31, which is the second best model. The
best model, Scenario 21, and the second best model, Scenario 31, share the non-compartmen-
talization of the assembly process. However, in Scenario 21 the active transport has an almost
constant speed whereas in Scenario 31 the speed is variable. For the disassembly, this process is
non-localized in Scenario 31 whereas it is localized at the perinuclear region in Scenario 21.
The spatial variability of the speed u(x) in Scenario 31, in particular, the almost-zero speed at
the nucleus locations (see for x € [-7.5, 7.5] in Fig 3) “compensates” for the non-compartmen-
talization of the disassembly process. After comparing the features of Scenarios 21 and 31, we
inspect their profiles. The profile obtained with Scenario 21 fits very well the experimental data
on non-perinuclear locations (see for x ¢ [-7.5, 7.5] in Fig 7.33). On the other hand, the profile
resulting from Scenario 31 fits very well experimental data on perinuclear locations (see for x €
[-7.5,7.5] in Fig 7.23). As an improvement of Scenario 21, we would expect that a wider decay
in speeds around the nucleus modeled, for instance, with a smaller value of a in (12) would re-
sult in a better fit of the perinuclear region.

Scenarios 29 and 35 include the variable speed measured from experimental data, a localized
assembly rate having the spatial profile deduced from Sources and a localized disassembly rate
whose shape is derived from the profile of the Sinks. All the characteristics extracted from the
experimental data are included in Scenario 29 (linear model) and Scenario 35 (nonlinear
model). If one wanted the best model that takes into account all the experimental features, then
Scenario 29 or 35 would be the best scenario. Scenario 29 is ranked 27 and Scenario 35 is
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ranked 6™ (Table 2). Similarly to the general trend, for the same set of assumptions, the use of
the Michaelis-Menten type turnover term generally provides a better representation of experi-
mental data than the use of the linear turnover term. The evidence ratio of Scenarios 35 and 29
w35/ W,y is ridiculously large; Scenario 35 is much more adequate to represent the experimental
data than Scenario 29. However, Scenario 35 is still only ranked 6". The failure/mismatch of
Scenario 35 might be explained by the redundancy of the information existing in the variable
speed and the net assembly/disassembly region profiles extracted from the experimental data.
Furthermore, according to the Akaike weights, disassembly rates of type Sinks (the type de-
duced from experimental data) are less likely to occur given the experimental data and the col-
lection of models considered. A similar conclusion is obtained for the assembly rate of type
Sources. This could be a consequence of our too conservative interpretation of the regions of
preferential assembly or disassembly. In our assumptions, in zones of preferential assembly,
the disassembly rate is set to be about null and vice versa (Fig 2.3).

In summary, to model the keratin dynamics in epithelial cells we characterized the keratin
material into two pools, the soluble and the insoluble pool; and, the events considered are the
turnover and transport for both pools. The modeling assumptions used, for instance, the diffu-
sion of the soluble pool, are based on biological observations and experimental data. The col-
lection of the models considered in this study is designed to answer a set of questions such as
“what is the mode of transport of the keratin material in epithelial cells?”. After optimizing pa-
rameter values, model selection and evaluation methods applicable to non-nested models are
used to discriminate between the candidate models, identify the best model and quantify how
models under consideration are adequate to explain the experimental data. Note that the rank-
ing of the models (scenarios) and the relative importance of the different types of processes
(Tables 2—-4) are only valid in the context of the experimental data and the set of the candidate
models considered here. For instance, considering other hypotheses such as the non-negligence
of the anterograde motion of the assembled keratin material or the stabilization (protection
against disassembly) of the keratin filaments involved in the nuclear cage would have led to a
different collection of scenarios in which our best scenario could have failed to be the best one.
Furthermore, as some modeling assumptions are directly derived from experimental data,
missing information in experimental data might have been prejudicial for the correct approxi-
mation / modeling of processes; for instance, missing information about the speed of assembled
keratin in the cell periphery result in small values for the variable speed close to the plasma
membrane (Fig 2.2). Keeping in mind the limitations of our approach, important conclusions
have been reached such as

« an active transport of the assembled keratin material is required, thereby confirming recent
experimental observations [10, 11],

« enzymatic activities regulating the assembly / disassembly are more likely to occur,
o the assembly process is more likely to be non-compartmentalized in cells,

« last but not least, a unique best model strongly supported by experimental data is identified,
this scenario is in good agreement with the biological model previously proposed in [10, 11].
Interestingly, the best scenario supports the perinuclear localization of the disassembly pro-
cess hypothesized in the biological model.

Mathematical models of the keratin intermediate filament organization in cells were previ-
ously proposed [30-34]; however, none of these models included the effects of transport of the
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assembled material on its organization. More importantly, only the behavior of models were
validated qualitatively, no comparisons to experimental data were carried out. It is worth not-
ing that other studies of the intermediate filaments dynamics combining mathematical model-
ing and experimental data approaches were carried out but on neurofilaments in neurons (see
for example [35, 36]).

Conclusion

Given the experimental data published in [12], through modeling and simulations, we investi-
gate the effects of the interplay between turnover and transport on the keratin spatio-temporal
organization in epithelial cells. Out of all the scenarios investigated, a scenario strongly sup-
ported by experimental data is found that best captures most of the hallmarks of the experi-
mental observations. This scenario predicts the diffusion of soluble keratin, an inward active
transport of the assembled keratin and the disassembly localized around the nucleus triggered
by enzymatic activities as well as the assembly process that is non-compartmentalized over the
cell. The value of our models is reflected in their predictive nature; first, the approach predicts
the localized disassembly at the perinuclear region and second, that the experimentally ob-
served inward motion is not an emergent behavior but that it is an inherent property of the or-
ganization of the keratin material in epithelial cells and it is due to an active transport.

Appendix 1

Based on experimental observations, the speed of the assembled keratin material is assumed to
decay to almost zero around the nucleus. The nuclear envelope positions are at x = +7.5um. In
order to describe the decay of the speed around the nucleus such that it is almost constant, the
following function is used:

v(x) = u(1 — exp(—ax?)), (12)

with a = 0.05 and u being in the range given in Table 1. For numerical simulations, u is set to
0.0025um/s which represents the average value of speeds measured in [12].

For the variable speed case, a symmetrical function over the spatial domain Q is sought to
describe the speed u(x). Averaging over the symmetrical spatial locations values of the average
speed measured in [12] (Fig 2.2) and curve fitting with a sum of Gaussian functions of these
values, an estimate of u(x) is obtained and expressed as follows:

u(x) = Za; x exp(—((x = b)/c)"), (13)

with the following coefficients: a; = 0.003372, b; = 17.39, ¢; = 7.577, a, = 0.003378, b, = —17.41
and ¢, = 7.546. The estimate u(x) is almost zero at the nucleus-locations and is symmetrical
around the center of the cell (Fig 9).

For numerical simulations, when needed, the following function

2
S —
14ee

s(x)

with a = 1 is used as a “smooth analogue” of sgn(x).
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Fig 9. Estimate of the space-dependent speed. Estimate of the space-dependent speed given in (13) for
the variable speed u(x) of the active transport of the insoluble pool.

doi:10.1371/journal.pone.0121090.g009

Appendix 2

To obtain the space-dependent function k,(x) the profile of the regions of assembly (Sources)
published in [12] (Fig 2.3) is first made symmetrical by averaging values at the symmetrical
spatial locations and then the symmetrical Sources profile is fitted using the sum of Gaussian
functions:

3
kass(x) = kmax Z a; X exp(_((x - bi)/ci)Q) + kbaseline ' (14)
i=1

The best fit is obtained with the following coefficients: a; = 1.684 x 10°, b, = 20.13, ¢, = 2.105,
a, = 8.493 x 10%, b, = —19.04, ¢, = 1.374, a3 = 1.333 x 10°, by = —20.74, and ¢; = 1.734. The

value of the coefficient k,,,,, determines the maximal value of the peaks. When k. =

2L(kgss —kpaseline)
VES el
that of the case of a constant assembly of level k. The value kg in k,,,, is determined by fit-
ting model solutions to experimental data. An illustration of the shape of k,(x) is given

in Fig 10.

With Kpasetine = Kass X 1072, the total amount of assembly over the cell is the same as
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Fig 10. Profile for localized assembly rate of type Sources. The profile for kss(x) defined in (14) with kpax
=1, obtained by fitting the profile of assembly regions Sources published in [12] and shown in Fig 2.3.
doi:10.1371/journal.pone.0121090.g010

Appendix 3

To obtain the first space-dependent function k;(x), the profile of regions of disassembly

(Sinks) published in [12] (Fig 2.3) is made symmetrical and fitted using the sum of Gaussian
functions:

kdis('x) = kmaxzai X exp(_((x - bi)/ci)Q) : (15)

The best fit of the symmetrical profile of Sinks is obtained with the following coefficients: a; =
—3.383x 10, by = -11.51, ¢; = 4.158, a, = —1.004 x 10°, b, = —14.03, ¢, = 2.236, a5 =

2445 x 10°, by = —11.39, ¢3 = 4.339, a4 = —2.032 x 10* by = 5.922, ¢, = 5.385, a5 = —2.058 x 10%,
bs = —6.077, cs = 5.778, ag = 3.793 X 10°, bg = 11.37, cs = 4.322, a; = —1.008 x 10°, b, = 14.03, ¢,

=2.238, ag = —4.742 x 10°, bg = 11.46, and cg = 4.196. The coefficient k,,,, determines the am-
plitude of the peaks. When k,,,. = kg

\/_ZX o the total amount of disassembly over the cell is
ks -1 [li Cl
the same as that of the case of the constant function of level k ;.. The value k4, in k,,,,, is deter-

mined by fitting model solutions to experimental data. An illustration of the shape of k ;,(x)
obtained from Sinks is given in Fig 11.
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Fig 11. Profile for localized disassembly rate of type Sinks. The profile for kys(x) defined in (15) and Kpax
=1, obtained by fitting the profile of disassembly regions Sinks published in [12] and shown in Fig 2.3.

doi:10.1371/journal.pone.0121090.g011

A second function is hypothesized to represent the localized disassembly k;;(x) around the
nucleus. A mollified piecewise function is used and is of the form

kbaseline’ x<a —E€,
kmax 2 kmax(6 — al)
— X —
de(a, — a,) 2¢(a, — a,)
2
—(e—a,)k de(a, — ay)ky
+ (6 1) max + 6( 1 2) lmszlme7 a, — e S x < a, +E7
de(a, — a,)
X —a
kbaselinz + kmux : ) a; +e€ S x < a, — €,
a—a
kmax 2 kmax(E + a2)

~ de(a, —a,) * 2¢(a, —a,) x
— ((E — 02)2 + 46a1)kmax + 46(“1 — aQ)klmselinz7 az —€ S x < az + €,
de(ay — a))
kdis(x) = kbaseline + kmax7 a, +e€ S x < a; — €, (16)
k Lk
2

max max(‘E — aS)

4e(a, — a4)x 2¢(a, —a,)
((6 + a3)2 _ 4€a4)kmux + 46(613 — a-’l)kbuseline

+ a,—e<x<a,+e
de(a;, — a,) R B
X —ag
kbaseline + kmax - kmax ) a; +te<x< a, — ¢
a, — ay
kmux 2 kmax(€ + 114)

4e(a, — a:z)x 2¢(a, — ay)
(6 + a4)2kmax + 46(04 — a?))khuseline
de(a, — a;)

+ , a,—e<x<a,+e

k a, +e€>x,

baseline?
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where a;, = -15um, a, = =7.5um, as = 7.5um, a, = 15um and € = 1. When k,,, . = 2(Kgis—Kpasetine) With kpgge-
line = kais X 1072, the total amount of disassembly over the cell is the same as that of the case of a constant
disassembly of level k;s; k45 is determined by fitting the model solutions to experimental data. An illustra-
tion of the shape of (16) is given in Fig 4.

Appendix 4

To define the initial condition fy(x), the experimental profile [12] of the assembled keratin ma-
8
terial measured at 24 hours is used (gray circles in Fig 2.1). The polynomial P(x) = > p,x' for
i=0

which pg = 5.441 x 1075, p, = 3.397 x 1072}, pg = =5.379 x 107>, p5 = —2.077 x 107'%, p, =
0.01062, p5 = 2.801 x 107 p, = 0.4104, p; = 1.4 x 10~"* and p, = 506.5 fits well the data at 24
hours (gray curve in Fig 2.1). The function P(x) is then modified to obtain a function satisfying
the boundary conditions defined in (7). The initial condition fy(x) describing the profile of the
insoluble pool at 24 hours is expressed as follows:

¢ x <a, —e,
Pla,+€)—c,  (e—a)(P(a,+¢) —0)
4e? x 2¢? *
N (e —a,)’P(a, + 6)4+2(3€2 + 2a,e — a?)c’ a,—e<x<a, +e
€
P(x), Gtesx<a-e
P(a, —€) — c+2eD(a, —€) ,
_ X
folx) = 4e? (17)
(e —a,)(P(a, — €) — ¢) — 2ea,D(a, — €)
- 2¢? *
+ (3¢’ + 2a,e — a;)P(a, —€)
4¢?
2 2 _ _ g\
n 26(6 az)D(az ! 6) + (6 aZ) C7 a, — € <x< a, + €,
€
c, (12 + € S X,

8
with a; = -21um, a, = —a;, e =1, ¢ =50uM and D(x) = > ip,x'". The function fy(x) is graphed
i=1
in Fig 6.
The average profile of the assembled keratin material computed on the normalized cells
after 48 hours of seeding [12] is represented by:

fual®) = D _pix. (19)

where py = —0.003255, p5 = 2.61 x 10", p, = 0.4899, p; = 1.558 x 10~"° and py = 604.1. fz,i(x)
is graphed in Fig 2.1 (black curve).

Appendix 5

The system corresponding to Scenario 21 is now nondimensionalized to estimate the charac-
teristic time scale of each of the processes involved. Consider new independent variables z and

7and new dependent variables S(z, t) and I(z, ) defined such that:

x=Az, t=Brt, S(x,t)=sS(z,1), I(x,t)=il(z,1)
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Scenario 21 takes then the following form:

dS BD,d°S B ( k.S kd,.s(Az)I)

ot A? 922 s \ko/s+S Kk Ji+]1

oI BeDy&’I  Bu Ol B[ k.S k(A2
- = I _ Az) — - ass® is -
a A gz T a g AD Gt (ks/erS k/i+1)

with f(Az) being the functional component of v(x) (12) defined as f{Az) = (1 - exp(—a(Az)z))
with a = 0.05 and k;;(Az) being the function kg ;,(-) defined in (16) and evaluated at Az. Taking
A=0({=2L), B=/4/u,s=kgand i = kg then

x=¥z and t=-1
u

and the adimensional version of the system is

a_g _ ii‘g‘ — Da < S _ kdis (AZ)/kussj>
ot ePedz? 148 k/k+1 )’
ol 191 ol S ku(Az)/k, I
- = - Az) =— D __ dis ass )
gt = Pegn T 8nEfA2) 5+ Da <1+s k ko + 1 )
The constant Pe = ”’I‘{)f—“; = [Z—uD’ = ﬁ is the Péclet number of the insoluble pool that compares

active transport and diffusion processes. The characteristic length £ is chosen to be equal to the
length of the spatial domain Q, ¢ = 2L. The Damkéhler number Da = % compares reaction
and active transport processes. The characteristic active transport time is 7p,i; = £/u as defined
in the Péclet number. The characteristic reaction time is Tregerion = 1/& for which k = % Note
that sgn(z)f(Az) is about £1.

Recall the parameter values obtained from the parameter estimation: k,, = 9.3819uM/s, ks
=570.73uM, k; = 976.07uM/s and k., = 1.976uM]/s in (16) that correspond to a constant dis-
assembly rate of level k;; = 0.9998uM/s. Hence, from the definition of k,,,, k4is(Az) can be ap-
proximated by k ;; = 0.9998. The values of the fixed parameters are Dg = 0.88/4m2/s, D;=eDg
with € = 9.5 x 10~* and u = 0.0025um/s. The following estimates are then obtained:

o Adimensional parameters: k;;s(Az)/k,ss = kgislkass = 0.1 and ki/kg = 1.7;

+ Diffusion time scale: Tp;gision = ID.
- For the soluble pool: tf),;,,,, = £*/Ds ~ 2.3 x 10%,
- For the insoluble pool: TIDW”M = ?/(eDs) ~ 2.4 x 10°s;

+ Active transport time scale: 7p,ip = £/u = 1.8 x 10* s (time the fluid needs to flow through the
characteristic length);

« Reaction time scale: kg/k,, = 61s (time for reaction to equilibrate).

To determine what mode of transport (passive vs active) and what process (transport vs re-
action) dominate the dynamics of the keratin material, the Péclet and Damkdohler numbers are
used:

o Pe =(ul)/(eDs) ~ 135 > 1. Diffusion is small compared to active transport for the insoluble
pool, the transport of the assembled keratin material by drift is faster than by diffusion, active
transport is the dominant mode of transport;
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o Da = (Ck,s)/(uks) = 296 > 1. Active transport time scale is greater than the reaction time
scale; the overall process in controlled by active transport.

Supporting Information

S1 Video. Dynamics of the keratin network in a cell. Time-lapse fluorescence microscopy of
hepatocellular carcinoma-derived PLC clone PK18-5 stably expressing fluorescent fusion pro-
tein HK18-YFP [8] depicting the dynamic properties of the keratin filaments over a time peri-
od of 15 hours. Bar 10 ym.

(AVI)

Acknowledgments

This work was initiated in June 2013 while SP was visiting the Institute of Molecular and Cellu-
lar Biology at RWTH Aachen University (Aachen, Germany). The authors acknowledge sug-
gestions from anonymous referees and the editor for the critical review that helped improve
the quality of the manuscript.

Author Contributions

Conceived and designed the experiments: AM REL RW SP. Performed the experiments: RW
SP. Analyzed the data: SP. Contributed reagents/materials/analysis tools: AC AM SP. Wrote
the manuscript: AM REL SP.

References

1. Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R, Zhou C, et al. Keratins as the main compo-
nent for the mechanical integrity of keratinocytes. Proc Natl Acad Sci. 2013; 110:18513-18518. doi: 10.
1073/pnas.1313491110 PMID: 24167246

2. Seltmann K, Fritsch A, Kas J, Magin T. Keratins significantly contribute to cell stiffness and impact inva-
sive behavior. Proc Natl Acad Sci. 2013; 110:18507-18512. doi: 10.1073/pnas.1310493110 PMID:
24167274

3. Coulombe P, MK, Fuchs E. Epidermolysis bullosa simplex: a paradigme for disorder of tissue fragility.
J Clin Inv. 2009; 119:1784—1793.

4. Homberg M, Magin T. Beyond expectations: novel insights into epidermal keratin function and regula-
tion. Int Rev Cell Mol Biol. 2014; 311:265-306. doi: 10.1016/B978-0-12-800179-0.00007-6 PMID:
24952920

5. Chung B, Rotty J, Coulombe P. Networking galore: intermediate filaments and cell migration. Curr Opin
Cell Biol. 2013; 25:600-612. doi: 10.1016/j.ceb.2013.06.008 PMID: 23886476

6. Toivola D, Strnad P, Habtezion A, Omary B. Intermediate filaments take the heat as stress proteins.
Trends Cell Biol. 2010; 20:79-91. doi: 10.1016/j.tcb.2009.11.004 PMID: 20045331

7. Pan X, Hobbs R, Coulombe P. The expanding significance of keratin intermediate filaments in normal
and diseased epithelia. Curr Opin Cell Biol. 2013; 25:47-56. doi: 10.1016/j.ceb.2012.10.018 PMID:
23270662

8. Strnad P, Windoffer R, Leube RE. Induction of rapid and reversible cytokeratin filament network remod-
eling by inhibition of tyrosine phosphatases. J Cell Sci. 2002; 115:4133-4148. doi: 10.1242/jcs.00096
PMID: 12356917

9. Kolsch A, Windoffer R, Wurflinger T, Aach T, Leube R. The keratin-filament cycle of assembly and dis-
assembly. J Cell Sci. 2010; 123:2266—2272. doi: 10.1242/jcs.068080 PMID: 20554896

10. Leube R, Moch M, Kolsch A, Windoffer R. “Panta rhei”: Perpetual cycling of the keratin cytoskeleton.
Bioarchitecture. 2011; 1:39-44. doi: 10.4161/bioa.1.1.14815 PMID: 21866261

PLOS ONE | DOI:10.1371/journal.pone.0121090 March 30, 2015 27/29


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121090.s001
http://dx.doi.org/10.1073/pnas.1313491110
http://dx.doi.org/10.1073/pnas.1313491110
http://www.ncbi.nlm.nih.gov/pubmed/24167246
http://dx.doi.org/10.1073/pnas.1310493110
http://www.ncbi.nlm.nih.gov/pubmed/24167274
http://dx.doi.org/10.1016/B978-0-12-800179-0.00007-6
http://www.ncbi.nlm.nih.gov/pubmed/24952920
http://dx.doi.org/10.1016/j.ceb.2013.06.008
http://www.ncbi.nlm.nih.gov/pubmed/23886476
http://dx.doi.org/10.1016/j.tcb.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/20045331
http://dx.doi.org/10.1016/j.ceb.2012.10.018
http://www.ncbi.nlm.nih.gov/pubmed/23270662
http://dx.doi.org/10.1242/jcs.00096
http://www.ncbi.nlm.nih.gov/pubmed/12356917
http://dx.doi.org/10.1242/jcs.068080
http://www.ncbi.nlm.nih.gov/pubmed/20554896
http://dx.doi.org/10.4161/bioa.1.1.14815
http://www.ncbi.nlm.nih.gov/pubmed/21866261

@ PLOS | one

Keratin Dynamics

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Windoffer R, Beil M, Magin T, Leube R. Cytoskeleton in motion: the dynamics of keratin intermediate fil-
aments in epithelial cells. J Cell Biol. 2011; 194:669—678. doi: 10.1083/jcb.201008095 PMID:
21893596

Moch M, Herberich G, Aach T, Leube R, Windoffer R. Measuring the regulation of keratin filament net-
work dynamics. Proc Natl Acad Sci. 2013; 110:10664—10669. doi: 10.1073/pnas.1306020110 PMID:
23757496

Méhl C, Kirchgessner N, Sch”afer C, Hoffmann B, Merkel R. Quantitative mapping of averaged focal
adhesion dynamics in migrating cells by shape normalization. J Cell Sci. 2012; 125:155-165. doi: 10.
1242/jcs.090746 PMID: 22250204

Herberich, G, Windoffer, R, Leube, R, Aach, T. 3D segmentation of keratin intermediate filaments in
confocal laser scanning microscopy. In: Engineering in Medicine and Biology Society, EMBC, 2011 An-
nual International Conference of the IEEE; 2011. p. 7751-7754.

Feng X, Zhang H, Margolick J, Coulombe P. Keratin intracellular concentration revisited: implications
for keratin function in surface epithelial. J Inv Derm. 2013; 113:850-853. doi: 10.1038/jid.2012.397

Woll S, Windoffer R, Leube R. Dissection of keratin dynamics: different contributions of the actin and
microtubule systems. Eur J Cell Biol. 2005; 84:311-328. doi: 10.1016/j.ejcb.2004.12.004 PMID:
15819410

Koélsch A, Windoffer R, Leube R. Actin-dependent dynamics of keratin filament precursors. Cell Motil
Cytoskel. 2009; 66:976—985. doi: 10.1002/cm.20395

Windoffer R, Leube R. Detection of cytokeratin dynamics by time-lapse fluorescence microscopy in liv-
ing cells. J Cell Sci. 1999; 112:4521-4534. PMID: 10574702

Helfand BT, Chang L, Goldman RD. Intermediate filaments are dynamic and motile elements of cellular
architecture. J Cell Sci. 2004; 117:133-141. doi: 10.1242/jcs.00936 PMID: 14676269

Robert A, Herrmann H, Davidson M, Gelfand V. Microtubule-dependent transport of vimentin filament
precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. Fased
J. 2014; 28:2879-2890. doi: 10.1096/f.14-250019

Yoon K, Yoon M, Moir R, Khuon S, Flitney F, Goldman R. Insights into dynamic properties of keratin in-
termediate filaments in living epithelial cells. J Cell Biol. 2001; 153:503-516. doi: 10.1083/jcb.153.3.
503 PMID: 11331302

Snider N, Omary B. Post-translational modifications of intermediate filament proteins: mechanisms and
functions. Nat Rev. 2014; 15:163—177. doi: 10.1038/nrm3753

Izawa |, Inagaki M. Regulatory mechanisms and functions of intermediate filaments: A study using site-
and phosphorylation state-specific antibodies. Cancer Sci. 2006; 97:167-174. doi: 10.1111/j.1349-
7006.2006.00161.x PMID: 16542212

Chou CF, Riopel C, Rott L, Omary B. A significant soluble keratin fraction in “simple” epithelial cells
Lack of an apparent phosphorylation and glycosylation role in keratin solubility. J Cell Sci. 1993;
105:433-444. PMID: 7691841

MATLAB. MATLAB and Statistics Toolbox Release 2013b. Natick, Massachusetts: The MathWorks
Inc.; 2013.

Dorsey R, Mayer W. Genetic algorithms for estimation problems with multiple optima, nondifferentiabil-
ity and other irregular features. J Bus Econ Stat. 1995; 13:53-66. doi: 10.1080/07350015.1995.
10524579

Johnson J, Omland K. Model selection in ecology and evolution. Trends Ecol Evol. 2004; 19:101-108.
doi: 10.1016/j.tree.2003.10.013 PMID: 16701236

Burnham K, Anderson D. Model Selection and Multimodel Inference. A Practical Information-Theoretic
Approach. 2nd ed. Springer Verlag; 2002.

Madzvamuse A, Wathen AJ, Maini PK. A moving grid finite element method applied to a model biologi-
cal pattern generator. J Comp Phys. 2003; 190:478-500. doi: 10.1016/S0021-9991(03)00294-8

Portet S, Arino O, Vassy J, Schoevaert D. Organization of the cytokeratin network in an epithelial cell. J
Theor Biol. 2003; 223:313-333. doi: 10.1016/S0022-5193(03)00101-2 PMID: 12850452

Beil M, Liick S, Fleischer F, Portet S, Arendt W, Schmidt V. Simulating the formation of keratin filament
networks by a piecewise-deterministic Markov process. J Theor Biol. 2009; 256:518-532. doi: 10.1016/
j.jthi.2008.09.044 PMID: 19014958

Portet S, Arino J. An in vivo intermediate filament assembly model. Math Biosc Eng. 2009; 6:117—-134.
doi: 10.3934/mbe.2009.6.117

PLOS ONE | DOI:10.1371/journal.pone.0121090 March 30, 2015 28/29


http://dx.doi.org/10.1083/jcb.201008095
http://www.ncbi.nlm.nih.gov/pubmed/21893596
http://dx.doi.org/10.1073/pnas.1306020110
http://www.ncbi.nlm.nih.gov/pubmed/23757496
http://dx.doi.org/10.1242/jcs.090746
http://dx.doi.org/10.1242/jcs.090746
http://www.ncbi.nlm.nih.gov/pubmed/22250204
http://dx.doi.org/10.1038/jid.2012.397
http://dx.doi.org/10.1016/j.ejcb.2004.12.004
http://www.ncbi.nlm.nih.gov/pubmed/15819410
http://dx.doi.org/10.1002/cm.20395
http://www.ncbi.nlm.nih.gov/pubmed/10574702
http://dx.doi.org/10.1242/jcs.00936
http://www.ncbi.nlm.nih.gov/pubmed/14676269
http://dx.doi.org/10.1096/fj.14-250019
http://dx.doi.org/10.1083/jcb.153.3.503
http://dx.doi.org/10.1083/jcb.153.3.503
http://www.ncbi.nlm.nih.gov/pubmed/11331302
http://dx.doi.org/10.1038/nrm3753
http://dx.doi.org/10.1111/j.1349-7006.2006.00161.x
http://dx.doi.org/10.1111/j.1349-7006.2006.00161.x
http://www.ncbi.nlm.nih.gov/pubmed/16542212
http://www.ncbi.nlm.nih.gov/pubmed/7691841
http://dx.doi.org/10.1080/07350015.1995.10524579
http://dx.doi.org/10.1080/07350015.1995.10524579
http://dx.doi.org/10.1016/j.tree.2003.10.013
http://www.ncbi.nlm.nih.gov/pubmed/16701236
http://dx.doi.org/10.1016/S0021-9991(03)00294-8
http://dx.doi.org/10.1016/S0022-5193(03)00101-2
http://www.ncbi.nlm.nih.gov/pubmed/12850452
http://dx.doi.org/10.1016/j.jtbi.2008.09.044
http://dx.doi.org/10.1016/j.jtbi.2008.09.044
http://www.ncbi.nlm.nih.gov/pubmed/19014958
http://dx.doi.org/10.3934/mbe.2009.6.117

@. PLOS ‘ ONE Keratin Dynamics

33. SunC, Leube R, Windoffer R, Portet S. A mathematical model for the keratin cycle of assembly and dis-
assembly. IMA J Appl Math. 2015; 80:100—114. doi: 10.1093/imamat/hxt030

34. KimJS, Lee CH, Coulombe P. Modeling the self-organization of keratin intermediate filaments. Biophys
J. 2010; 99:2748-2755. doi: 10.1016/j.bpj.2010.09.023 PMID: 21044571

35. Brown A, Wang L, Jung P. Stochastic simulation of neurofilament transport in axons: the “stop-and-go”
hypothesis. Mol Biol Cell. 2005; 16:4243—4255. doi: 10.1091/mbc.E05-02-0141 PMID: 16000374

36. LiY,BrownA, Jung P. Deciphering the axonal transport kinetics of neurofilaments using the fluores-
cence photoactivation pulse-escape method. Phys Biol. 2014; 11:026001. doi: 10.1088/1478-3975/11/
2/026001 PMID: 24632540

PLOS ONE | DOI:10.1371/journal.pone.0121090 March 30, 2015 29/29


http://dx.doi.org/10.1093/imamat/hxt030
http://dx.doi.org/10.1016/j.bpj.2010.09.023
http://www.ncbi.nlm.nih.gov/pubmed/21044571
http://dx.doi.org/10.1091/mbc.E05-02-0141
http://www.ncbi.nlm.nih.gov/pubmed/16000374
http://dx.doi.org/10.1088/1478-3975/11/2/026001
http://dx.doi.org/10.1088/1478-3975/11/2/026001
http://www.ncbi.nlm.nih.gov/pubmed/24632540


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /All
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <>
    /GRE <>


    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <>
    /PTB <>


    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


