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This study aimed to explore an immune response-related gene signature to predict the
clinical prognosis and tumor immunity of stomach adenocarcinomas (STAD). Based on the
expression and clinical data of STAD in the TCGA database, the immune cell infiltration
status was evaluated using CIBERSORT and ESTIMATE methods. Samples were
grouped into “hot” and “cold” tumors based on immune cell infiltration status and
consensus clustering. The infiltration abundance of activated memory CD4 T cells and
CD8 T cells had a significant effect on the overall survival of STAD patients. Among the
three clusters, cluster 2 had a higher immune score and a significantly higher abundance of
CD8 T cells and activated memory CD4 T cells were assigned as a hot tumor, while cluster
1 and 3 were assigned as a cold tumor. DEGs between hot and cold tumors were mainly
enriched in immune-related biological processes and pathways. Total of 13 DEGs were
related to the overall survival (OS). After the univariate and multivariable Cox regression
analysis, three signature genes (PEG10, DKK1, and RGS1) was identified to establish a
prognostic model. Patients with the high-risk score were associated with worse survival,
and the risk score had an independent prognostic value. Based on TIMER online tool, the
infiltration levels of six immune cell types showed significant differences among different
copy number statuses of PEG10, DKK1, and RGS1. In this study, an immune-related
prognostic model containing three genes was established to predict survival for STAD
patients.

Keywords: Stomach adenocarcinomas, immune phenotype, immune infiltration, prognostic model, immunotherapy

1 INTRODUCTION

Stomach cancer is the fifth most common cancer worldwide and the third leading cause of cancer
death (Bray et al., 2018). The new cases of gastric cancer in China account for 47% of the total
number of gastric cancer in the world every year, and more than 60% of the patients are locally
advanced or advanced at the time of treatment, and the 5-year survival rate is less than 30% (Chen
et al., 2016; Feng et al., 2019). The annual death rate of gastric cancer in China has dropped from
3.8% to 2.3% over the past decade due to advances in diagnosis and treatment technology (Gao and
Wu, 2019). Stomach adenocarcinomas (STAD) are the most common type of stomach carcinomas
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(Rima et al., 2020). Conventional treatments such as surgery,
chemotherapy, and radiotherapy have limited efficacy for
stomach cancer. Although molecularly targeted drugs such as
Trastuzumab, Apatinib, and ramucirumab have been approved
for stomach cancer successively, the targeted therapy of stomach
cancer is still far behind lung cancer, breast cancer, colon cancer,

and other common tumors (de Haas et al., 2014; Tabernero et al.,
2018).

Tumor cells can escape the surveillance of immune response
through various mechanisms, one of the most important
mechanisms is immune checkpoint mediated co-inhibitory
signaling pathway (Waldman et al., 2020). The high

FIGURE 1 |Correlation of immune infiltration and overall survival. (A–B)Histogram showed the distribution of 22 immune cells in tumor tissue (A) and normal tissue
(B). (C) Violin plot showed the differences on 22 immune cells infiltration in normal and tumor tissue. (D) Forest plot showed the correlation of immune infiltration and
overall survival. (E–F) Kaplan-Meier survival curves showed the correlation of immune cells infiltration and overall survival.
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expression of various checkpoint proteins on T cells in stomach
cancer tissues, including CTLA-4, IDO, LAG3, and PD-1,
suggests that they have the phenotype of T cell immune
exhaustion and the tumor microenvironment is in an
immunosuppressive state (Taieb et al., 2018; Vrána et al.,
2018; Li K. et al., 2021). Some stomach cancer tumor cells also
have a high mutation load, especially those with high
microsatellite instability, which can express abundant tumor
antigens and thus initiate a stronger immune response (van
Velzen et al., 2020). Moreover, checkpoint proteins PD-1 and
PD-L1 were up-regulated in tumors with high microsatellite
instability (Llosa et al., 2015), which showed well response to
PD-1 inhibitors (Le et al., 2015). But not all stomach cancer
patients benefit from immunotherapy alone. Therefore, it is
necessary to explore the immunophenotypic classification of
stomach cancer to screen the dominant population that may
benefit from immunotherapy and to identify suitable biomarkers
for monitoring treatment efficacy.

It has been demonstrated that the “hot” tumor phenotype has
high response rates to immune checkpoint inhibitors, in which
the immune cell infiltration in the tumor microenvironment are
mainly characterized, while tumor with low immune infiltrations
is regarded as “cold” tumor (Maleki Vareki, 2018). Such tumor
classification can partly explain the response to immune

checkpoint inhibitors treatment. Current bioinformatics
technology enabled us to characterize the immune infiltration
pattern and the immune score of tumors. Therefore, we intended
to divide STAD samples into hot and cold tumors based on the
data in TCGA and to identify signature genes that are associated
with the hot and cold tumors for prognostic model establishment.

2 MATERIALS AND METHODS

2.1 Data Acquisition
The FPKM RNA-sequencing data and clinical phenotype data
of STAD were downloaded from The Cancer Genome Atlas
(TCGA) database, including 350 tumor samples and 31
adjacent normal samples. Somatic mutation data of STAD
was also acquired from the TCGA database. The preprocessed
series matrix of GSE19188 was downloaded from Gene
Expression Omnibus (GEO) database, which involves 300
STAD samples and 100 normal samples. Data were
annotated based on the annotation files (hg38, V22)
provided in the Gencode database, with Ensembl-ID
converting to gene symbol. The mean value was considered
as the final expression value when multiple Ensembl-ID
matched to one gene symbol.

FIGURE 2 | Immune subtypes in stomach adenocarcinomas. (A)Heatmap showed the results of consensus clustering analysis, in which samples were divided into
three clusters. (B) Delta diagram showed the clusters with under area. (C)Heatmap showed the immune infiltration pattern of three immune clusters. (D–F) The immune
score, stromal score, and tumor purity of three clusters.
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2.2 Characterization of Immune Infiltration
The infiltration abundance of 22 immune cells of STAD was
estimated by using the CIBERSORT algorithm based on the
LM22 gene expression characteristic provided on the
CIBERSORT website with parameters set as perm = 100 and
QN = F. Samples with p < 0.05 were screened for estimating the
infiltration landscape of STAD and normal samples. The stromal
score, immune score, and tumor purity of STAD samples were
calculated by using the ESTIMATE package in R. In addition, the
infiltration abundance of six immune cell types was estimated by
using the TIMER online tool (https://cistrome.shinyapps.io/
timer/).

2.3 Consensus Clustering Analysis
Based on the infiltration abundance of 22 immune cells, STAD
samples were grouped into different clusters by using the
consensuscluster Plust algorithm (version 1.50.0) with
parameters set as maxK = 6, pItem = 0.8, clusterAlg = “hc”
and distance = “pearson”. The cumulative distribution
function (CDF) was used to identify the most reasonable
number of clusters.

2.4 Hot and Cold Tumors
Based on immune infiltration, immune score, and consensus
clustering subtypes, STAD samples were categorized into hot
tumors and cold tumors. Kaplan-Meier (KM) survival analysis
with log-rank test was performed using the survival package
(version3.2–7). Tumor mutation burden (TMB) of hot and
cold tumors was analyzed using the Maftools package (version
2.0.16) based on the somatic mutation data.

2.5 Differential Expression Analysis and
Function Enrichment
The differentially expressed genes (DEGs) between hot tumor
and cold tumor were screened based on the t-test provided in
the Limma package (version 3.10.3) with cut-off values of
Benjamini–Hochberg (BH) multiple tests adjusted p < 0.05 and
|log2FC|>0.585. Gene ontology annotation terms and KEGG
pathways were enriched for DEGs using the over-
representation analysis (ORA) method provided by the
gprofiler online tool (https://biit.cs.ut.ee/gprofiler/convert)
with a cut-off value of BH adjusted p < 0.05.

2.6 Co-expression of DEGs With
N6-Methyladenosine (m6A) Regulator
Genes
Expression of m6A regulator genes (writers: METTL3,
METTL14, METTL15, WTAP, VIRMA, RBM15, RBM15B,
KIAA1429, ZC3H13; erasers: FTO, ALKBH5; readers:
RBMX, YTHDC1, YTHDC2, IGF2BP1, IGF2BP2, IGF2BP3,
YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1, HNRNPC)
were extracted from TCGA dataset. Then, the Pearson
correlation coefficient (PCC) of the expression level of m6A
regulator genes and DEGs was calculated based on the cor test
in R 3.6.1 (http://77.66.12.57/R-help/cor.test.html) with a cut-
off value of the absolute value of correlation coefficient >0.15
and p < 0.05.

2.7 Construction of Prognostic Risk Model
KM survival analysis was performed for all DEGs with
samples dividing into high-expression and low-expression
by median value, and genes with log-rank p < 0.05 were
regarded as prognostic genes. All the STAD samples were
randomly divided into the training-set and validation-set
with a ratio of 5:5. In training-set, the univariate Cox
regression analysis in the survival package was performed
for KM prognostic genes and genes with p < 0.05 were
considered signature genes for model construction.
Multivariable Cox regression analysis was used to calculate
the prognostic coefficient for signature genes. Then, the
prognostic risk model was established according to the
formula: Risk score = ∑Coef gene ×Exp gene, of which
Coef and Exp refer to the prognostic coefficient and
expression value of each signature gene, respectively.

TABLE 1 | The differences on clinical phenotype between hot and cold tumors.

Cool tumor (N = 249) Hot tumor (N = 101) p-value

Gender
Female 78 (31.3%) 41 (40.6%) 0.116
Male 162 (65.1%) 56 (55.4%)
Missing 9 (3.6%) 4 (4.0%)

Age (years)
<60 73 (29.3%) 32 (31.7%) 0.731
≥60 165 (66.3%) 64 (63.4%)
Missing 11 (4.4%) 5 (5.0%)

Stage
Stage I 34 (13.7%) 11 (10.9%) 0.285
Stage II 69 (27.7%) 38 (37.6%)
Stage III 98 (39.4%) 39 (38.6%)
Stage IV 27 (10.8%) 7 (6.9%)
Missing 21 (8.4%) 6 (5.9%)

T
T1 13 (5.2%) 2 (2.0%) 0.349
T2 56 (22.5%) 18 (17.8%)
T3 106 (42.6%) 50 (49.5%)
T4 63 (25.3%) 25 (24.8%)
Missing 11 (4.4%) 6 (5.9%)

N
N0 68 (27.3%) 31 (30.7%) 0.24
N1 62 (24.9%) 29 (28.7%)
N2 55 (22.1%) 13 (12.9%)
N3 46 (18.5%) 22 (21.8%)
Missing 18 (7.2%) 6 (5.9%)

M
M0 215 (86.3%) 88 (87.1%) 0.397
M1 18 (7.2%) 4 (4.0%)
Missing 16 (6.4%) 9 (8.9%)

G
G1 9 (3.6%) 0 (0%) <0.001
G2 97 (39.0%) 23 (22.8%)
G3 126 (50.6%) 73 (72.3%)
Missing 17 (6.8%) 5 (5.0%)
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After calculating the risk score, samples were assigned into
high- and low-risk groups based on the median risk score. KM
survival analysis was performed to detect the survival
differences between the two risk groups. GSE19188 was
used as an external dataset to validate the prognostic model.

2.8 Protein Expression of Signature Genes
In order to investigate the protein expression of signature
genes in STAD, the immunohistochemistry images of STAD

were acquired from The Human Protein Atlas (http://www.
proteinatlas.org) database.

2.9 Statistical Analysis
The correlations of immune cells infiltration abundance with
overall survival (OS) were analyzed based on univariate Cox
regression analysis in the survival package (version3.2–7). The
differences in infiltration abundance of each immune cell type
between STAD and normal samples were compared using
WilcoxTest. The differences in stromal score, immune

FIGURE 3 | Difference between immune hot and cold tumors. (A) Kaplan-Meier curves showed the survival differences between hot and cold tumors; (B) volcano
plot showed the differentially expressed genes between hot and cold tumors. (C–D) The significantly enriched Gene Ontology annotations terms (C) and KEGG
pathways (D). BP, biological processes; CC, cellular component; MF, molecular function.
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FIGURE 4 | Tumor mutation load of hot and cold tumors. The summary plot of tumor mutation load showed the variant classification, variant type and top 10
mutated genes.
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score, and tumor purity among different immune subtypes
were compared by using a t-test. The differences in clinical
phenotype (including age, gender, TNM stage, pathologic-
stage, and tumor grades) between hot and cold tumors were
compared using the chi-square test. Univariate and
multivariable Cox regression analyses were performed to
evaluate the independent predictive value of the prognostic
model. Statistical difference was presented with p < 0.05.

3 RESULTS

3.1 Immune Infiltration Landscape in Tumor
and Normal Samples
The proportion of 22 immune infiltration cells in the tumor and
normal samples was evaluated. As shown in Figures 1A,B, the
infiltration proportion varied among different cell types, and
there were also differences in infiltration proportion for the same
cell type among samples. The infiltration abundance between
tumor and normal samples was also compared. It could be seen
that tumor samples showed a significantly higher infiltration
abundance of activated memory CD4 T cells, naive B cells,
macrophages M0/M1/M2, and eosinophils, while normal
samples showed a significantly higher infiltration abundance of
plasma cells and resting mast cells (Figure 1C).

3.2 Correlations of Immune Infiltration With
Overall Survival
The correlations of immune cells infiltration abundance with OS
were analyzed based on univariate Cox regression analysis in the
survival package, and the results showed that activated memory
CD4 T cells (HR = 0.557, p = 0.013) and CD8 T cells (HR = 0.6,
p = 0.021) had significant effect to OS of STAD patients
(Figure 1D). Further survival analysis indicated that higher

TABLE 2 | Results of univariate Cox regression analysis.

Symbol Hazard ratio p value

PEG10 1.224(1.091–1.372) 0.001
DKK1 1.161(1.039–1.297) 0.009
RGS1 1.240(1.033–1.488) 0.021
COL10A1 1.124 (0.988–1.278) 0.075
ENTPD8 0.837 (0.688–1.019) 0.076
FUT6 0.873 (0.735–1.039) 0.126
PYCARD 0.812 (0.612–1.079) 0.151
PTPRN2 0.890 (0.749–1.056) 0.182
MICB 0.848 (0.643–1.119) 0.244
BATF2 0.897 (0.745–1.079) 0.248
TK1 0.856 (0.652–1.125) 0.265
MMP12 0.972 (0.871–1.085) 0.617
PSMB10 0.960 (0.746–1.235) 0.75

FIGURE 5 | Establishment and validation of prognostic risk model. (A–C) Kaplan-Meier curves showed the correlations of genes expression with overall survival.
(D–G) Kaplan-Meier curves showed the correlations of risk score with overall survival in training-set, validation-set, total-set and GEO external validation set.
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infiltration abundance of activated memory CD4 T cells and CD8
T cells were associated with shorter survival time (Figures 1E,F).

3.3 Immune Subtypes of Stomach
Adenocarcinomas
To explore whether the STAD samples could be grouped into
different clusters based on the immune infiltration pattern, a
consensus clustering analysis was performed. Results indicated
that STAD samples could be grouped into three clusters
(Figures 2A,B). The distribution of immunes cells in
different clusters were shown in Figure 2C, cluster 2 had
significantly higher abundance of CD8 T cells and activated
memory CD4 T cells. Cluster 1 had significantly higher
abundance of resting memory CD4 T cells and
macrophages M0, and cluster 3 had a significantly higher
abundance of resting memory CD4 T cells. Further
ESTIMATE analysis suggested that cluster 2 had higher
immune-score and stromal-score, while showed lower
tumor-purity than other clusters (Figures 2D–F).
Considering that cluster 2 had higher immune-score and a
significantly higher abundance of CD8 T cells and activated
memory CD4 T cells, which were important immune cells for
targeting cancer in immunotherapy, we assigned cluster 2 as
hot tumors. While cluster 1 and 3 had a significantly higher
abundance of resting memory CD4 T cells and decreased
abundance of CD8 T cells, therefore we assigned cluster 1
and 3 as cold tumors.

3.4 Clinical Correlations of Hot and Cold
Tumors
The differences in clinical phenotype (including age, gender,
TNM stage, pathologic-stage, and tumor grades) between hot
and cold tumors were compared using the chi-square test. As
shown in Table 1, there were no differences on age, gender,
TNM stage, or pathologic-stage between hot and cold tumors,
while there had significant differences in tumor grades. The
cold tumor contained more proportion of lower grade tumors
(grade 1–2, 42.6% vs 22.8%) than the hot tumor, while the hot
tumor contained more proportion of higher-grade tumors

(grade 3, 72.3% vs 50.6%) than the cold tumor. Survival
analysis showed that hot tumors were associated with
longer survival (Figure 3A).

3.5 Differential Expression Between Hot and
Cold Tumors
A total of 388 DEGs were screened between hot and cold tumors,
of which 273 genes were up-regulated and 115 genes were down-
regulated (Figure 3B). Further functional enrichment indicated
that these DEGs were significantly involved in immune-related
biological processes, such as immune response, immune system
process, and regulation of immune system process (Figure 3C).
DEGs were also significantly enriched in immune-related
pathways, such as antigen processing and presentation;
immune system, cytokine signaling in the immune system,
adaptive immune system, and interferon signaling
(Figure 3D). TMB has been regarded as a prognostic and
predictive biomarker for immune checkpoint inhibitors
therapy (McNamara et al., 2020). Therefore, we analyzed the
TMB patterns, and similar TMB patterns were found between hot
and cold tumors (Figure 4). Missense mutation was the most
frequent variant classification, single nucleotide polymorphism
(SNP) accounted for the most frequent variant types. However,
there were significant differences in the top 10 mutated genes and
their mutation frequency between hot and cold tumors. The hot
tumor had a higher mutation frequency of OBSCN, CSMD3,
PIK3CA, and KMT2D, which were not found in the top 10
mutated genes in the cold tumor. The cold tumor had a higher
mutation frequency of PCLO, FLG, DNAH5, and FAT4, which
were not found in the top 10 mutated genes in the hot tumor. In
addition, the mutation frequency for commonly mutated genes
showed differences, for example, ARID1A (41% vs 18% in hot
and cold tumors).

3.6 Identification of Signature Genes for
Prognostic Model Establishment
In order to investigate the prognostic value of these DEGs, KM
survival analysis was performed, and 13 genes were found to be
associated with the overall survival of patients (Supplementary

TABLE 3 | Univariate and multivariables Cox regression analysis for clinical factors.

Clinical characteristics Univariables cox Multivariables cox

Hazard ratio p Value Hazard ratio p Value

pathologic_N 1.328(1.145–1.540) 0 0.107 1.208 (0.960–1.520)
Stage 1.494(1.219–1.830) 0 0.696 1.085 (0.722–1.631)
RiskScore 1.969(1.410–2.751) 0 0.001 1.906(1.310–2.775)
pathologic_T 1.291(1.051–1.586) 0.015 0.381 1.138 (0.852–1.520)
pathologic_M 1.959(1.103–3.481) 0.022 0.523 1.294 (0.586–2.856)
Grade 1.383(1.005–1.904) 0.047 0.394 1.174 (0.812–1.699)
Age 1.446 (0.995–2.102) 0.053
Groups 0.694 (0.475–1.013) 0.058
Gender 1.325 (0.930–1.887) 0.119
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Table S1). The associations of these prognostic genes with M6A
regulator genes were investigated, and all 13 prognostic genes
showed co-expression with m6A regulator genes
(Supplementary Figure S1), indicating that these genes might
be regulated by m6A methylated modification. Univariate Cox
regression analysis was performed for these 13 prognostic genes,
and three signature genes (PEG10, DKK1, and RGS1) were
identified to have a significant effect on the overall survival of

patients (Table 2). These three genes were identified as risk
factors for survival with a hazard ratio >1. Consistently, KM
survival analysis indicated that high expression of PEG10, DKK1,
and RGS1 were associated with poor survival (Figures 5A–C).
After calculating the prognostic coefficient for signature genes
using multivariable Cox regression analysis, the prognostic model
was established with the formula of Risk score = PEG10*0.002 +
RGS1*0.018 + DKK1* 0.074. Survival analysis indicated that the

FIGURE 6 | Validation for signature genes. (A) Correlations gene expression level with tumor purity and six immune cells infiltration; (B) the differences on infiltration
levels among different copy number status; (C) the immunohistochemistry images showed the protein expression of PEG10 and RGS1.
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risk score could stratify STAD patients, of which patients in the
high-risk group were found to have a shorter survival time than
that of the low-risk group in both training-set, validation-set,
total-set, and GEO external validation dataset (Figures 5D–G).
Additionally, the risk score was identified as a prognostic factor
independent from other clinical phenotype factors in STAD
(Table 3).

3.7 Association of Signature Genes
Expression With Immune Infiltration Levels
The associations of signature gene expression with immune
infiltration levels in STAD were analyzed using the TIMER
online tool. As shown in Figure 6A, expression of RGS1
showed strong positive correlations with the infiltration levels
of CD8+ T cells, CD4+ T cells, macrophage, neutrophil, and
dendritic cells (r > 0.3 and p < 0.05). PEG10 expression showed
weak positive correlations with the infiltration levels of CD4+

T cells and macrophages (p < 0.05). The infiltration levels of all
these six immune cell types showed significant differences among
different copy number statuses of three signature genes
(Figure 6B). Additionally, to detect the protein expression of
signature genes in STAD, the immunohistochemistry images of
STAD were acquired from the HPA database. Consistently,
protein expression of PEG10 and RGS1 showed significantly
high expression in tumor tissue than in the normal tissue
(Figure 6C). No immunohistochemistry images for DKK1
were found.

4 DISCUSSION

In recent years, the attention to tumor immunotherapy is rapidly
increasing, and the theory and practice of immunotherapy for
stomach cancer have also achieved good results, bringing hope to
patients with advanced cancer, but there are still many obstacles
to overcome. For example, some patients showed continued
response after a short period of ipilimumab treatment.
However, some patients respond well to initial
immunotherapy but relapse after a period of time (Bang et al.,
2017; Janjigian et al., 2018). Therefore, it is necessary to explore
the immune phenotype classification of stomach cancer and
screen the dominant population that may benefit from
immunotherapy.

In the current study, the immune infiltration landscape of
STAD was investigated. Various immune cell types showed
significant differences in infiltrating abundance between tumor
and normal samples. Tumor samples showed significantly higher
infiltration abundance of activated memory CD4 T cells, naive
B cells, macrophages, and eosinophils, while normal samples
showed significantly higher infiltration abundance of plasma cells
and resting mast cells. In addition, activated memory CD4 T cells
and CD8 T cells were found to have a significant effect on the OS
of STAD patients. This emphasized that the immune infiltrating
status had the ability to reflect the prognosis of patients. The
purpose of tumor immunotherapy is to promote the activity of
cytotoxic T lymphocytes (CTLs) within the tumor and to

establish durable and efficient anti-tumor immunity (Maher
and Davies, 2004). CD4+ T cells can not only kill tumor cells
directly in an IFN-γ-dependent manner but also maintain and
promote the survival of CD8+ T cells through activation of CD8+

T cells, generation of memory CTLs response, and so on (Borst
et al., 2018). Tumor-infiltrating lymphocytes (TIL) is a
heterogeneous lymphocyte group that has an anti-tumor effect
on the tumor, and CD8+ T cells are the main effector cells
(Farhood et al., 2019; Raskov et al., 2021). The loss of TILs
function in the tumor microenvironment is the main factor
leading to tumor progression and failure of cellular
immunotherapy (Zhang et al., 2019; Lin et al., 2020).
Therefore, simultaneously activating CD4+ T cells and CD8+

T cells is an ideal strategy for immunotherapy.
Based on the immune infiltration pattern, the STAD samples

were grouped into three clusters in consensus clustering analysis,
of which Cluster two was mainly enriched by a higher abundance
of CD8 T cells and activated memory CD4 T cells, and had high
immune-score calculated by ESTIMATE algorithm. Therefore
Cluster 2 was defined as a hot tumor. While cluster 1 and 3 had a
significantly higher abundance of resting memory CD4 T cells
and decreased abundance of CD8 T cells as well as a lower
immune score, therefore we assigned cluster 1 and 3 as a cold
tumor. The differences at the transcriptional level between hot
and cold tumors were further investigated. Consistently, genes
that were differentially expressed between hot and cold tumors
were mainly enriched in immune-related biological processes and
pathways, such as antigen processing and presentation; immune
system, cytokine signaling in the immune system, adaptive
immune system, and interferon signaling.

From these DEGs, three signature genes associated with
overall survival were identified, including PEG10, DKK1, and
RGS1. PEG10 encodes paternally expressed gene 10, and has been
demonstrated to be highly expressed in various tumors,
functioning as an oncogene involved in apoptosis,
proliferation, and metastasis of tumors (Xie et al., 2018).
PEG10 expression has been linked to worse prognosis and
tumor progression or recurrence in endometrial cancer (Zhang
et al., 2021), hepatocellular carcinoma (Bang et al., 2015), oral
squamous cell carcinoma (Sharan Singh et al., 2017), showing
potential predictive and prognostic ability as a biomarker (Ge
et al., 2018). PEG10 knockdown showed an anti-tumor effect in
stomach cancer by inhibiting proliferation, migration, and
invasion (Wang et al., 2018). DDK1 is a dickkopf-related
protein, also known as an inhibitor one of beta-catenin-
dependent Wnt signaling. Elevated expression of DKK1 has
been reported in different tumors (Betella et al., 2020).
Expression of DKK1 in both serum and tissue levels has been
reported to be a biomarker in diagnosis and predicting survival
and tumor recurrence in stomach cancer (Lee et al., 2012; Liu
et al., 2016; Hong et al., 2018). In addition, DDK1 has been linked
to T-DM1 resistance in STAD (Li et al., 2018). Moreover, DKN-
01, an IgG4 monoclonal antibody targeting DKK1 has been
demonstrated to have therapeutic benefits in gastroesophageal
malignancies (Wall et al., 2020), indicating the potential of DKK1
in cancer therapy. RGS1, a regulator of G protein signaling 1,
expression has been reported to have a significant effect on the
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survival of stomach cancer, and is associated with the
differentiation degree of tumor (Li S. et al., 2021). RGS is
linked to various immune-mediated diseases. RGS1 is highly
expressed in certain B cells, and deeply affects the directed
migration of lymphoid cells (Moratz et al., 2000). Dendritic
cells transfected with RGS1 can generate RGS1-specific
cytotoxic T cells (Grünebach et al., 2008). Also, RGS1 has
been reported to affect the frequency of follicular helper
T cells (Caballero-Franco and Kissler, 2016). This was
consistent with our findings that expression of RGS1 showed
strong positive correlations with the infiltration levels of CD8+

T cells, CD4+ T cells, macrophage, neutrophil, and dendritic cells.
Limitations of our study are as follows: first, our prediction model
was constructed and validated with data from the TCGA database
and GEO based on the “cold” and “hot” tumors. The use of this
model in a real clinical setting remains controversial. More
studies are still required to confirm our observation. Besides,
the testing result of mRNA expression level is not stable. In the
future, we will further verify this prediction model at the protein
expression level.

5 CONCLUSION

A three-gene-based immune-related prognostic model was
established, which could stratify STAD patients well. Patients
with the high-risk score were associated with worse survival, and
the risk score had an independent prognostic value. Our model
contributed to exploring the immune phenotype classification of
STAD and screening the dominant population that may benefit
from immunotherapy.
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