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Theory of a frequency‑dependent 
beam splitter in the form 
of coupled waveguides
Dmitry N. Makarov

It is known that the beam splitter in the form of coupled waveguides (BS) is one of the main devices 
used in quantum optics and quantum technologies. A BS has two independent parameters: one is the 
reflection coefficient R or the transmission coefficient T, where R + T = 1 ; the second is the phase 
shift φ . In various applications of quantum optics, these coefficients are considered constant. This is 
due to the fact that the frequency dependence of these coefficients is usually not taken into account, 
or this dependence is such that it cannot affect the constancy of these coefficients. It is shown that 
the coefficients R, T and phase shift φ are generally values that depend on the frequencies of incoming 
photons, the interaction time of photons in the BS, and the type of BS. It is established that in 
general, R, T and φ cannot be considered constant coefficients, and the criteria for when they can be 
considered constant are defined. The results obtained must be taken into account when analyzing and 
planning experiments where the beam splitter is presented in the form of coupled waveguides.

A beam splitter (BS) is one of the main devices used in quantum optics and quantum technologies. It is an essen-
tial part of many optical experimental and measurement systems, including interferometers, for example those 
of Michelson-Morley, Mach-Zehnder and Hong-Ou-Mandel1–3. In particular, the BS is used in linear optical 
quantum computing (LOQC)4–6: for example, Knill et al. in 2001 showed that it is possible to create a universal 
quantum computer exclusively using BSs, phase shifters, photodetectors and single photon sources (the KLM 
Protocol)7. Also, using a BS, one can create quantum entanglement between the input modes of electromagnetic 
 fields3,8,9, simulate quantum  transport10 and determine the degree of photon  identity3,11 and others. BS is an inte-
gral part of quantum  metrology12 and quantum  information13, including two and multiphoton  interference3,14. 
Beam splitters can be of different types. One of the most common types is a prismatic beam splitter. This type of 
beam splitter has a big disadvantage and is its size. It is well known that coupled waveguides can be analogous to 
a prismatic beam splitter. Coupling between waveguides, to realize BS-like operation, can be achieved when two 
waveguides are brought sufficiently close together that the evanescent fields overlap; this is known as a directional 
coupler  (eg15,16). The basis of the theory of coupled waveguides (or coupled-mode theory) appeared a relatively 
long  ago17, but such waveguides have been used as a beam splitter in experiments and quantum technologies 
relatively recently. Such a beam splitter has a significant usability advantage as it is much smaller than a prismatic 
beam splitter and has many other  advantages6,8,10.

It is well  known2,18–20 that a lossless two-mode BS (with two input and output ports, see Fig. 1) in quantum 
optics is described by a unitary matrix UBS , which has the form

where the annihilation operators 1 and 2 modes respectively represent â1 and â2 , and after exiting BS b̂1 and b̂2 ; 
T and R are the coefficients of transmission and reflection; respectively, and φ is the phase shift. In the matrix 
UBS , the coefficients R + T = 1 , which are often represented as 

√
T = cos θ , 

√
R = sin θ . Mathematically, the 

matrix UBS has two independent parameters θ and φ , which are rotation angles about two orthogonal axes in the 
Poincare sphere. It is assumed that the physical BS can be described by any choice of θ and φ , provided the correct 
phase shifts are applied to the outgoing  modes4,19. It should be added that these properties are applicable only 
for a lossless BS. More precisely, if the losses are so small that they can be neglected. If we take into account the 
losses in the BS, then R + T < 1 ,  see21. Despite this, a lossless BS is one of the most important and useful devices 
in quantum optics. When using the UBS matrix in quantum optics, one is usually not concerned with the nature 
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of the parameters R, T and φ . In other words, how the statistical properties of photons in a BS in the form of 
coupled waveguides physically change is not important for the tasks set, i.e. BS is a black box analogue (see Fig. 1).

For a prismatic BS, the nature of the appearance of the frequency dependence of the coefficients R, T and φ 
is well known from classical electrodynamics. Therefore, the choice of R, T and φ in the form of constant coef-
ficients for a prismatic BS is quite justified. For a BS in the form of coupled waveguides, these coefficients were 
recently  found22. The dependence R, T and φ for a BS in the form of coupled waveguides differs from a prismatic 
BS and has the form

where � is a certain frequency characterizing the BS; tBS is the time of interaction of photons in the BS (in the 
case of monochromatic and identical photons, coincides  with15, where R = sin2(Cz) , φ = π/2 , C = �/(2v) is 
the coupling constant between adjacent waveguides, z = vtBS , v is wave velocity in a waveguide); ω1 and ω2 are 
the photon frequencies in the first and second ports, respectively. It should be added that the greater the coupling 
in the waveguides, the greater the value of � and vice versa. Thus, we can regulate the coupling in the waveguide 
by changing � . As has been shown recently  in22, the peculiarities of the frequency dependence of R, T and φ for 
a BS in the form of coupled waveguides can lead to a noticeable correction of the well-known Hong-Ou-Mandel 
(HOM) effect. Moreover, as shown  in22,23, this effect can be misinterpreted if the frequent dependence of R, T 
and φ is ignored. This is due to the fact that, in contrast to a prismatic BS, in Eq. (2) there is a resonant part 
when ω2 − ω1 ≈ � . In this case, the coefficients R, T and φ become very sensitive to the frequency of � . For a 
prismatic BS, the theory of the HOM effect remains the  same23. This means that many studies in quantum optics, 
where the BS is presented in the form of coupled waveguides, must be revised taking into account the frequency 
dependence of R, T and φ . In this paper, the general theory of a frequency dependent BS will be presented and 
it will be shown where it is necessary to take into account the developed theory.

Coefficients R, T and φ in quantum optics
In general, the matrix UBS is needed to find the wave function of photons in the final state �out . As is well 
known (e.g.14), �out = (s1!s2!)−1/2b̂†1

s1 b̂†2
s2 |0� , where s1 and s2 are the initial number of photons in modes 1 and 

2, respectively, |0� is the vacuum state, and b̂1 and b̂2 are determined from the BS matrix (1). In reality, photons 
are not monochromatic and the frequency distribution must be taken into  account1,2; and in this case the initial 
wave function of the photons will be in the form |�in� = (s1!s2!)−1/2

∫

φ(ω1,ω2)â
†
1
s1 â†2

s2 |0�dω1dω2 , where 
φ(ω1,ω2) is the joint spectral amplitude (JSA) of the two-modes wavefunction ( 

∫

|φ(ω1,ω2)|2dω1dω2 = 1 ). 
Taking into account the distribution of frequencies, �out = (s1!s2!)−1/2

∫

φ(ω1,ω2)b̂
†
1
s1 b̂†2

s2 |0�dω1dω2 ; its well-
known expression for �out will have a broader meaning given the resulting R, T and φ , which depend on the 
frequencies ω1,ω2 . In other words, in general, when modeling various circuits in quantum optics, the coefficients 
R, T and the phase shift φ cannot be considered constant.

In order to find �out and determine clear criteria when R, T and φ in quantum optics can be constant values, 
and when it is necessary to take into account the frequency dependence of these coefficients, consider in more 
detail the value of � to Eq. (2). It was shown in the  works22,23 that � in the general case � = 8πnu1u2/(ω1 + ω2) , 
where n average concentration of electrons interacting with electromagnetic fields in two BS ports, u1 and u2 
polarization of photons in 1 and 2 ports, respectively. Also  in22,23 this frequency was estimated and shown that 
it is one of the most important characteristics in a BS in the form of coupled waveguides.

Next, we define the bounds when R, T and φ can be considered constant coefficients in �out . For simplicity, 
let us consider a specific type of φ(ω1,ω2) in �out that is suitable for most of the photon sources  used24:
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Figure 1.  In a shows a beam splitter (BS) circuit with two input ports and two output ports. BS is presented as 
a “black box” in which the “mixing” of the input modes of the electromagnetic field takes place. In (b) shows BS 
with free-space optics, i.e. prism (top) and fiber optics, i.e. coupled waveguides (bottom).
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Equation (3) allows us to analyze the value of �out for two cases that are of practical interest. The first case is 
spontaneous parametric down-conversion (SPDC): for example, for �p = ω01 + ω02; σ1 = σ2 = σ is SPDC of 
type I, where σp is the bandwidth of the pump beam, σ the bandwidth for both the signal and the idle beams. If 
we consider σp → ∞ in (3), then this will be the case of Fock states (e.g.24). Indeed, in this case, in Eq. (3), the 
φ(ω1,ω2) function will be factorized, which corresponds to Fock states. It is easy to show that when we integrate 
over frequencies for ω02 − ω01 ≪ ω01,ω02 ; ω01/σ1 ≫ 1 ; ω02/σ2 ≫ 1 and � ≫ σ1, σ2 we get ε = �/� , where

where in the case of SPDC of type I and Fock states � = ω02 − ω01 . As a result, we obtain the coefficients R, T 
and the phase shift φ , in (2) as constant values (i.e. R, T and φ will retain their forms in Eq. (2), where � and ε are 
constant). It should be added that the conditions ω02 − ω01 ≪ ω01,ω02 ; ω01/σ1 ≫ 1 ; ω02/σ2 ≫ 1 , under which 
R, T and φ have become constant, are quite natural for most photon sources used in optical quantum computing. 
It should be added that the condition Eq. (4) essentially represents the condition for the monochromaticity of 
photons, that is. when the frequency “spread” can be ignored and it tends to zero.

Consider when the condition � ≫ σ1, σ2 is satisfied. The frequency ω0 under the condition 
ω02 − ω01 ≪ ω01,ω02 ; ω01/σ1 ≫ 1 ; ω02/σ2 ≫ 1 will be of the order of ω0 ∼ ω01,ω02 , then � ∼ 4πn

ω
u1u2 

( ω ≈ ω01,ω02 ). As shown  in22, the value of n can be any value depending on how tightly the waveguides are 
coupled. Let’s choose the maximum possible value of nmax for evaluation. In this case, nmax will be equal to 
the average concentration of electrons in the waveguides. In this case, it can be shown that �max ∼ ω2

p/ω ( ωp 
is the plasma frequency). For example, for solids and optical photons, it is easy to obtain that the condition 
�max ≫ σ1, σ2 will be satisfied. This means that the R, T and φ coefficients will always be constant in quantum 
optics and their frequency dependence (for optical photons) can be ignored when the waveguides are strongly 
coupled to each other. If we consider the case of higher frequencies, then the frequency dependence for R, T and 
φ must be taken into account. In the case of a sufficiently weak coupling in the waveguides, the frequency depend-
ence of the R, T and φ coefficients must be taken into account. There are no strict boundaries when to use the 
fixed R, T and φ coefficients, and when to take into account the frequency dependence. However, you can always 
evaluate � and compare them with σ1, σ2 to make a conclusion about the frequency dependence of R, T and φ.

Often, in quantum optics, R,T = 1− R and φ are independently selected by constant coefficients depending 
on the tasks posed. We show that choosing φ in an arbitrary way for constants R, T needs to be done very care-
fully. The coefficients R, T can be set to constant values when ω02 − ω01 ≪ ω01,ω02 ; ω01/σ1 ≫ 1 ; ω02/σ2 ≫ 1 
and � ≫ σ1, σ2 for this you need to choose two parameters as constant values, these being �tBS and ε . The phase 
shift is defined from (2) as cosφ = −ε

√

R
T  and has a single value for the given �tBS and ε . If in any quantum-

optical circuits it is necessary to set the BS to the constant values of R, T and φ selected for the scheme, this can 
be done by varying the parameters �tBS and ε (see Fig. 2), and the necessary phase shift φ can be selected by 
changing ε (see Fig. 3). This means that the phase shift at constant R, T can be selected by changing the charac-
teristics of the photons used ω01,ω02 or the type of BS i.e. �.

Here we have considered the case when R, T and φ can be considered constant. In general, it is possible to 
obtain the necessary �out in quantum optical without setting R, T and φ as constants. This means that in each BS 
in the quantum optical scheme, you can change tBS , and � with the selected photon source, or change the photon 
source as well, simulating the necessary �out at the output of the scheme. It is quite simple to model, since the 
matrix BS UBS and the coefficients R, T and the phase shift φ are of a simple analytical form (2).
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Figure 2.  The reflection coefficient R is presented depending on two parameters included in it: ε and �tBS . A 
constant value of R can only be selected if there is a certain dependency ε = ε(�tBS) (horizontal section in the 
figure). Figure are made in Wolfram Mathematica 12 software.
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Wave function for monochromatic photons �out = (s1!s2!)−1/2b̂†1
s1 b̂†2

s2 |0� , as shown  in25, can be found ana-
lytically �out =

∑s1+s2
k=0

ck,s1+s2−k|k, s1 + s2 − k� , or, up to an insignificant phase factor for calculating the prob-
ability �out =

∑s1+s2
k=0

√
�k(R)|k, s1 + s2 − k� where �k(R) =

∣

∣ck,s1+s2−k

∣

∣

2,

where Pα,βγ (x) are Jacobi polynomials, s1 and s2 are the number of photons in the first and second input ports, 
respectively, k and p are the number of photons in the first and second output ports, respectively. Moreo-
ver, the condition k + p = s1 + s2 is satisfied, i.e. the number of photons in the system does not  change25, 
|k, s1 + s2 − k� = |k�|p� is the state of the photons at the output ports of the BS. It should be added that the 
�k(R,φ) parameter is the Schmidt mode and is the probability of detecting the system in the |k, s1 + s2 − k� 
 state25–27. As shown  in25, the Schmidt parameter �k(R) does not depend on the phase shift φ regardless of its choice 
in Eq. (5). This is a very convenient property for calculating various physical characteristics in a BS.

In the case of non-monochromatic photons, as mentioned above, we obtain

In this case, the probability �k to detect k and s1 + s2 − k on the first and second ports, respectively, will be 
determined

Next, we will show how the probability of detecting k and p = s1 + s2 − k photons will look like, respectively, 
at the first and second ports of the BS, taking into account the frequency-dependent BS. To do this, consider an 
example where the photons are identical ( ω01 = ω02 = ω and σ1 = σ2 = σ ) and σ/ω ≪ 1 , but not monochro-
matic, i.e. when σ/� can be arbitrary. It should be added that the case where the BS was not frequency-dependent 
was considered in the  article19. Let us show, as an example, how the frequency dependence of a BS can strongly 
change the statistics of photons, see Fig. 4. In Fig. 4 presents the photon statistics for R = T = 1/2 , where 
R =

∫

R(ω1,ω2)|φ(ω1,ω2)|2dω1dω2 . In the case when the photons are monochromatic, i.e. when σ/� ≪ 1 , 
our result coincides with the previously  known19, see Fig. 4a. It should be added that the result obtained here for 
monochromatic photons coincides  with19 not only for this particular case, but for all.

Figure 4 shows that the σ/� parameter greatly changes the statistics of photons at the output ports of the beam 
splitter. If in the Fig. 4a we observe only even photons, then on others (b, c, d) there are also odd ones. Moreover, 
for σ/� ∼ 1 in the photon statistics, there is absolutely no similarity with the statics for small σ/� ≪ 1 . This 
is quite an important conclusion, since such states, an example of which is given here |s, s� , i.e. with the same 
number of photons at the input of the BS and with the reflection coefficient R = 1/2 , are the Holland-Burnett 
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Figure 3.  The phase shift φ is represented as being dependent on two parameters R and ε . By fixing the value 
R and making a horizontal slice at the specified φ , we obtain a point that defines the value ε required for these 
parameters. Figure are made in Wolfram Mathematica 12 software.
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(HB)  states28. It is well known that this states is of great interest in various fields of physics, for example, in 
quantum  metrology12,29.

One of the striking examples where a developed theory can substantially correct known results is the calcula-
tion of the correlation function Ŵ1,2 . It is well known that Ŵ1,2 is an important characteristic in quantum optics. 
This value is calculated and measured experimentally in the HOM  effect3, in various quantum-optical schemes 
and  measurements30. In the case of monochromatic photons at ports 1 and 2 of the BS, this is a function, as is well 
known by Ŵ1,2 = |U1,1U2,2 + U1,2U2,1|2 = |R − T|2 , where Ui,j are elements of the matrix BS (1). If we consider 
non-monochromatic photons, i.e. using the spectral amplitude φ(ω1,ω2) (JSA), then

Which is easy enough to get from Eq. (6) for s1 = 1, s2 = 1 , see e.g.3,22,31–33. If we choose the parameters 
in φ(ω1,ω2) and � such that R, T can be considered constant (e.g. for φ(ω1,ω2) presented in Eq. (3), this is 
ω02 − ω01 ≪ ω01,ω02 ; ω01/σ1 ≫ 1 ; ω02/σ2 ≫ 1 and � ≫ σ1, σ2 ) we get Ŵ1,2 = |R − T|2 = |R − T|2 . Otherwise, 
Ŵ1,2 is defined Eq. (8). If we choose R = T = 1/2 (same as T = R = 1/2 ) in the general case Ŵ1,2  = 0 . This is 
a rather important conclusion, because using this condition R = T = 1/2 it is usually assumed that Ŵ1,2 = 0 
(e.g. HOM effect in the case of identical photons). In practical implementation, such a case appears when � is 
quite small (e.g. in the case of Eq. (3) when � ∼ σ1, σ2 ). This case can be realized, for example, for BS in the 
form of a coupled  waveguides22. It is also interesting to note that in the case of monochromatic and identical 
photons, i.e. if in the Eq. (4) parameter ε = 0 value Ŵ1,2 = cos2(�tBS) in Eq. (8) matches Ŵ1,2 = cos2(2Cz)  in15(in 
this work R = sin2(Cz) , φ = π/2 , where C = �/(2v) is the coupling constant between adjacent waveguides, 
z = vtBS , v is wave velocity in a waveguide). In the case of non-monochromatic but identical photons ( ω01 = ω02 
and σ1 = σ2 = σ ), choosing φ(ω1,ω2) as Eq. (3) and using the conditions ω02 − ω01 ≪ ω01,ω02 ; ω01/σ1 ≫ 1 ; 
ω02/σ2 ≫ 1 , you can get

Can also be obtained using Eq. (9), provided �tBS → ∞ and σ tBS → ∞ , simple expression

where erf (x) this is an error function. I should add that Eq. (10) can be obtained with �tBS → ∞ and σ tBS → ∞ 
if we do not take into account in Eq. (9) oscillating terms (i.e. with sine and cosine). Already at �tBS ∼ 100 
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Figure 4.  A histogram of the dependence of the probability �k of detecting k and p = s1 + s2 − k photons at 
the output of the first and second ports, respectively, is presented. The selected states, where s1 = 20 and s2 = 20 
for R = T = 1/2 and for four values σ/� = (0; 0.1; 0.5; 1.0) . Figure are made in Wolfram Mathematica 12 
software.
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and σ tBS ∼ 100 , the error of this calculation is less than 1 % . From Eq. (9) it can be seen that if the photons are 
monochromatic, i.e. σ/� ≪ 1 (strictly speaking, thecondition σ tBS ≪ 1 must also be satisfied), then we get the 
case described above, where Ŵ1,2 = cos2(�tBS) . The importance of using frequency-dependent R, T and φ coef-
ficients in quantum physics is clearly seen.

Figure 5a shows that the correlation function Ŵ1,2 is very different from Ŵ1,2 = cos2(�tBS) ,  see15. From Fig. 5b 
you can also see that Ŵ1,2 strongly depends on the σ/� parameter if we take into account that for Ŵ1,2(σ/� = 0) 
the theory presented here coincides with the previously  known15. In the case when Ŵ1,2 = 0 , i.e. when quan-
tum interference (HOM effect) occurs, it can be realized only for σ/� → 0 and �tBS = π/2+ πn (where 
n = 0, 1, 2 . . . are integers). If we consider σ/� > 0 , then Ŵ1,2  = 0 and this can be seen from Eq. (9). Although 
for σ/� > 0 the correlation Ŵ1,2 can be quite small and quantum interference is significant, this can be seen, for 
example, from Fig. 5a, where σ/� = 1 and �tBS = π/2 . It should be added that the analysis of quantum correla-
tions using the Ŵ correlation function is well known, not only for bosonic statistics, but also for  fermionic34,35.

Discussion and conclusion
The developed theory is an essential addition to the BS theory on coupled waveguides, since the frequency 
dependence of the reflection coefficient R and the phase shift φ is taken into account. We have shown that the 
results obtained are not only of theoretical interest, but they also have practical applications in quantum optics. 
It should be added that frequency-dependent BS is one example where frequency can be important. For example, 
waveguide  lattices36,37 can also be frequency dependent and such studies are interesting in the future. Moreover, 
using aligned waveguides, i.e. considered here BSs, you can implement quantum  gates15,16, which can also be 
frequency-dependent.

The results obtained have well-known limiting cases. For example, when we consider monochromatic pho-
tons, our theory for calculating �out coincides  with19, and for calculating the correlation function, taking into 
account the identity of photons, it coincides  with15. If the length z = vtBS of the waveguide is too small (more 
precisely, the value of �tBS ≪ 1 is too small) or � → 0 (or � ≪ ω2 − ω1 ), then the reflection coefficient is R → 0 . 
This means that photons move along the waveguides independently of each other, without being reflected.

It should be noted that the resulting expressions in Eq. (2) have their own specifics with respect to classical 
expressions. The main role here is the identity of photons (when ω2 − ω1 ≪ ω1,ω2 ). Even in the case of a very 
weak interaction i.e. when � is small, the electromagnetic field modes can exchange energy at (ω2 − ω1)/� � 1 , 
where as a result R and φ are not small. In other words, the energy exchange is resonant in nature, i.e. when 
the frequencies are close, so that (ω2 − ω1)/� � 1 , the energy exchange takes place intensively. This is what 
causes the very “mixing” of photons depicted in Fig. 1. That is why, in quantum optics for BS based on coupled 
waveguides, it is necessary to take into account the frequency dependence of the reflection coefficients R, trans-
mission T and phase shift φ.
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