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Sepsis is a life-threatening condition caused by the response of the body to an infection, and has recently

been regarded as a global health priority because of the lack of effective treatments available. Vascular

endothelial cells have a crucial role in sepsis and are believed to be a major target of pathogens during the

early stages of infection. Accumulating evidence suggests that common sepsis pathogens, including

bacteria, fungi, and viruses, all contain a critical integrin recognition motif, Arg-Gly-Asp (RGD), in their

major cell wall-exposed proteins that might act as ligands to crosslink to vascular endothelial cells,

triggering systemic dysregulation resulting in sepsis. In this review, we discuss the potential of anti-

integrin therapy in the treatment of sepsis and septic shock.
Sepsis
Sepsis is a life-threatening clinical syndrome defined by a dysregu-

lated host response to infection that can result in multiorgan failure

[1]. In 2017, the World Health Assembly and WHO voted unani-

mously to declare sepsis a global health priority [2]. Although the

true burden of sepsis remains unknown, current figures suggest that

there are 48.9 million cases of sepsis annually, with over 11 million

deaths worldwide [3]. Additionally, there is a strikingly higher

burden among individuals living in areas with a lower socio-demo-

graphic index. Sepsis is now considered a leading cause of death

worldwide, surpassing cancers and neoplasms (9.6 million), respira-

tory disease (3.9 million), Alzheimer’s disease (1.7 million), and type

1 and 2 diabetes mellitus (1.4 million) [3,4].

Sepsis can originate from any site within the host, and only

requires the presence of an invading microorganism with suffi-

cient burden and virulence traits. A prevalence study across inten-

sive care units in 75 countries reported that, in culture-positive

patients, 62% were Gram-negative bacteria, 47% were Gram-posi-

tive bacteria, and 19% were fungal [5,6], with viruses having the

lowest etiology. The most common Gram-negative isolates were
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Escherichia coli, Klebsiella sp., and Pseudomonas aeruginosa; Gram-

positive microorganisms included Staphylococcus aureus and Strep-

tococcus epidermidis. The incidence of fungal infections in sepsis is

rapidly rising and is predominantly caused by Candida albicans,

with increasing numbers of cases involving Candida auris and

Aspergillosis sp. infections [5,7]. The most common sites of infec-

tion are the respiratory tract (63%), followed by abdominal (20%),

bloodstream (15%), genitourinary (14%), skin (7%), catheter-re-

lated (5%), and central nervous system (3%) [5,6].

Microvascular dysfunction in sepsis
Vascular endothelial cells are a highly adaptive and metabolically

active single cell barrier that constantly sense alterations in the

local extracellular environment [8]. Responsible for regulating

homeostasis between the vessel wall and circulating blood, endo-

thelial cells are frequently exposed to myriad signalling mediators.

Cell communication and barrier maintenance rely on tight junc-

tion and adherens junction proteins, which are responsible for the

permeability of solutes and ensuring vascular integrity, respective-

ly [9]. Specifically, VE-cadherin localised across the basal mem-

brane is crucial in supporting barrier permeability and has a major

role in sepsis pathology [10].
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Microvascular dysfunction is well established during the early

stages of sepsis and accounts for much of the pathology of sepsis

and septic shock [11,12]. Upon binding to the vascular endotheli-

um, pathogens, inflammatory cells and mediators lead to the loss

of integrity of adherens junctions and increased paracellular per-

meability, with subsequent impairment of endothelial barrier

function. Accumulation of oedema in tissues contributes to tissue

hypoxia because of increased diffusion distances between func-

tional capillaries and tissue cells in combination with poor oxygen

solubility and transport in tissue water [8]. Therefore, microbes

strategically disrupt the barrier integrity to trigger a dysregulated

localised response, allowing for their escape out of the blood-

stream. This promotes the development of secondary infections

and multiple organ failure, including acute lung injury, renal, and

cardiovascular dysfunction. Although efforts are being made to

understand the dynamics of disease progression in sepsis, recent

observations have suggested integrins expressed across the vascu-

lature have a crucial role in the early stages of host–microbe

interactions.

Integrins
Integrins are noncovalently linked ab heterodimers widely

expressed on epithelial, endothelial, and immune cell surfaces

[13,14]. These adhesion molecules mediate cell crosstalk between

these cells and secure them to the extracellular matrix (ECM) [14].

However, aside from their crucial role in maintaining structural

integrity, they are also coupled to members of the Focal Adhesion

Kinase (FAK) family [12–14]. Integrin engagement across the FAK

proteins controls tyrosine activation and phosphorylation, which

regulate downstream events that allow for functional regulation of

host activities, including cytoskeleton rearrangement, immune

mediator secretion, immune cell recruitment, extravasation, or

regulating structural integrity [13]. Therefore, integrins are crucial

to modulating host defence, and have a major role in sepsis

pathology.

RGD recognition sites in integrins
Integrins also convey a plethora of bidirectional signal transduc-

tion events, referred to as either ‘inside-out’ or ‘outside-in’ signal-

ling. The former results in activation or deactivation of integrins

initiated by an internal cellular pathway. In the latter, conforma-
TABLE 1

Distribution of RGD-binding integrins and their major ligandsa

RGD-binding integrin RGD-containing ligands 

aVb1 Fibronectin, vitronectin, laminin 

aVb3 Fibrinogen, fitronectin, vitronectin, vWF 

aVb5 Vitronectin, fibrinogen, fibronectin 

aVb6 Vitronectin, fibrinogen, fibronectin 

aVb8 Vitronectin 

a5b1 Fibronectin 

aIIbb3 Fibrinogen, fibronectin, vWF 

a8b1 Fibronectin 

a Integrins that recognise the RGD motif are the most common subtype and are widely express
the RGD sequence are found in the interstitial space that surrounds the abluminal side of t
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tional changes are induced upon ligand binding that elicit intra-

cellular signalling, leading to a downstream response that can alter

biological processes [12,14]. Integrins are classified based on their

ligand-recognising motifs. The most common subset bind to the

RGD sequences [15,16]. Most ligands retaining this motif are

located in the ECM, and act as adhesion molecules to anchor

endothelial cells to the ECM, providing structural integrity. These

components include collagen, fibrinogen, fibronectin, vitronec-

tin, and laminin [15]. Some proteins, such as fibrinogen and

vitronectin, are of particular importance because of their dual

presence in the plasma; they are associated with regulating ho-

meostasis in the coagulation cascade. The polarised endothelial

barrier is highly populated with RGD-recognising integrins on its

abluminal and luminal surfaces. These include a5b1, aVb1,
aVb3, aVb5, aVb6, aVb8, and a8b1 (Table 1). The b1 integrins

represents the largest subgroup. Specifically, a5b1 is an RGD-

recognising integrin, and has high specificity for fibronectin

[17]. Its expression in endothelial cells is regulated by the growth

factor fibroblast growth factor (FGF) and, therefore, the inflamma-

tory mediator tumour necrosis factor (TNF)-a is implicated in

infection [18]. Some integrins vary in their ability to recognise

ligands, where the most promiscuous subtypes include the b3
integrins, capable of interacting with a large number of ECM and

plasma proteins. Specifically, endothelial aVb3 recognises vitro-

nectin, fibrinogen, fibronectin, and von Willebrand factor (vWF),

each of which contains the classic RGD motif [19,20]. Its expres-

sion on endothelial cells is upregulated in the presence of TNFa
secreted during infection [21]. Clearly, the lack of specificity and

host-wide expression makes this integrin a desirable target for

pathogens. By contrast, some RGD-recognising integrins are more

stringent in their ligand preference; endothelial aVb5 and aVb8
have high specificity for vitronectin [15,22].

This tripeptide is the minimal requirement to engage an RGD-

binding integrin [16]. Recent observations reported a growing

number of microorganisms (bacterial, fungal, and viral) recognis-

ing or harbouring RGD-motifs, which in turn can crosslink to host

integrins. Given that these multifunctional receptors also regulate

intracellular signalling through the FAK system, microbes can

exploit them to encourage various stages of pathogenic infection.

Therefore, this clearly implicates RGD-binding integrins in the

pathophysiology of human disease. In this review, we explore how
Major cell/tissue distribution Refs

Fibroblasts [97]
Lung and vascular endothelium, alveolar and large
airway epithelium, platelets, fibroblasts

[19–21]

Lung and vascular endothelium, epithelium,
fibroblasts

[16]

Epithelium [98]
Fibroblasts, lung epithelium [22]
Lung and vascular endothelium [17]
Platelets [99]
Embryonic neurites, fibroblasts [100]

ed across the surface of epithelium, endothelium, and immune cells. Ligands that contain
he endothelium, or the serum that flows within blood vessels.
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RGD-dependent integrins have emerged as attachment and inter-

nalisation receptors for various classes of pathogen-mediated sep-

sis, specifically induced by bacteria, fungi, and viruses.

Bacterial-induced sepsis
Bacterial pathogens of humans have evolved a range of virulence

factors to promote motility, attach to epithelial or endothelial cell

surfaces, avoid host immune responses, activate or inactivate host

cellular pathways, and ultimately cause disease. Toxins secreted by

Gram-negative and positive bacteria trigger an immune response,

which results in dysregulation of the carefully synchronised equi-

librium between pro- and anti-inflammation. Lipopolysaccharide

(LPS) is a conserved component of the outer membrane in Gram-

negative bacteria and is arguably the most potent immunostimu-

lants implicated in the bacterial pathogenesis of septic shock. It

induces profound reactions by activating lethal coagulation and

complement cascades, as well as triggering the release of the

proinflammatory cytokines interleukin (IL)-6, IL-8, and IL-1a/b
upon immune cell recognition [23].

Pathogens heighten their interplay with host cells by harbour-

ing numerous adhesion mechanisms. This allows for prolonged

contact, which significantly stabilises their attachment and

encourages subsequent invasion strategies. S. aureus expresses a

plethora of such surface proteins, including Microbial Surface

Components Recognising Adhesive Matrix Molecules

(MSCRAMMs) [24]. One of which, Clumping Factor A (ClfA),

recognises plasma and extracellular components vWF and fibrin-

ogen [25]. These host plasma proteins contain the conserved RGD

motif, which is essential for recognition by RGD-binding integrins

(Fig. 1). S. aureus crosslinks these proteins to indirectly bind

integrins, which facilitates adherence and internalisation. Al-

though the explanation behind this distant bacterial attachment

remains elusive, it might allow for host–pathogen interactions at a

safe distance, avoiding an immune response that could trigger

bacterial clearance.

A shear-based infection model demonstrated that S. aureus ClfA

binds fibrinogen, which crosslinks to the major RGD-dependent

integrin expressed on endothelial cells, aVb3 (Fig. 2a) [26]. This

interaction results in cell activation, leading to vWF deposition on

the endothelial surface, which further enhances bacterial attach-
FIGURE 1

Sequence alignment of common extracellular matrix and plasma proteins that sha
protein identifier (UPI) in respective top–bottom order (P02671, P02751, P04004, P
MAFFT program was used for multiple sequence alignment.
ment. In turn, numerous downstream signals result in endothelial

cell apoptosis and reduced expression of VE-cadherin. This leads to

a significant reduction in vessel wall integrity and increased vas-

cular permeability, which facilitates bacterial escape from the

blood vessel into nearby tissue [30,31,40–42]. Once adhered, these

bacteria are exposed to the fluid dynamic and shear environment,

which induces platelet recruitment. Kerrigan et al. demonstrated

that adhered S. aureus ClfA binds plasma fibrinogen and IgG,

which crosslink to the major platelet integrins abIIbb3 and

FcgRIIa, respectively [27–30]. This engagement triggers platelet

activation, granule secretion, amplification of the response, and

thrombus formation on the endothelial surface. These are crucial

aspects in the evasion strategy of S. aureus, because bacteria

encased in a growing thrombus are safe from circulating immune

cells or antibiotics.

To further strengthen its position, S. aureus internalises itself

into vascular endothelial cells by exploiting another host integrin,

a5b1 [31]. This occurs when S. aureus coats itself in fibronectin or

fibrinogen through the Fibronectin Binding Protein A/B (FnBPA/

B), a key MSCRAMM, forming a crosslink to the endothelial cell

integrin a5b1 [23,32,33]. This is a highly controlled event trigger-

ing a cytoskeletal protein signalling cascade, involving F-actin

rearrangement, tyrosine phosphorylation, mitogen-activated pro-

tein kinase activation and Src family kinase activation [30,32–34].

Although the motive behind this action remains obscure, immune

cells and antibiotics are unable to penetrate endothelial cells,

which suggests that S. aureus internalises in the host to evade

these attacks. This is of significant concern because S. aureus can re-

emerge after inflammation subsides, causing re-infection or recur-

rence of sepsis, which is common in patients [35].

Several other Gram-positive bacteria that induce sepsis are also

affiliated with integrins. The major cell wall protein PspC of

Streptococcus pneumoniae binds the plasma protein vitronectin

and crosslinks the bacterium to the integrin aVb3 [36]. This

interaction also facilitates attachment and internalisation into

lung epithelial cells in a similar manner to S. aureus [36]. Although

less commonly isolated, Streptococcus pyogenes can also cause sep-

sis. It expresses a fibronectin-binding protein SfbI, which binds

fibronectin and crosslinks the bacterium to epithelial cells via

integrin a5b1, which facilitates internalisation [37,38].
Drug Discovery Today 

re the Arg-Gly-Asp (RGD) motif. Protein sequences and their UniProt unique
04275, P25391, and P02452). The RGD sequence is highlighted in bold. The
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FIGURE 2

Bacterial interaction with vascular endothelial cells. (a) The Gram-positive bacterium, Staphylococcus aureus, indirectly interacts with the endothelium through
extracellular matrix components to promote colonisation and pathogenesis. Clumping Factor A (ClfA) recognises fibrinogen, the Arg-Gly-Asp (RGD)-containing
ligand of host aVb3. This mediates adherence. Additionally, fibronectin-binding protein A (FnBPA) recognises fibronectin, an RGD-containing ligand that is
recognised by host integrin a5b1. This mediates internalisation into the endothelial cell. (b) The Gram-negative bacterium, Escherichia coli, comes into direct
contact with the endothelium without requiring an extracellular matrix crosslink. Outer membrane protein A (OmpA) contains an RGD motif to interact with the
RGD-recognising integrin, aVb3. This promotes adherence to the endothelial cell.
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Several Gram-negative bacteria, including E. coli and Pseudomonas

aeruginosa, are also commonly isolated from patients with sepsis and

engage with integrins to promote infection [26,39]. Recently,

McHale et al. demonstrated that, in contrast to S. aureus, ECM

proteins are not mandatory for E. coli to interact with endothelial

cells (Fig. 2b) [40]. In a shear-based infection model, they revealed

that this bacterium expresses an RGD-containing surface molecule

called Outer Membrane Protein A (OmpA), which binds directly to

endothelial cell integrin aVb3. A strain deficient in OmpA or

blocking aVb3 significantly reduced this interaction [40]. Binding

resulted in endothelial dysfunction and vascular leakage through

induction of endothelial cell apoptosis and loss of the adherens

junction protein, VE-cadherin [40]. Similarly, P. aeruginosa expresses

an RGD motif in the PilY1 pilus-associated protein, which binds

epithelial aVb5 and aVb3 through the plasma protein vitronectin

[41]. Thus, integrin receptors are shared targets of various bacterial

families, which raises the intriguing notion of targeting the host

rather than the pathogen for sepsis treatment.

Fungal-induced sepsis
Invasive fungal infections contribute substantially to human mor-

bidity and mortality, particularly in immunocompromised

patients [5]. Candida spp. remain the predominant cause of inva-

sive candidiasis, and C. albicans accounts for 66% of all cases [42].

C. albicans exists as a polymorphic fungus, capable of reversibly

transitioning between yeast, pseudohyphal, and hyphal forms;

this trait considerably promotes its pathogenicity in the host. Both

yeast and hyphae are crucial for stages of disease, because mutants
2320 www.drugdiscoverytoday.com
unable to switch are avirulent, suggesting that morphological

plasticity substantiates its potency [43–45]. However, before either

form is introduced into the bloodstream, they must first adhere to

the vasculature, where they are enveloped by ECM proteins,

including fibrinogen, fibronectin, and vitronectin. After successful

entry across the endothelium, C. albicans uses diverse evasion

strategies that both encourage host dysregulation and promote

its own persistence and dissemination. Both yeast and filamentous

growth can be found in the bloodstream during systemic candidi-

asis, and their collaborative efforts are crucial in maintaining

pathogenicity [46]. Upon contact with immune cells, yeast cells

are recognised and phagocytosed by macrophages, but then switch

into hyphae to pierce and kill the immune cell, allowing their

escape [47]. Both morphologies are capable of inducing various

immune responses of host cells: hyphae interact with host adhe-

sins that coat the surface of endothelial cells to induce endocytosis

and, in turn, release TNF-a, IL-1a, IL-1b, IL-6, and IL-8 [48–50].

Yeast cells induce a stronger cytokine response from peripheral

blood mononuclear cells, likely because of a high density of cell

wall pathogen-associated molecular patterns (PAMPs): O-mannan,

N-mannan, and b-glucans [51–53]. A crucial in vitro circulatory

system examined the Candida–endothelium interaction under

flow and revealed that both yeast and hyphae were capable of

adhering to the vasculature [54–56]. Longer germ tubes experi-

enced higher shear stress and failed to maintain prolonged contact

with the host, whereas yeast cells with smaller volume or hyphae

with short germ tubes could successfully anchor [54–56]. Adhesins

reportedly involved with hyphae endocytosis into the endotheli-
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FIGURE 3

Fungal interactions with vascular endothelial cells. Fungi, such as Candida
albicans, indirectly interacts with the endothelium through extracellular
matrix components to promote colonisation and pathogenesis. C. albicans
putatively expresses an aVb3-like surface protein, analogous to that of
human endothelial cells. It recognises fibrinogen, which crosslinks with host
aVb3, thus mediating its adherence to the endothelial cell.
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um are fungal Als3 and host cadherins; however, it is also specu-

lated that C. albicans has evolved an Als-independent mechanism

to adhere and invade host cells [50].

Although no studies have investigated whether C. albicans

directly induces vascular leakage, transcriptome profiles of

infected endothelial cells reveal upregulation of pathways in-

volved in angiogenesis, apoptosis, and inflammatory response

[48]. Furthermore, fungal cells are capable of decreasing epithelial

barrier integrity to promote their translocation through a trans-

cellular route [57].

Despite C. albicans displaying high contact with the vasculature,

a paucity of information still surrounds its mechanism of adher-

ence and its capability to induce endothelial dysfunction. In a

shear-based infection model under conditions of flow (0.25 dynes

cm–2), yeast and hyphal cells bound significantly to endothelial

cells [54–56]. This low flow rate is observed among the microvas-

culature, signifying a prime location for fungal infiltration. These

postcapillary venules are most susceptible to infection because

they express both integrins and intracellular junction proteins

that can be manipulated by the fungus to encourage a paracellular

route of infection [58].

Interestingly, C. albicans expresses several surface proteins that

are conserved from humans [59]. These homologous genes might

have evolved to enhance colonisation, evade host immunity, or

act as virulent factors to promote dissemination. For example,

studies suggested that C. albicans expresses integrin-like receptors

on its surface [56,60–63], most notably aVb3, aVb5 and aVb1.

These integrin-like surface proteins are capable of binding human

plasma proteins, such as fibrinogen, fibronectin, and vitronectin,

and adherence to the host could be inhibited by human mono-

clonal and polyclonal antibodies against aVb3, aVb5, and aVb1
[62,64–67]. These results suggest that an integrin analogue present

on the fungal surface is capable of mediating adhesion to the host.

However, it remains elusive whether C. albicans uses this unique

strategy of plasma protein–integrin interaction to crosslink with

human host cells to initiate infection (Fig. 3).

Viral-induced sepsis
Viruses represent the third leading cause of sepsis and account for

nearly 4% of co-infections [5]. Viruses typically attack the respira-

tory mucosa, where they induce an intense inflammatory response

to trigger acute lung epithelial and endothelial injury. This pro-

motes secondary infections, which likely drive sepsis and prolong

severe host dysregulation.

Similar to mechanisms used by other sepsis pathogens, several

viruses express RGD motifs, which bind integrins, to allow for

attachment or entry to host cells (Fig. 4). Human metapneumo-

virus (HMPV) causes a spectrum of respiratory illnesses ranging

from mild colds to severe pneumonia. Its surface fusion protein

carries an RGD motif, responsible for virus–host adhesion and

entry [68]. This interacts with integrin aVb1 to confer binding of

HMPV, even in the absence of its primary attachment glycoprotein

[68]. Adenovirus serotypes 2 (Ad2) and 5 (Ad5) are respiratory

viruses that contain RGD sequences in their penton base proteins,

which promote a multistep entry process [69]. Viral RGD expres-

sion interferes with the ability of integrin to connect host cyto-

skeleton to ligands of the ECM. Therefore, high-affinity

interactions between penton proteins and aVb3, aVb5, and
aVb1 promote cell detachment from the ECM (Fig. 5). Blocking

these integrins prevents viral entry, suggesting that this pathogen

is considerably dependent on its RGD motifs [69–71]. A member of

the subfamily Betaherpesvirinae, Human cytomegalovirus (HCMV)

causes severe complications in immunocompromised and fetal

newborns. It induces aVb6 expression in endothelial cells, which

activates transforming growth factor (TGF)-b1 and triggers a

downstream signalling cascade resulting in cell proliferation, mi-

gration, and ECM synthesis [72]. Several abundant HCMV pro-

teins, including M44, UL148, UL30, and US23, express RGD

sequences; these might interact with integrins to serve as receptors

for viral endocytosis. Epstein–Barr virus (HHV-4 or EBV) primarily

targets epithelial cells, and its BMRF2 envelope protein contains an

RGD motif taht facilitates adhesion to b1 integrins [73]. Two

pathogens in the Picornaviridae, Human Parechovirus 1 (HPeV1)

and Coxsackievirus A9 (CV-A9), encode RGD sequences in capsid

proteins that bind aVb3 and aVb6 to allow for viral entry [74 75].

During late 2019, outbreaks of lethal pneumonia were reported

across China [76]. By March 2020, the causative viral agent, severe

acute respiratory syndrome-related coronavirus (SARS-CoV-2), was

declared a global pandemic [77]. The coronavirus family is a family

of highly pathogenic zoonotic viruses. Its phylogenetic tree

revealed that the novel SARS-CoV-2 virus shares higher sequence

similarity to SARS-CoV, than to Middle Eastern respiratory syn-

drome coronavirus (MERS-CoV), to which it is more distantly

related [78]. They share major structural proteins; one of which,

the spike (S) surface glycoprotein, is of particular interest because
www.drugdiscoverytoday.com 2321
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FIGURE 5

Viral interactions with vascular endothelial cells. Representing viruses,
human adenovirus serotype 5 directly comes into contact with the
endothelium without requiring an extracellular matrix crosslink. Its penton
base proteins express an Arg-Gly-Asp (RGD) motif that is recognised by the
RGD-recognising integrin, aVb3. This promotes adhesion and entry of the
virus.
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FIGURE 4

Sequence alignment of viral proteins sharing the Arg-Gly-Asp (RGD) motif. The sequences of eight clinically important viruses were aligned based on the
expression of surface proteins involved in the interaction with integrins, through expression of an RGD motif. The RGD region is highlighted in bold. The MAFFT
program was used for multiple sequence alignment.
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of its crucial role in permitting adhesion, fusion, and entry into the

host. Current evidence suggests that adhesion of SARS-CoV-2 is

first mediated through the receptor-binding domain (RBD) located

in the S1 subunit of spike protein [79]. Furthermore, recent se-

quence alignment between SARS-CoV and SARS-CoV-2 illustrated

that a distinctive K403R mutation in the spike protein creates an

RGD motif within SARS-CoV-2 [80]. This is a crucial finding

because it might implicate integrins in the attachment process

given that Arg-Gly-Asp is the minimal peptide sequence required

to bind RGD integrins. Various studies demonstrated that the

integrins aVb3, a5b1, and aVb5 are widely expressed across

tracheal, bronchial, and alveolar epithelium as well as lung mi-

crovascular endothelium [38,81]. Of note, aVb3 expressed on

interalveolar capillaries compromises >95% of the lung vascular

surface area [38]. Therefore, by expressing this motif, SARS-CoV-2

has evolved the ability to bind to integrins. Although the func-

tionality behind this mutation remains elusive, it might have

evolved to bring the virus into close proximity with its true entry

target, angiotensin-converting enzyme (ACE)-2, and secure attach-

ment to host.

Integrins as targets for sepsis
The functionality of integrins are dependent on several processes,

including ligand engagement, downstream signal transduction,

and cytoskeletal response. Inhibition of any of these events inhi-

bits fundamental cell biological processes and, therefore, present

as an attractive pharmacological target. The interaction between

integrins with their ligands are being explored for their use as

therapeutics, and investigations that target the crucial Arg-Gly-

Asp motif have proven to be the most successful [82–84]. Anti-

bodies, linear and cyclic peptides, peptidomimetics, disintegrins,

and small-molecule antagonists have all been designed to bind to

the target integrin in a similar manner to its natural ligand, which

prevents ligation or displaces bound ligands.

Therapeutic antibodies are the most successful molecules in

integrin-based therapy. Currently, they are under investigation

in preclinical and clinical trials to target a multitude of illnesses,

including Crohn’s disease, psoriasis, rheumatoid arthritis, and

acute coronary syndromes [85–88]. A major advantage of devel-

oping therapeutic antibodies is that they exhibit high target

specificity, with few off-target sites. Binding specificity and

affinity can be regularly modified, and their long half-life make
2322 www.drugdiscoverytoday.com
these molecules highly desired [89]. However, when being de-

veloped for the treatment of infection, full-length antibodies

cannot be used because many bacteria express antibody-binding

proteins (i.e., S. aureus Protein A, SpA, or Second Immunoglobu-

lin-Binding protein, SBI) that bind to Fc portions of antibodies

and, therefore, could exacerbate the infection response in the

host [90,91].
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TABLE 2

Surface proteins expressed by human pathogens that promote various stages of infection by interacting with host RGD-recognising
integrins

Microbial agent Host integrins Host response Refs

Bacteria
Staphylococcus aureus aVb3, a5b1 Adhesion, vascular dysfunction, internalisation [26,29,30,32–34,96]
Escherichia coli aVb3 Adhesion, vascular dysfunction [40]
Pseudomonas aeruginosa aVb3, aVb5 Adhesion [41]
Streptococcus pneumoniae aVb3 Adhesion, internalisation [36]
Streptococcus pyogenes a5b1 Internalisation [37]
Fungi
Candida albicans aVb3a, aVb5a Adhesion, vascular dysfunctiona [62–67]
Virus
SARS-CoV-2 aVb3a Adhesiona [80]
Human metapneumovirus aVb1 Adhesion, entry [68]
Human adenovirus subtype 5 aVb1,aVb3, aVb5 Adhesion, entry [69–71]
Human cytomegalovirus aVb6 Adhesion [72]
Epstein–Barr virus b1 subtype Adhesion [73]
Human parechovirus 1 aVb3, aVb6 Entry [74]
Coxsackievirus A9 aVb3, aVb6 Entry [75]
a Speculated interactions and implications.
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Peptide-based drugs are increasingly being investigated as ther-

apeutic options for targeting integrins. These drugs contain bind-

ing motifs similar to sequences found in the endogenous ligand.

Therefore, they are effectively recognised by integrins, and act as

competitive antagonists against the natural ligand. Given that the

crucial binding site for ligand interaction is well established, these

drugs are relatively straightforward for drug design. However,

some issues remain surrounding peptide-based drugs. Although

they display moderate to high affinity, they can lack specificity

because of shared interactive sites found in other integrins [92].

This can be addressed by adjusting the surrounding flanking

sequences. Also, a significant concern of using peptide-based drugs

is that they are sensitive to proteolytic cleavage in vivo. This

instability can be resolved through cyclisation of the peptides

or addition of D-amino acids that can protect against proteolytic

degradation, hence prolonging the circulation half-life [89].

Finally, small-molecule antagonists are also effective drugs to

target integrins. These molecules are low-molecular-weight syn-

thetics that are easily manufactured and less costly than antibody

or peptide-based drugs [92]. They tend to be zwitterionic in nature

and present challenges with bioavailability, serum protein bind-

ing, and integrin selectivity [89,93].

Thecurrentchallengethatcliniciansfaceinsepsisisthejointissueof

failed early diagnosis and ineffective treatment methods. Previous

approaches have focussed on treating or controlling late-stage patho-

physiological effects (such as inflammation, thrombus formation,

coagulation, etc), an approach that has resulted in the failure of many

compounds in clinical trials as a result of later intervention in the

disease progression pathway. RGD-dependent integrins are evidently

central to the pathology of sepsis. They are clearly a shared target of

severalpathogens, includingbacteria, fungiandviruses,andarewidely

expressed across tissues, which merits integrin-focused therapy. This

could representa significantbreakthroughin ourunderstandingofthe

early interactions between pathogen and host. Specifically, integrins

involvedintheprimarystepofpathogen–hostinteraction,endothelial

permeability, and vascular leakage are crucial in the prevention of

sepsis. In particular,aVb3 has been identified as a commonly targeted
receptor between major pathogenic aetiologies of sepsis to mediate

adhesion or entry. These include S. aureus, E. coli, P. aeruginosa, human

adenovirus, human parechovirus 1, Coxsackievirus A9, with putative

interactions involving C. albicans and SARS-CoV-2 (Table 2). When

targeted by these pathogens, aVb3 serves as a modulator for mitigat-

ing vascular leak and endothelial permeability and anti-aVb3 thera-

peutics could have major implications in sepsis management.

Additionally, aVb3 integrins are widely expressed across the endo-

thelium,whichactsasthefinalbarrier formicrobepenetration.Hence,

the development of aVb3 antagonists appears lucrative. This is of

particular interest in the current climate, where outbreaks and pan-

demics, such as SARS-CoV-2, spread globally, causing a surge in

antimicrobial use and further paving the way for the development

of superbugs. Given that sepsis is diagnosed in 100% of nonsurvivors

infected with SARS-CoV-2, it is essential to radically accelerate the

development of therapeutic agents [94]. The most advanced and

widely investigated aVb3-inhibitor, cilengitide, is a cyclic peptide

well documented for its treatment of glioblastoma [95]. Recent data

demonstrated that S. aureus and E. coli interaction with the human

endothelium was significantly reduced upon administration of cilen-

gitide, under physiological conditions of shear stress and flow [40,96].

Therefore, it might be fruitful to investigate the potential of cilengitide

in reducing pathogen–host interactions during the very early stages of

sepsis progression. In light of this, renewed interest towards integrin

antagonists is clearly developing, where combination regimens might

be efficacious towards the clinical management of sepsis.

Concluding remarks
Sepsis, a dysregulated host response to infection, remains one of the

largest killers in the world, surpassing that of cancers, diabetes, and

Alzheimer’s disease. Late-stage sepsis is characterised by enhanced

vascular permeability and leakage, subsequently promoting microbial

escape into the bloodstream. This results in tissue oedema, hypoxia,

and multipleorganfailure. Inhibitingthedysregulationof thevascular

endothelium by preventing initial pathogen attachment could reduce

the risk of developing septic shock. In this review, we demonstrated a

potentially new perspective in therapeutics against sepsis: integrin-
www.drugdiscoverytoday.com 2323
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based therapy. With regards to regulating cell crosstalk, intracellular

signalling, inflammatory responses, and structural integrity, the RGD-

dependent integrinsuperfamilyevidentlyhas importantroles insepsis

pathology. Evidence has since accumulated demonstrating that bac-

teria,viruses,andfungiexploit thesereceptors tocrosslinkhostcells, in

turnpromotingadherence,entry,andfurtherdissemination,resulting

in septic shock. Therefore, these highly varied classes of pathogens

share a common target, which presents a lucrative opportunity to use

integrins as a therapeutic candidate against sepsis. Specifically, the

aVb3 receptor, widely expressed across the epithelium and endothe-

lium, recognises a vast array of RGD-containing proteins present in the

ECM. The host-wide expression and lack of specificity make it a
2324 www.drugdiscoverytoday.com
desirable target for several microbes within the bacteria, fungi, and

viruses. Developing an integrin antagonist that competes against ECM

for the RGD recognition site would thereby effectively prevent initial

adherence of the pathogen to host. In turn, this would maintain

endothelial barrier stability and hinder microbial dissemination, re-

ducing the risk of mortality and promoting patient survival.
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