
fnmol-15-879909 May 13, 2022 Time: 16:18 # 1

REVIEW
published: 19 May 2022

doi: 10.3389/fnmol.2022.879909

Edited by:
Fengxian Li,

Southern Medical University, China

Reviewed by:
Ulf Strauss,

Charité − Universitätsmedizin Berlin,
Germany

Muhammad Abul Hasan,
NED University of Engineering

and Technology, Pakistan

*Correspondence:
Yu Fang

fangyu_hit@126.com
Xue-Qiang Wang

wangxueqiang@sus.edu.cn

Specialty section:
This article was submitted to

Pain Mechanisms and Modulators,
a section of the journal

Frontiers in Molecular Neuroscience

Received: 20 February 2022
Accepted: 04 May 2022
Published: 19 May 2022

Citation:
Yang Q-H, Zhang Y-H, Du S-H,

Wang Y-C, Fang Y and Wang X-Q
(2022) Non-invasive Brain Stimulation

for Central Neuropathic Pain.
Front. Mol. Neurosci. 15:879909.
doi: 10.3389/fnmol.2022.879909

Non-invasive Brain Stimulation for
Central Neuropathic Pain
Qi-Hao Yang1, Yong-Hui Zhang1, Shu-Hao Du1, Yu-Chen Wang1, Yu Fang2* and
Xue-Qiang Wang1,3*

1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China, 2 School of Mechanical and Automotive
Engineering, Shanghai University of Engineering Science, Shanghai, China, 3 Department of Rehabilitation Medicine,
Shanghai Shangti Orthopaedic Hospital, Shanghai, China

The research and clinical application of the noninvasive brain stimulation (NIBS)
technique in the treatment of neuropathic pain (NP) are increasing. In this review
article, we outline the effectiveness and limitations of the NIBS approach in treating
common central neuropathic pain (CNP). This article summarizes the research progress
of NIBS in the treatment of different CNPs and describes the effects and mechanisms
of these methods on different CNPs. Repetitive transcranial magnetic stimulation
(rTMS) analgesic research has been relatively mature and applied to a variety of CNP
treatments. But the optimal stimulation targets, stimulation intensity, and stimulation
time of transcranial direct current stimulation (tDCS) for each type of CNP are still
difficult to identify. The analgesic mechanism of rTMS is similar to that of tDCS, both of
which change cortical excitability and synaptic plasticity, regulate the release of related
neurotransmitters and affect the structural and functional connections of brain regions
associated with pain processing and regulation. Some deficiencies are found in current
NIBS relevant studies, such as small sample size, difficulty to avoid placebo effect, and
insufficient research on analgesia mechanism. Future research should gradually carry
out large-scale, multicenter studies to test the stability and reliability of the analgesic
effects of NIBS.

Keywords: rTMS, tDCS, central neuropathic pain, analgesic mechanism, analgesic effects

INTRODUCTION

Neuropathic pain (NP) was defined by the International Association for the Study of Pain (IASP) in
2008 as “pain caused by a lesion or disease of the somatosensory nervous system” (Beydoun, 2003).
And the prevalence of NP was about 3.3%–8.2% (Haanpää et al., 2011). According to the anatomical
location of the injury or disease, NP can be classified as central NP (CNP), which is due to lesions or
diseases of the spinal cord or brain, and peripheral neuropathic pain (PNP), which includes diabetic
neuropathy, nerve damage, facial pain, phantom limb pain, cancer pain, and deformity (Colloca
et al., 2017). The most common CNP syndromes include NP associated with spinal cord injury
(SCI), post-stroke pain (PSP), NP associated with multiple sclerosis (MS), and Parkinson’s disease
(PD) (Finnerup et al., 2016; Zhang et al., 2021; Figure 1). The appearance and aggravation of pain
symptoms often occur within a few days after the lesion or disease. CNP has no specific treatment
at present (Dworkin et al., 2013; Cruccu et al., 2016), and patients suffer from chronic pain for a
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long time, which seriously affects their quality of life. The aversive
experience of pain is activated by the temporal and spatial
coordination of a neural network called the pain matrix after
a nociceptive stimulus (Garcia-Larrea and Bastuji, 2018). Pain
matrix is mainly distributed in the cerebral cortex and subcortical
regions, including thalamus, insula, cingulate cortex, prefrontal
cortex, and frontal-orbitofrontal cortex (Mouraux et al., 2011).
Responses during NP exhibit reproducible patterns, in particular
hypoactivity of the thalamus contralateral to the pain area and
deficit in reactiveness of the prefrontal cortices during NP
(Garcia-Larrea and Peyron, 2013). Common pharmacological
treatments for NP include calcium channel modulators, opioid
analgesics, and antidepressants, while non-pharmacological
treatments include exercise, noninvasive brain stimulation
(NIBS), spinal cord stimulation (SCS), radiofrequency ablation
(RFA), and nerve block (Baron et al., 2010; Reimer et al., 2014;
Zheng et al., 2021; Peng et al., 2022; Wu et al., 2022). Since
there is no specific drug for NP at present, non-drug therapy
has been gradually accepted by NP patients because of its no
side effects, no drug resistance, and strong pertinence (Moisset
et al., 2020). NIBS has been applied in the rehabilitation of
various brain dysfunction to regulate cortical excitability and
neuroplasticity and has attracted wide attention because of its
noninvasiveness, tolerability, and portability (Chisari et al., 2014).
In basic and clinical settings, two approaches have become
the pillars of NIBS: repetitive transcranial magnetic stimulation
(rTMS) and transcranial direct current stimulation (tDCS) with
a painless current (current intensities ± 1–2 mA) applied to the
scalp. Both techniques are effective in reducing pain as measured
by the visual analog scale (VAS) and numerical rating scale
(NRS) (Ayache et al., 2016b; Nardone et al., 2017). rTMS focuses
on neuromodulation sequelae through magnetic fields (Hallett,
2007). tDCS is applied to the scalp by a weak current to produce
neuromodulation (Terney et al., 2008). In terms of different
types of pain, NP response to NIBS is better than non-neurotic
pain (Knotkova et al., 2021). NIBS is a promising therapeutic
technique for resolving the dynamic neurological changes caused
by NP (Costa et al., 2019).

REPETITIVE TRANSCRANIAL
MAGNETIC STIMULATION FOR
CENTRAL NEUROPATHIC PAIN

Based on the principles of electromagnetic induction and
electromagnetic conversion, TMS, including single-pulse TMS
and rTMS, alters the motor potential of cortical nerve cells by
stimulating the magnetic field generated by coil transients, which
affects intra-brain metabolism and neuroelectric activity (Hallett,
2007). Compared with the chronic implantation procedure,
rTMS is a safe, noninvasive, easy to tolerate, and effective
therapeutic intervention pattern that continuously distributes
multiple pulses at a fixed frequency and is more widely used in
clinical applications (Gu and Chang, 2017; Choi et al., 2018).
The main limitation of rTMS is the short-term analgesic effects
(Hemond and Fregni, 2007). Low-frequency rTMS (LF-rTMS,
≤1 Hz) can inhibit the metabolism of nerve cells and reduce

cortical excitability, whereas high-frequency rTMS (HF-rTMS,
≥1 Hz) has the opposite effect (Wagner et al., 2007). The
reduction in VAS and NRS scores with HF-rTMS (10–20 Hz) is
much greater than that with LF-rTMS (≤1 Hz) under conditions
for analgesia (Lefaucheur et al., 2001; Canavero et al., 2002;
Lefaucheur, 2006; Leo and Latif, 2007; Borckardt et al., 2011).
Therefore, HF-rTMS is often used in the clinical treatment of NP.
More research information about the effect of rTMS on CNP is
shown in Table 1.

The guidelines of the International Federation of Clinical
Neurophysiology and the European Federation of Neurological
Societies supported the specific analgesic effect of HF-rTMS
stimulation in the primary motor cortex (M1) of NP (Cruccu
et al., 2007; Lefaucheur et al., 2020). Moreover, a longer course
of treatment and continuous treatment was more conducive
to the analgesic effect and therefore included in the grade A
recommendation. Stimulation of the frontal lobes, particularly
the dorsolateral prefrontal cortex (DLPFC), was associated with
improved depression and cognitive impairment, but its effect on
NP improvement was clinically controversial and not addressed
in the guidelines. In the studies included in the guidelines, rTMS
was often used to stimulate the contralateral M1 of NP at a
frequency of 5–10 Hz; approximately 80%–90% resting motor
threshold (RMT) and 5–10 sessions of treatment can usually have
a definite analgesic effect (Lefaucheur et al., 2020).

Repetitive Transcranial Magnetic
Stimulation for Post-stroke Pain
Pain was common and present in 10%–45.8% of stroke cases
(Paolucci et al., 2016; Choi-Kwon et al., 2017). PSP impeded
recovery, affects the mental state of patients with stroke, and
further impairs the quality of life of patients (Lundström et al.,
2009; Naess et al., 2012). The common variants of PSP are
central poststroke pain (CPSP), complex regional pain syndrome
(CRPS), shoulder pain, spasticity-related pain, and headache
(Treister et al., 2017; Delpont et al., 2018). CPSP was a CNP
disorder that affected 10%–35% of the post-stroke population
(Flaster et al., 2013). The properties of pain included searing or
freezing pain or numbness, and pain intensity was reported as a
VAS score of nearly 8 out of 10 (Oh et al., 2015). Some studies
that focused on the analgesic effect of rTMS on PSP showed
that HF- rTMS (5–20 Hz) can produce effective immediate
pain relief in patients after stroke, and multiple sessions and
a long duration of intervention can make the analgesic effects
last (Ohn et al., 2012; Hosomi et al., 2013; Matsumura et al.,
2013; Hasan et al., 2014; Kobayashi et al., 2015; Ramger et al.,
2019). Most patients with CPSP responded positively to rTMS
(Ohn et al., 2012; Matsumura et al., 2013; Kobayashi et al.,
2015). Pain relief was more pronounced in the rTMS group than
in the sham stimulation group as measured by VAS and NRS.
They also found a time-course effect on pain relief after 1 and
3 weeks of stimulation that lasted for up to 12 weeks and peaked
at around 8 weeks.

The influence of the site of the stimuli around the motor
cortex on the analgesic effect is also the focus of research (Saitoh
and Yoshimine, 2007). M1 is the stimulus area selected by most
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FIGURE 1 | The common diseases that cause central neuropathic pain. Stroke, Parkinson’s disease, multiple sclerosis, and spinal cord injury often lead to central
neuropathic pain that persists throughout the recovery cycle. This pain clearly has a negative effect on the prognosis of patients.

studies and has achieved a good analgesic effect on PSP (Saitoh
and Yoshimine, 2007; Ohn et al., 2012; Hosomi et al., 2013;
Matsumura et al., 2013; Hasan et al., 2014; Sacco et al., 2014;
Kobayashi et al., 2015; Ramger et al., 2019). In addition, two
studies (Khedr et al., 2005; Zhao et al., 2021) selected the upper
limb and hand regions of the motor cortex as stimulation sites
and found that CPSP is effectively alleviated by intervention at
these sites. By contrast, DLPFC and anterior cingulate cortex
(ACC) were also selected for stimulation in some studies but
did not produce analgesic effects compared with the stimulation
of the motor cortex (de Oliveira et al., 2014; Galhardoni et al.,
2019; Attal et al., 2021). In addition to common PSP, Choi and
Chang (2018) found that rTMS could be used as an effective
therapeutic tool for managing post-stroke shoulder pain, and this
pain relief could be maintained for about 4 weeks after 10 sessions
of HF-rTMS (10 Hz) treatment.

Repetitive Transcranial Magnetic
Stimulation for Central Neuropathic Pain
Associated With Spinal Cord Injury
Central neuropathic pain is a common and disabling symptom
in individuals with SCI; it affects 75%–81% of SCI patients, and
one-third reported severe pain that worsens their mood state
(Margot-Duclot et al., 2009). CNP affects the quality of life,
rehabilitation, and recovery of more than two-thirds of SCI cases
(Rekand et al., 2012). CNP following SCI is resistant to common
pharmacologic treatments (Moreno-Duarte et al., 2014). rTMS
has been developed to offer a safe and reliable approach to pain
management (Quesada et al., 2018). Most of the stimulation sites
were located in M1, as well as the premotor cortex (PMC) and
limb cortex areas depending on the pain site (Lefaucheur et al.,
2004; Sun et al., 2019). One study found analgesic effects when

stimulating the vertex (Defrin et al., 2007). HF-rTMS (5–20 Hz)
can produce effective pain relief for NP following SCI (Kang
et al., 2009; Yılmaz et al., 2014; Zhao et al., 2020). Zhao et al.
(2020) found that 10 Hz rTMS over the hand area of the motor
cortex could relieve acute CNP during the early stage of SCI.
Some studies indicated that rTMS has no early pain relief after
SCI but has a better intermediate analgesic effect compared with
sham rTMS (Shen et al., 2020). Regarding the management of
intractable NP by rTMS in cases with SCI, Yılmaz et al. (2014)
found that the middle-term (over 6 weeks) analgesic effect of
rTMS (10 Hz) was encouraging. Sun et al. (2019) found that
rTMS (10 Hz, 6 weeks with 1-day interval per week) showed
more analgesic effect on NP following SCI at 2–6 weeks. rTMS
applied over the hand or leg motor cortex can relieve NP, improve
spasm, and therefore reduce pain in patients with incomplete SCI
(Kumru et al., 2010; Jetté et al., 2013). Pain relief caused by single
rTMS treatment may be due to placebo, but patients with SCI may
benefit from multiple rTMS sessions (Defrin et al., 2007).

Repetitive Transcranial Magnetic
Stimulation for Central Neuropathic Pain
Associated With Parkinson’s Disease
Parkinson’s disease is a common chronic progressive
neurodegenerative disease among middle-aged and elderly
people and is characterized by motor and non-motor symptoms.
More than 90% of patients with PD experienced non-motor
symptoms; among which, the most common was pain with an
incidence of 40%–85%, and it seriously affected the quality of life
of patients (Elefant et al., 2012; Young Blood et al., 2016). The
current rTMS protocol did not pose a substantial risk to patients
with PD (Vonloh et al., 2013). Most current research on rTMS in
PD focused on motor symptoms, such as gait, motor retardation,
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TABLE 1 | Major findings of Repetitive transcranial magnetic stimulation (rTMS) in central neuropathic pain (CNP) studies.

Author, year Study type CNP
type

Sample (size, sex,
age)

rTMS site Frequency/Intensity Duration Analgesic effect

de Oliveira et al.,
2014

Prospective
cohort

CPSP 21, 10M, 11F, Real:
55 ± 9.67, Sham:
57.8 ± 11.86

M1/DLPFC 10 Hz/120%RMT 10 days No effective pain relief by VAS

Zhao et al., 2021 Randomized
control

Acute
CPSP

38, 21M, 7F, Real:
50.1 ± 11.34, Sham:
48.9 ± 11.51

Upper limb area of
the motor cortex

10 Hz/80%RMT 3 weeks Significant pain relief by NRS and
MPQ

Khedr et al., 2005 Randomized
parallel

PSP 24, 14M, 10F,
52.3 ± 10.3

Hand area of the
motor cortex

20 Hz/80%RMT 5 days Pain relief by VAS and LANSS
scales

Hosomi et al., 2013 Cross-over PSP 57, Gender not,
60.7 ± 10.6

M1 5 Hz/90%RMT 10 sessions Modest pain relief by VAS

Hasan et al., 2014 Case series PSP 14, 10M, 4F, 57 (median) M1 10 Hz/80%–90%RMT 5 sessions Modest but significant pain relief
by NRS

Kobayashi et al.,
2015

Cross-over PSP 18, 12M, 6F, 63.0 ± 9.9 M1 5 Hz/90%RMT 12 weeks Pain relief by VAS

Matsumura et al.,
2013

Cross-over PSP 20, 12M, 8F, 63.6 ± 8.1 M1 5 Hz/100%RMT 1 day Pain relief by VAS correlated well
with morphine test

Galhardoni et al.,
2019

Cross-over PSP 98, Gender not,
55.02 ± 12.13

ACC/PSI 10 Hz/90%RMT 5 sessions No significant pain relief by NRS

Ohn et al., 2012 Case series PSP 22, 13M, 9F, 54.0 ± 9 M1 10 Hz/90%RMT 5 days Significant pain relief by VAS

Sun et al., 2019 Sham-control SCI 17, 15M, 2F, 23.0–54.5 M1 10 Hz/80%RMT 6 weeks More pain relief from 2 to
6 weeks by NRS

Lefaucheur et al.,
2004

Cross-over SCI 12, Gender/age not M1 10 Hz/80%RMT 1 session Significant but transient pain
relief by VAS

Defrin et al., 2007 Randomized
control

SCI 11, 7M, 4F, 54.0 ± 6 vertex 5 Hz/115%RMT 10 days Continued pain relief by MPQ

Kang et al., 2009 Cross-over SCI 11, 6M, 5F, 54.8 ± 13.7 M1 10 Hz/85%RMT 5 days No Significant pain relief by NRS
and BPI

Jetté et al., 2013 Cross-over SCI 16, 11M, 6F, 50.0 ± 9 motor cortex (hand /
leg area)

10 Hz/90%RMT (hand
area) 110%RMT (leg
area)

3 sessions Significant but equivalent pain
relief by NRS

Yılmaz et al., 2014 Randomized
control

SCI 16, 16M, 38.6 ± 6.5 motor cortex 10 Hz/110%RMT 10 days Middle-term (over 6 weeks) pain
relief by VAS

Centonze et al.,
2007

Randomized
control

MS 19, 5M, 14F, Age not M1 5 Hz/100%RMT 2 weeks Long-lasting spasticity pain relief

CNP, central neuropathic pain; PSP, post-stroke pain; CPSP, central post-stroke pain; SCI, spinal cord injury; MS, multiple sclerosis; M, male; F, female; rTMS, repetitive
transcranial magnetic stimulation; Hz, hertz; RMT, resting motor threshold; ACC, anterior cingulate cortex; PSI, posterior superior insula; M1, primary motor cortex; DLPFC,
dorsolateral prefrontal cortex; PMC, premotor cortex; VAS, visual analog scale; NRS, numerical rating scale; BPI, brief pain inventory; MPQ, McGill pain questionnaire;
LANSS, Leeds assessment of neuropathic symptoms and signs.

and coordination, as well as emotional and psychiatric symptoms
(Xie et al., 2015; Brys et al., 2016; Dagan et al., 2017). rTMS has
antidepressant efficacy and can improve motor function (Xie
et al., 2015). Studies showed that PD with NP was associated
with depression and dyskinesia; thus, treating depression to
improve motor symptoms can relieve the pain of patients with
PD (Yang et al., 2014). rTMS usually targets the left DLPFC in
the treatment of depression but regulates the excitability of pain
circuits in related brain regions by stimulating the M1 region to
achieve analgesia (Moseley and Flor, 2012; Martin et al., 2013).
Therefore, the study of the analgesic effect of rTMS on patients
with PD still needs more research input in terms of stimulation
site, as well as the frequency and intensity of stimulation.

Repetitive Transcranial Magnetic
Stimulation for Central Neuropathic Pain
Associated With Multiple Sclerosis
Multiple sclerosis is a disease caused by an inflammatory
demyelinating process in the central nervous system (CNS) and
a leading cause of disability in young adults with substantial

economic and social burdens (Patwardhan et al., 2005; Yamout
and Alroughani, 2018). Many common symptoms of MS, such
as spasticity, pain, depression, and cognitive impairment, cannot
be fully managed by medication (Kesselring and Beer, 2005). The
first clinical application of rTMS in MS patients was to manage
spasms (Centonze et al., 2007). HF-rTMS can significantly
reduce spasticity, compared to sham stimulation. Some studies
supported a more durable effect in reducing pain and fatigue
following HF-rTMS (Mori et al., 2011; Korzhova et al., 2019).
According to the recent evidence-based guidelines (Lefaucheur
et al., 2014), no recommendations still exist for the use of
rTMS in the treatment of patients with MS, even though rTMS
has few promising results for sensory and motor symptoms
(Iodice et al., 2017).

Mechanisms of Repetitive Transcranial
Magnetic Stimulation for Central
Neuropathic Pain
Currently, the mechanism of rTMS is found to be related to
synaptic plasticity, neural regulation, and response (Figure 2).
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FIGURE 2 | The neurophysiological mechanisms of rTMS. NMDA, N-methyl-D-aspartate receptor; LTP, long-term potentiation; IL, interleukin; TNF, tumor necrosis
factor; Bcl, B-cell lymphoma; Bax, Bcl2-associated X; NSCs, neural stem cells; DRD2, dopamine receptor D2.

Brain Plasticity
Repetitive transcranial magnetic stimulation acts on the synapses
of neurons and causes axons to be depolarized and transmitted
down-line, which then leads to changes in the nerve cell body, cell
permeability, and excitability and results in brain plasticity. Esser
et al. (2006) found that HF-rTMS induces long-term potentiation
(LTP), which is a change in information transmission resulting
from the emergence of central neurologic transsynaptic/trans-
presynaptic nerve fibers and is also one of the important cellular
and molecular mechanisms of human memory and learning. HF-
rTMS can remarkably increase the level of serum brain-derived
neurotrophic factor (BDNF) by enhancing cortical excitability
and brain plasticity, which may be the basis of NP treatment
by HF-rTMS (Dockx et al., 2018). Blocking signaling between
BDNF and Tyrosine receptor kinase B (TrkB) was found to
reduce abnormal pain caused by nerve injury (Coull et al., 2005).
But rTMS has been found to enhance this signaling in the
cerebral cortex (Wang et al., 2011). rTMS may induce the increase
of BDNF level in the motor cortex or frontal lobe to cause
neuroplasticity changes and thus achieve the analgesic effect.

Ghosh et al. (2010) found that rTMS may regulate the
balance of inhibitory neurotransmitters and excitatory glutamate
neurotransmitters in the cerebral cortex to achieve pain
relief. Gamma-aminobutyric acid (GABA) is an inhibitory
neurotransmitter because it inhibits certain interneuronal
synaptic signals, thereby preventing or reducing the risk of
CNP (Gwak and Hulsebosch, 2011). Some studies found that
single rTMS protocol increased phrenic motoneuron excitability
at 10 Hz through the mediation of a local GABA ergic
disinhibition (Barr et al., 2013; Michel-Flutot et al., 2021).

rTMS (10 Hz) alleviated acute CNP in the early stages of SCI
by improving motor-evoked potential (MEP) parameters and
modulating BDNF and nerve growth factor (NGF) secretion
(Zhao et al., 2020). Some studies have found that rTMS can
promote dopamine release and dopamine activity is affected by
the DRD2 genotype (Strafella et al., 2001, 2003; Hagelberg et al.,
2002). When navigated rTMS targeted M1, the participants with
homozygous DRD2 T/T genotype were remarkably more likely
to experience pain relief than those with other genotypes (Ojala
et al., 2021). Therefore, the plasticity-related gene polymorphisms
of DRD2 may play a key role in CNP regulation.

Central Sensitization Reduction
Central sensitization refers to the abnormal increase in the
excitability or synaptic transmission of central pain-related
neurons, including the increase in the spontaneous discharge
activity of neurons, the expansion of the sensory domain,
the reduction of threshold value to external stimuli, and the
enhancement of response to suprathreshold stimuli, which
amplify the transmission of pain signals (Dooley et al., 2007;
Latremoliere and Woolf, 2009; Quintero et al., 2011; Nickel et al.,
2012). The maintenance of NP depends on central sensitization.
Cioni and Meglio (2007) used functional magnetic resonance
imaging to find that rTMS can inhibit the transmission of pain
information in the spinothalamic pathway. HF-rTMS may reduce
central sensitization and relieve NP by down-regulating the
overexpression of neuronal nitric oxide synthase in ipsilateral
dorsal root ganglions and inhibiting the activity and proliferation
of astrocytes in L4–6 spinal dorsal horn ipsilateral to the NP
(Yang et al., 2018).
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Neuroinflammation Modulation
The exudation of mast cells, macrophages, and other immune
cells; sympathetic nerve excitation; and vascular dilation after
nerve injury or disease make the peripheral nervous system
and CNS produce histamine, NGF, IL-10, tumor necrosis factor
(TNF)-α, and other pro-inflammatory cytokines and then cause
NP (Vallejo et al., 2010; Li et al., 2011). Mechanical ectopic pain
and hyperalgesia were partially reversed by rTMS, which may be
related to increased levels of TNF-α, and IL-10 in the prefrontal
cortex (Toledo et al., 2021).

Tumor necrosis factor-α expression in the central nervous
system contributes to the induction of NP in rats (Andrade et al.,
2011). The classical anti-inflammatory effects of IL-10 may be
involved in the development of NP (Moore et al., 2001). rTMS
has been shown to alter IL-10 levels in a variety of situations.
rTMS reduced the activation of microglia and increased the level
of IL-10 in the cortex, alleviating neurological abnormalities in
rats with MS-induced neurological injury (Yang et al., 2020).
The reduction of neurotoxic astrocyte polarization through IL-10
effects has been proposed as a mechanism by which rTMS (5-
10 Hz) is effective in nerve regeneration induced by stroke in rats
(Hong et al., 2020). Changes in IL-10 levels observed in NP rats
treated with rTMS are reflected in increased TNF-α, contributing
to central homeostasis. A link between pain and microglia TNF-
α has been proposed because it improves long-term synaptic
enhancement in spinal horn C fibers in animal models of nerve
injury (Liu et al., 2017).

Cell Proliferation
Repetitive transcranial magnetic stimulation could promote
nerve cell proliferation in healthy, depressed, and stroke rat
models. Ueyama et al. (2011) stimulated rats with HF-rTMS
(25 Hz) for 2 weeks and found that 5-bromo-2-deoxyuridine-
positive cells in the subventricular zone increased remarkably
in the rTMS group. The proliferative cells were later identified
as neural stem cells (NSCs), but the proliferative mechanism
remains unclear. The anti-apoptotic effect of rTMS may cause
NSC proliferation. Yoon et al. (2011) treated cerebral ischemia
rats with HF-rTMS (10 Hz) for 14 days, and the Bcl-2/Bax ratio
increased and apoptosis decreased after treatments. In addition,
Guo et al. (2014) found that 10 Hz rTMS can promote the
secretion of the miR-106B family in cerebral ischemia rats and
regulate the NSC cycle by regulating the downstream target gene,
P57, which indicates that HF-rTMS can affect the cell cycle and
stimulate cell proliferation. The in vitro stimulation of NSCs
by HF-rTMS (10 Hz) can increase the mIR-106B expression of
NSCs and promote the proliferation of NSCs (Liu et al., 2015).
However, no relevant experimental study has been conducted on
whether rTMS can promote NSC differentiation.

TRANSCRANIAL DIRECT CURRENT
STIMULATION FOR CENTRAL
NEUROPATHIC PAIN

Transcranial direct current stimulation is an approach that
induces neuroplasticity and modulates cortical excitability by

applying a weak direct current over the scalp of subjects (Stagg
and Nitsche, 2011). tDCS is a noninvasive neuromodulatory
technique that reduces bidirectional polarity-dependent changes
in underlying cortical areas (Fregni et al., 2006). Five studies,
which collectively included 95 NP cases, also found that tDCS
can effectively manage NP (Antal et al., 2010; Soler et al.,
2010; Bolognini et al., 2013; Attal et al., 2016; Houde et al.,
2020). In the included studies, the M1 area plays a key role
in the analgesic effect of tDCS. tDCS’s cathode stimulation of
the M1 and PMC can improve the hand motor function of
patients with stroke, as well as the pain perception and pain-
related symptoms induced by chronic pain (Andrade et al.,
2017; Zortea et al., 2019). tDCS is a safe technique and
has slight adverse reactions, such as headache, discomfort on
the scalp, and a slight burning sensation under the electrode
sheet (Nitsche et al., 2009; Brunoni et al., 2011; Fagerlund
et al., 2015). Compared with rTMS, tDCS does not have the
risk of convulsions and only has a brief and mild tingling
sensation, whereas rTMS causes tingling throughout the process
(Hummel et al., 2005).

The tDCS guidelines published by the International Society
for Neuropsychopharmacology indicated that the use of tDCS to
stimulate the left M1 region was highly effective in improving
NP and was therefore a level B recommendation (Fregni et al.,
2021). The guideline of the International Federation of Clinical
Neurophysiology pointed out that tDCS in M1 (contralateral
to pain side) in chronic lower limb NP following SCI was a
level C recommendation (possible efficacy) (Lefaucheur et al.,
2017). The commonly used tDCS parameter was an intensity
of 2 mA, which was performed continuously for at least 5
consecutive days with a duration of 20 min each time. Although
the current level of evidence suggests that tDCS was less
effective than rTMS in relieving pain when stimulating the M1
area, the most surprising point was that tDCS appeared to be
more effective for NP following SCI in the lower extremities
(Lefaucheur et al., 2004, 2006, 2014, 2017). This point was
reinforced by the treatment of a patient with chronic refractory
NP who did not respond to the HF-rTMS but gradually improved
by the tDCS over a long period (Hodaj et al., 2016). More
research information about the effect of tDCS on CNP is shown
in Table 2.

Transcranial Direct Current Stimulation
for Post-stroke Pain
Patients with CPSP may have skin temperature changes because
of autonomic nervous system dysfunction. Therefore, the
physiological changes in patients with CPSP can be evaluated
by measuring the skin temperature difference between the pain
area and contralateral area (Klit et al., 2009; Kim, 2014). Bae
et al. (2014) found a 1.15 reduction in pain intensity through
VAS after 3 weeks of treatment in the tDCS group, as well as
changes in warm sensation and cold pain threshold, some of
which lasted up to 3 weeks after stimulation. This result means
that tDCS improved sensory identification and exerted analgesic
effects in patients with stroke and PSP. The decreased skin
temperature also reduces the sensitivity of patients to pain and
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TABLE 2 | Major findings of transcranial direct current stimulation (tDCS) in central neuropathic pain (CNP) studies.

Author, Year Study type CNP
type

Sample (size, sex, age) tDCS
site

Intensity/Current
flow time

Duration Analgesic effect

Bae et al., 2014 Randomized
control

PSP 14, 7M, 7F, 45–55 M1 2 mA/20 min 3 weeks Pain relief by VAS

Hassan et al., 2021 Case report PSP 1, Gender not, 45 DLPFC 2 mA/20 min 2 weeks Immediate but transient pain
relief by VAS

Molero-Chamizo
et al., 2021

3 cases report PSP 3, 2W:43, 72, 1M:54 M1 1.5 mA/20 min 5 sessions Significant pain relief by AVAS

Fregni et al., 2006 Randomized
control

SCI 17, 14M, 3F, 35.7 ± 13.3 M1 2 mA/20 min 16 days Significant pain relief by VAS,
CGI and PGA

Soler et al., 2010 Randomized
control

SCI 39, 30M, 9F, 44.1 ± 11.6 M1 2 mA/20 min 10 sessions Effective relief for continuous
and paroxysmal pain by NRS
and BPI

Wrigley et al., 2013 Cross-over SCI 10, 8M, 2F, 56.1 ± 14.9 M1 2 mA/20 min 5 days Effective relief for recent pain by
NRS

Yoon et al., 2014 Prospective
control

SCI 16, 12M, 4F, 44.1 ± 8.6 M1 2 mA/20 min 10 days Significant pain relief by NRS

Ngernyam et al.,
2015

Cross-over SCI 20, 15M, 5F, 44.5 ± 9.16 M1 2 mA/20 min 1 session Significant pain relief by NRS

Thibaut et al., 2017 Two-phase
randomized
control

SCI Phase I: 33, 24M, 9F,
51.2 ± 12.5 Phase II: 9, 7M,
2F, 49.0 ± 14.38

M1 2 mA/20 min 5 days (Phase I)
10 days (Phase

II)

Long-lasting pain relief by VAS

Mori et al., 2010 Randomized,
sham-control

MS 19, 8M, 11F, 23–68 motor
cortex

2 mA/20 min 5 days Significant pain relief by VAS
and MPQ

Ayache et al., 2016a Cross-over MS 16, 3M, 13F, 48.9 ± 10.0 DLPFC 2 mA/20 min 3 days Significant pain relief by VAS
and BPI

González-Zamorano
et al., 2021

Randomized
control

PD 32, Gender not, Age not M1 2 mA/20 min 2 weeks (10
sessions)

Pain relief by BPI, KPDPS, PPT,
TS and CPM

CNP, central neuropathic pain; PSP, post-stroke pain; CPSP, central post-stroke pain; SCI, spinal cord injury; MS, multiple sclerosis; PD, Parkinson’s disease; M, male;
F, female; tDCS, transcranial direct current stimulation; RMT, resting motor threshold; mA, milliampere; min, minute; M1, primary motor cortex; DLPFC, dorsolateral
prefrontal cortex; VAS, visual analog scale; AVAS, adaptive visual analog scale; NRS, numerical rating scale; BPI, brief pain inventory; MPQ, McGill pain questionnaire;
CGI, clinical global impression; PGA, patient global assessment; PPT, pain pressure threshold; KPDPS, King’s Parkinson’s disease pain scale; TS, temporal summation;
CPM, conditioned pain modulation.

thus contributes to analgesia (Tan and Knight, 2018; Madden and
Morrison, 2019). Ramger et al. (2019) also suggested that tDCS
on M1 has positive effects on CPSP.

Transcranial Direct Current Stimulation
for Central Neuropathic Pain Associated
With Spinal Cord Injury
The increased excitability and reactivity of spinal dorsal horn
neurons caused by the dysregulation of the central inhibitory
mechanism is an important cause of pain following SCI (Tung
et al., 2015). Fregni et al. (2006) first reported the effect of
tDCS on NP after SCI. Subjects were randomly divided into
the tDCS group (2 mA, 20 min) and the sham stimulation
group to receive motor cortex stimulation. After 5 days of
stimulation, the pain was remarkably reduced in the tDCS
group according to the VAS, whereas no considerable change
was observed in the sham stimulation group. More recently,
Murray et al. (2015) investigated the effect of different current
intensities on tDCS in treating NP after SCI. The subjects
were randomly assigned to different groups (1 mA, 2 mA,
and sham stimulation of the motor cortex). They found that
MEP increased considerably in minutes only after 2 mA tDCS
motor cortex stimulation. From this result, we can speculate

that current intensity may influence the clinical outcome of
tDCS stimulation. In addition, Soler et al. (2010) applied visual
illusion technology and tDCS to patients with CNP after SCI,
and the combination of the two can relieve pain more effectively
than monotherapy.

Some evidence showed that tDCS did not provide any pain
relief to longstanding NP after SCI (Wrigley et al., 2013). The
analgesic effect of tDCS was not superior to exercise alone
after 12 sessions of intervention, and the beneficial effect was
not maintained at follow-up (Mehta et al., 2015; Yeh et al.,
2021). However, not enough evidence could suggest that the
analgesic effect of tDCS on NP following SCI over the M1
region is effective compared with medication treatments because
of the lack of high-quality studies and sufficient sample size
and control groups (Boldt et al., 2014; Nardone et al., 2014;
Mehta et al., 2015; Ngernyam et al., 2015; David et al., 2018;
Shen et al., 2020; Li et al., 2021). Fagerlund et al. (2015)
found that pain reduction after the tDCS stimulation of the
motor cortex was closely associated with increased peak spectral
density in the θ-α range of electroencephalogram, but no
corresponding association was found with sham stimulation.
This finding may become a measurement tool to quantify
the effect of tDCS management on NP to better compare
analgesic effects.
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Transcranial Direct Current Stimulation
for Central Neuropathic Pain Associated
With Parkinson’s Disease
Transcranial direct current stimulation manages PD through
brain stimulation by very weak currents to activate neurons into
an excitable state (Shigematsu et al., 2013). A growing number of
studies have shown that tDCS can improve motor and cognitive
symptoms, but the results suggest that a fully optimized tDCS
protocol has not been established (Biundo et al., 2016; Elsner
et al., 2016; Putzolu et al., 2018; Broeder et al., 2019; Orru
et al., 2019). Few studies have been conducted on tDCS for PD-
related pain, but home-isolated patients with PD are experiencing
increased pain frequency because of the reduction of movement
due to the protocols for the coronavirus 2019 (COVID-19)
pandemic. Approximately 49.7% of Spanish patients with PD
reported pain every day during the COVID-19 pandemic
(Santos-García et al., 2020). González-Zamorano et al. (2021)
proposed a new method based on pain psychological expression
techniques and tDCS in patients with pain following PD. Finally,
after the configuration and explanation, the treatment can be
applied at home to promote independence and self-management
and maximize the time out of medical centers.

Transcranial Direct Current Stimulation
for Central Neuropathic Pain Associated
With Multiple Sclerosis
Transcranial direct current stimulation has been gradually used
in the clinical of spasticity and pain in MS (Mori et al., 2010;
Dubbioso et al., 2015; Iodice et al., 2015; Rossini et al., 2015;
Saturnino et al., 2015; Ayache et al., 2016b). Poorly managed
spasticity can lead to pain and limited mobility. Mori et al.
(2010) researched the effect of the application of tDCS (2 mA,
20 min/day, 5 sessions) over M1 contralateral to the affected
side on chronic, drug-fast pain. Nineteen patients with MS were
randomized to receive sham stimulation or tDCS. Remarkable
pain relief was found following tDCS but not sham stimulation
as measured by VAS and McGill questionnaire, and a total
improvement in quality of life was observed within 3 weeks
after the end of treatment. tDCS could have acted on the pain
matrix networks where the prefrontal cortex mainly contributed
(Ayache et al., 2016b). And anodal tDCS over the DLPFC
appeared to increase the pain threshold to produce analgesic
effects, especially NP. Overall, data for the treatment of NP
following MS with tDCS is sparse (Palm et al., 2014).

Mechanisms of Transcranial Direct
Current Stimulation for Neuropathic Pain
The effect of tDCS in reducing CNP may be related to
increased sympathetic nerve activity, decreased blood flow,
and decreased or interrupted transmission of the connection
between sympathetic nerve fibers and pain-transmitting nerve
fibers (Figure 3).

Selective Excitability of Neurons
Transcranial direct current stimulation is thought to work by
changing the excitability of nerve cells as electricity passes

through brain tissue (Nitsche et al., 2008; To et al., 2016; Stagg
et al., 2018). The current intensity used by tDCS is weak, does
not cause action potential, only changes the resting membrane
potential of nerve cells, and regulates the excitability of nerve
cells (Bikson et al., 2004). tDCS affects the opening and closing
of ion channels in the stimulated region and induces the flow of
intracranial ions. Anodic stimulation leads to the depolarization
of the nerve membrane, whereas cathodic stimulation leads to the
hyperpolarization of the nerve membrane, both of which change
the excitability of neurons (Zaghi et al., 2010). This effect can
occur a few seconds after tDCS stimulation; therefore, it is often
referred to as the immediate effect of tDCS stimulation (Chang
et al., 2015). Notably, the cortical excitatory effect of tDCS is
related to the direction and intensity of the stimulus current, but
the relationship is not linear, that is, a greater current intensity has
a better stimulus effect, but sometimes, the effect will be reversed
with the increase in current intensity (Batsikadze et al., 2013;
Benwell et al., 2015). The excitatory effect of tDCS on neurons
is selective to some extent, that is, tDCS only acts on neurons that
are already in an active state. This feature of tDCS can effectively
avoid the side effects of excitatory toxicity caused by traditional
nerve stimulation techniques (Fertonani and Miniussi, 2017).

Synaptic Plasticity and Connectivity
The subsequent effects of the cessation of tDCS stimulation may
be related to the regulation of synaptic plasticity and connect
ability by regulating neurotransmitter activity (Nitsche et al.,
2008; To et al., 2016). Synaptic plasticity involves glutamate
and GABAergic neurons, which produce glutamate and GABA,
respectively. Glutamate N-methyl-D-aspartate (NMDA) receptor
agonist, D-cycloserine, prolongs the effect of tDCS on M1
excitability (Nitsche et al., 2004a). GABA receptor agonist,
lorazepam, enhances and extends the subsequent effects of tDCS
in a short period (Nitsche et al., 2004b). tDCS can induce long-
term enhancement or inhibition in the stimulated region, which
leads to synaptic remodeling, by regulating NMDA expression
and GABA release (Antonenko et al., 2017). tDCS also has
a network effect that can alter the structure and functional
connections between different brain regions. Lin et al. (2017)
found that the analgesic effect of tDCS is associated with the
structural connections between the left DLPFC and the left
thalamus. Cummiford et al. (2016) found that applying anode
stimulation to the left M1 reduces the functional connection of
the left abdominal extrinsic thalamus to the inner frontal lobe
and the left auxiliary movement area, as well as the functional
connection between the right abdominal extrinsic thalamus and
the lower chin and the left auxiliary movement area, which play
an important role in pain processing and regulation.

Regulation of Pain Receptor Expression
The activation of purinoceptor 4 (P2X4) receptors in the
microglia is a sufficient and necessary condition for NP
(Wasserman and Koeberle, 2009; Gritsch et al., 2016). The P2X4
receptor is expressed in the spinal cord ganglion and brain
microglia, and its upregulation is the key process for the microglia
to participate in NP (Baroja-Mazo et al., 2013). Microglia in
the posterior horn of the ipsilateral spinal cord is activated
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FIGURE 3 | The neurophysiological mechanisms of tDCS. NMDAR, N-methyl-D-aspartate receptor; GABA, gamma-aminobutyric acid; P2X4, purinoceptor 4.

rapidly, the expression of the P2X4 receptor is upregulated,
and the change in P2X4 receptor expression is consistent with
the timeline of mechanical pain sensitivity (Nasu-Tada et al.,
2006; Beggs et al., 2012). tDCS can improve NP while inhibiting
neuronal sensitivity and microglial activity after peripheral nerve
injury (Zhang et al., 2020). This outcome may be due to the
downregulation of P2X4 receptor expression by tDCS, which in
turn inhibits microglia activity. Therefore, P2X4 can be used as a
therapeutic target to treat NP in future studies.

Changes in Brain Blood Flow and Metabolism
Transcranial direct current stimulation modulates the activities
of brain regions directly under the stimulating electrode, as well
as a network of brain regions that are functionally related to
the stimulated area. Zheng et al. (2011) found that the effect of
tDCS is related to changes in cerebral blood flow, and blood
flow is remarkably reduced and continues for a period after
cathodic stimulation; these effects may also be a key mechanism
of tDCS’s therapeutic role. Yoon et al. (2014) found increased
metabolism in the medulla and decreased metabolism in the left
DLPFC after active tDCS stimulation compared with sham tDCS.
In addition, an increase in metabolism after active tDCS was
observed in the subgenual anterior cingulate cortex and insula.
An instant increase in the endogenous µ-opioid release may
occur during acute motor cortex neuromodulation with tDCS
(DosSantos et al., 2012).

LIMITATIONS AND RECOMMENDATIONS

The relevant NIBS studies still have several shortcomings, which
may be important causes of the inconsistency in research
results and difficulties in clinical application. First, most studies

have small sample sizes (typically less than 40 people per
group). Studies with a limited sample size may lead to the
poor stability of the results and the inability to reliably reveal
the true analgesic effect of NIBS because of the subjective
characteristics of pain scores and differences in pain sensitivity
among individuals. Future research should gradually carry out
large-scale, multicenter studies to test the stability and reliability
of the analgesic effects of NIBS.

Second, the current research on the analgesic effect of brain
stimulation is not sufficient and in-depth. The analgesic research
of rTMS is limited to CPSP, and the attention to other pain
types is insufficient. The parameters used in the study of tDCS
are relatively single, and the effect of stimulus parameters on
analgesia is not clear. The effect of stimulation parameters on
the regulation of analgesic effect should be comprehensively
investigated. Micro-neuron discharge and neurotransmitter
release can be integrated, as well as macro-brain response signal
and somatic nervous system signal changes, through cross-
species studies.

Third, understanding analgesic mechanisms rely on
comparisons with analgesic loops found in other analgesic
areas in the past without substantial evidence. Additionally,
the influence of the placebo effect cannot be excluded because
some experimental designs did not set a placebo group and
only examined the changes in pain indexes before and after
stimulation. Scale measurement or behavioral experiments can
be carried out in multi-experimental and placebo groups to
reveal the analgesic circuits of NIBS. In addition, the current
assessment of the analgesic effect of different combinations of
technologies is insufficient, and the interaction between NIBS
and analgesic drugs is less considered. Combining different
approaches may enhance analgesic effects by considering
differences in pain-avoidance mechanisms.
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FIGURE 4 | The common mechanisms of NIBS analgesia on CNP. The analgesic mechanism of rTMS is similar to that of tDCS, both of which change cortical
excitability and synaptic plasticity, regulate the release of related neurotransmitters, and affect the structural and functional connections of brain regions associated
with pain processing and regulation.

DISCUSSION AND CONCLUSION

In this article, the analgesic effects of common NIBS techniques
on CNP are described in detail, and their respective analgesic
mechanisms are discussed. The stimulation parameters for rTMS
to produce an analgesic effect are stimulation frequency of 5–
10 Hz, RMT of 80–90%, 5–10 times, and current intensity of
2 mA, 20–30 mins a time, 5–10 times is the common parameter
of tDCS. The most popular stimulation area of analgesia is the
M1 region for rTMS and tDCS. In addition, DLPFC has also
been used as a target for NP improvement for tDCS. Although
tDCS stimulation of the DLPFC region has been found to reduce
pain caused by MS, current guidelines do not mention improving
NP by stimulating DLPFC. tDCS with different parameters acting
on the DLPFC region to reduce NP induced by various diseases
needs further study.

Repetitive transcranial magnetic stimulation analgesic
research has been relatively mature and applied to a variety
of CNP treatments (Lefaucheur et al., 2001; Lefaucheur, 2006;
Ayache et al., 2016a; Nardone et al., 2017; Quesada et al., 2018;
Sun et al., 2019). The analgesic mechanisms of rTMS and tDCS
are similar, which both alter cortical excitability and synaptic
plasticity, regulate the release of related neurotransmitters,
and affect the structural and functional connections of brain
regions associated with pain processing and regulation (Figure 4;
Zheng et al., 2011; Thibaut et al., 2017; Hassan et al., 2021;
Molero-Chamizo et al., 2021). tDCS has been studied in several
studies and was able to manage pain effectively, but its optimal
stimulation targets, stimulation intensity, and stimulation

time for each type of CNP are still difficult to identify (Iodice
et al., 2017; Wen et al., 2017; Young et al., 2020). NIBS not
only affects the cerebral cortex at the stimulated site but also
affects the related functional areas of the brain based on the
pain matrix. The selection of optimal stimulation sites and
parameters depends on the role of the primary disease-causing
NP and its associated homologous brain regions in pain
reduction. Revealing the interaction between NIBS with different
parameters and cerebral cortex has great practical value for the
selection of clinical analgesic methods to ultimately relieve pain
and reduce the health and economic burden of pain on patients,
families, and society.
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