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Abstract. Breast cancer is a complex disease posing a serious 
threat to the female population worldwide. A complex molec‑
ular landscape and tumor heterogeneity render breast cancer 
cells resistant to drugs and able to promote metastasis and 
invasiveness. Despite the recent advancements in diagnostics 
and drug discovery, finding an effective cure for breast cancer 
is still a major challenge. Positive and negative regulation of 
apoptosis has been a subject of extensive study over the years. 
Numerous studies have shed light on the mechanisms that 
impede the tumor necrosis factor‑related apoptosis‑inducing 
ligand (TRAIL) signaling cascade. Long non‑coding RNAs 
(lncRNAs) have been implicated in the orchestration, develop‑
ment, proliferation, differentiation and metastasis of breast 
cancer. However, the roles of lncRNAs in fine‑tuning apoptosis 
regulating machinery in breast cancer remain to be elucidated. 

The present review illuminates the roles of these molecules 
in the regulation of breast cancer and the interplay between 
lncRNA and TRAIL in breast cancer. The present review also 
attempts to reveal their role in the regulation of apoptosis in 
breast cancer appears a promising approach for the develop‑
ment of new diagnostic and therapeutic regimens.
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1. Introduction

In recent years, there has been an upsurge in cancer burden 
worldwide, and cancer has become the leading cause of death, 
following cardiovascular diseases, in both men and women 
globally (1). There are nearly 18 million cases of cancer 
registered worldwide; among them, 268,600 are breast cancer 
patients (2). Among the different cancer types, breast cancer 
is one of the major causes of death in the female popula‑
tion (3). Compelling evidence suggests that specific genetic, 
epigenetic and environmental factors play a critical role in the 
development of breast cancer. The prevalence of breast cancer 
is caused by many factors, including unhealthy lifestyle, 
excessive consumption of red meat, alcohol, smoking and 
genetics (4). Nowadays, high‑throughput technologies, such 
as next‑generation sequencing have begun to elucidate tumor 
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heterogeneity and has brought us closer towards devising 
new diagnostic and therapeutic strategies (5). Advanced 
experimental methodologies have started to categorize 
proteome into sub‑classes of pro‑apoptotic and anti‑apoptotic 
proteins (5). This has led to characterization of tumor necrosis 
factor (TNF)‑related apoptosis‑inducing ligand (TRAIL) 
sub‑proteomes (5). Alterations in the TRAIL‑mediated 
signaling pathway are associated with the proliferation of 
breast cancer (6). Translation and functional studies have clari‑
fied the underlying mechanisms and biomolecular signatures 
responsible for impeding cancer treatment (7,8) Thus, the 
search for better diagnostic and management of breast cancer 
is needed. 

Positive and negative regulation of apoptosis has been a 
subject of extensive study over the past decades (9). There 
has been an increase in new regulators of apoptosis that have 
deepened our understanding of the process (10). A number 
of studies have investigated the mechanisms that impede the 
TRAIL signaling cascade (11‑13). Knowledge of the associa‑
tion between different pro‑survival and cell death pathways in 
cancer is vital for devising therapeutic strategies for cancer. 
TRAIL belongs to a small subset of pro‑apoptotic protein 
ligands in the TNF superfamily, which also includes TNF 
and cluster of differentiation (CD)95L (FasL/APO‑1L) (14). 
TRAIL has been investigated since 1997, when it was 
observed that TRAIL‑mediated apoptosis was responsible for 
death in cancer cells, leaving normal cells intact (15). This was 
followed by a number of studies documenting the molecular 
characteristics of TRAIL‑mediated apoptosis in various 
cancer types, such as breast (16), thyroid (17), colorectal (18), 
renal (19), bladder, prostate (20) and ovarian cancer (21). 
Parallel studies revealed that in cancer cells, TRAIL was 
underexpressed, leading to loss of TRAIL‑induced apop‑
tosis (22‑24). TRAIL‑induced apoptosis is triggered through 
the activation of death receptors (DRs), specifically DR4 and 
DR5 (25). This interaction in turn facilitates the attachment 
of the apoptosis antigen 1 (Fas)‑associated death domain 
containing protein (FADD) (26). FADD attachment results in 
the recruitment of adapter proteins to the cytoplasmic domain 
of DR (26). Recruitment of adapter proteins facilitates the 
activation of pro‑caspases 8 and 10, which then trigger the 
activation of caspase 3 (27). Activation of caspase 3 in turn 
leads to activation of either the extrinsic pathway (caspase 
8‑mediated) or the intrinsic pathway, which involves the 
release of cytochrome c (28). Cytochrome c‑mediated activa‑
tion of procaspase 9 to caspase 9 promotes activation of the 
intrinsic pathway, which involves the translocation of the BH3 
interacting‑domain death agonist to the mitochondria (29). 
This facilitates recruitment of Bax/Bak, which aid in the trans‑
portation of cytochrome c and second mitochondria‑derived 
activator of caspases/Diablo homolog through the formation 
of the mitochondrial pore (30,31). 

Long non‑coding RNAs (lncRNAs) are RNA molecules in 
the range of 200‑2,000 bp (32). lncRNAs have been found to 
play a crucial role in the development of various cancer types, 
including breast (33), thyroid (34), renal (35), colorectal (36), 
prostate (37) and ovarian cancer (38), and have been reported to 
interact with various molecules during transcription, chromo‑
some remodeling, cellular trafficking and translation (39). In 
addition, lncRNAs serve regulatory roles during transcription, 

mRNA processing, maturation of mRNAs, modification of 
histone complexes and DNA methyltransferase modifica‑
tions that occur during epigenetic regulation (Fig. 1) (40). 
Mutations in the signaling cascades responsible for growth 
arrest and apoptosis are predominant in most breast cancers. 
lncRNA‑mediated regulation of apoptosis machinery in breast 
cancer remains to be elucidated. Nevertheless, various studies 
have reported the regulatory role of lncRNAs in apoptosis 
and growth arrest (41,42). Exploring the role of lncRNA in 
the regulation of the apoptosis and growth arrest in breast 
cancer appears a promising approach, which may aid in the 
development of lncRNA‑based therapeutics, as well as being a 
biomarker for disease diagnosis. 

2. Role of lncRNA in breast cancer

Bioinformatics studies and RNA sequencing have been used 
to delineate the role of lncRNA in breast cancer (43). Genetic 
heterogeneity of the individual tumor is a crucial factor that 
triggers activation of certain lncRNAs (44). 

X inactive specific transcript (XIST) is an oncogenic 
lncRNA that plays a significant role in the progression of breast 
cancer. XIST RNA directs transcriptional changes by binding 
to poly comb repressive complex 2 (PRC2). Deregulated 
XIST promotes tumor progression (45). XIST activation has 
been reported to accelerate tumor growth of breast cancer 
gene 1‑deficient ovarian cell lines (46). Accumulation of XIST 
promotes the expression of X‑linked oncogenes, including 
the V‑RAF murine sarcoma 3611 oncogene homolog 1 and 
member of ETS oncogene family, which triggers the growth of 
tumor cells (47). Several factors are prerequisite for triggering 
XIST. A recent study has reported that scaffold attachment 
factor A, also known as heterogenous ribonucleoprotein U, aids 
lncRNA attachment to the X chromosome. This promotes acti‑
vation of SMART/histone deacetylase (HDAC)1‑associated 
repressor protein, which recruits HDAC C3 and PRC2 
components to formulate histone repressive complex (48). 
In addition, high‑throughput sequencing has revealed that 
several XIST interactors serve a role in the activation of XIST. 
In a recent study, lower expression of XIST was reported in 
triple‑negative breast cancer (TNBC). The restored expres‑
sion of XIST reduces the epithelial‑mesenchymal transition 
(EMT) property of cancer cells and cell proliferation, and 
induces apoptosis (49). XIST in TNBC functions by inhibiting 
microRNA (miR)‑454 (49). XIST expression is also reported 
to be downregulated in estrogen receptor‑negative (ER‑) 
and progesterone receptor‑negative (PR‑) breast cancer (50). 
However, XIST is highly expressed in human epidermal 
growth factor receptor 2 (HER2)‑positive breast cancer (51).

HOX antisense intergenic RNA (HOTAIR) is another 
lncRNA that has been reported to facilitate cancer progres‑
sion (52). Despite its location at chromosome 12, HOTAIR has 
been reported to activate distant genes. Functional studies have 
shed light on the important role of HOTAIR in metastasis and 
invasion. Hepatocyte nuclear factor 4‑α (HNF4‑α), an initiator 
of epithelial differentiation, represses the transcription of 
HOTAIR (53). HNF4‑α promotes the release of the chromatin 
loop on the HOTAIR regulatory element and a decrease in the 
expression levels of homeobox D cluster‑targeted genes (54). 
PRC2 and lysine‑specific demethylase 1 (LSD1) are the 
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two regulators of chromatin dynamics that interact with 
HOTAIR (55). HOTAIR interacts with either LSD1 or PRC2 
via various mechanisms; its interaction with PRC2 is through 
its 5' end, which enhances repression of PRC2 target loci (56). 
By contrast, HOTAIR interacts with LSD1 through its 3' end to 
regulate gene silencing (57). HOTAIR is highly overexpressed 
in various cancer types, such as hepatocellular carcinoma (58), 
lung (59) and breast cancer (60) and has been reported to serve 
a decisive role in tumor proliferation, invasion and metas‑
tasis (61). Thus, HOTAIR could be considered as a plasma based 

biomarker for breast cancer and various tumors. Furthermore, 
the consistent overexpression of HOTAIR is observed in 
ER+/PR+ breast cancer (62). Overexpression of HOTAIR 
increases invasiveness in metastatic breast cancer (63). This 
has led to the conclusion that HOTAIR is a valid biomarker for 
breast cancer (64). 

NEAT1 is an oncogenic lncRNA that promotes prolifera‑
tion and metastasis in breast cancer (65). NEAT1 lncRNA is 
highly expressed in breast cancer tissues, and its expression 
correlates with tumor size and metastatic potential. NEAT1 

Figure 1. lncRNA‑based modulation of gene expression via epigenetic modification. lncRNA can induce (A) gene activation or (B) suppression by inducing 
histone demethylation and histone methylation, respectively. Histone modification further allows recruitment of transcription factors or transcription repressor 
to the promoter region according to the fate of the gene. (C) and (D) lncRNAs also induce chromatin modification for silencing or promoting expression of 
gene. lncRNA, long non‑coding RNA.
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interacts with the FOXN3, SIN3 and SIN3A repressor complex. 
This has been brought to light by RNA immunoprecipitation 
and high‑throughput sequencing. Together, this trio forms 
a nucleoprotein complex that facilitates EMT, invasion and 
metastasis in ER+ cells via inhibition of GATA binding protein 
3 (GATA3), a transcription factor (66). In addition, overex‑
pression of NEAT1 and FOXN3 decreases overall survival 
rate in breast cancer patients (66). Elevated NEAT1 expres‑
sion has also been reported in TNBC, and its inhibition via 
short hairpin (sh)NEAT1 in TNBC cells leads to sensitization 
to chemotherapy and reduced cancer stemness (67). NEAT1 
overexpression is directly associated with enhanced tumor 
growth, proliferation and metastasis (68,69). Tests, including 
MTT and wound healing assays, on BC MDA‑MB‑468 and 
MCF‑7 cell lines revealed that the suppression of NEAT1 
expression via small interfering (si)RNA, not only reduces 
cell proliferation and inhibits metastasis, but also prompts 
apoptosis via the activation of caspase 3 (65). The expression 
of NEAT1 is modulated by miR‑548ar. Overexpression of 
miR‑548ar significantly reduced NEAT1 expression levels in 
MCF‑7 and MDA‑MB‑231 human breast cell lines and also 
facilitated the induction of cellular apoptosis (70). The role 
NEAT1 plays in breast cancer proliferation, invasiveness and 
chemo‑resistance makes it a potential diagnostic biomarker 
and a therapeutic target for this cancer (69).

BCAR4 is another lncRNA that has been demonstrated 
to confer tamoxifen resistance independently of ER1 expres‑
sion (71). Ectopic expression of BCAR4 in MCF7 and ZR‑75‑1 
cell lines was able to increase proliferation in estrogen‑free 
media (72). Furthermore, BCAR4 overexpression was shown to 
promote growth and metastasis in primary breast tumor cells. 
In xenograft models, BCAR4 is a potent proliferative agent; its 
expression is tissue‑specific, thus making it a suitable target 
for treating anti‑estrogen resistance in breast cancer (72). 
BCAR4 promotes the expression of GLI‑2 via activation of 
the non‑canonical hedgehog‑Gli pathway (73). This activa‑
tion, in turn, promotes metastasis, migration and invasiveness. 
BCAR4 also promotes the activation of phosphatase 1 (PP1) 
via Smad nuclear interacting protein 1 (SNIP1), thus inhibiting 
p300‑mediated histone acetylation (74). PP1 interaction with 
SNIP1 also promotes the dephosphorylation of pol II ser5, 
which promotes activation of GLI2 target genes (75).

DSCAM‑AS1 is another oncogenic lncRNA whose expres‑
sion is regulated by ER (76). DSCAM‑AS1 has been reported 
as a downstream effector of ER and its upregulation has been 
observed in ER+ and ER‑ breast tumors (76). Strong estrogen 
induction in MCF7 and T47D cells can promote overexpres‑
sion of DSCAM‑AS1 (77). Knockdown of DSCAM‑AS1 
results in growth arrest and decreased migration and invasive‑
ness, suggesting that DSCAM‑AS1 functions downstream of 
ER (76). These findings shed light on the use of DSCAM‑AS1 
as a potential biomarker for the detection of breast cancer. 

Few studies have been performed to indicate breast cancer 
subtype‑specific expression of lncRNAs (78); however, the 
underlying mechanism for the tumorigenicity in breast cancer 
remains to be elucidated.

lncRNA in metastatic breast cancer. The contribution of 
lncRNAs to the growth, proliferation and survival of different 
types of cancer has been studied (36,46,79‑83) Several studies 

have emphasized the potential of lncRNAs in promoting 
metastasis in breast cancer cell lines and tissues (84,85). 
Dysregulation of lncRNA inhibiting proliferation and metas‑
tasis (NLIPMT) has been reported to enhance growth and 
metastasis in breast cancer tissue. Restoration of NLIPMT 
expression in the breast cancer MDA‑MB‑231 cell line inhibits 
cellular proliferation by suppressing glycogen synthase kinase 
3β phosphorylation (86). Some lncRNAs are overexpressed 
in breast cancer cells, which facilitates tumor growth, spread 
and survival by targeting the transcription of proteins. Such 
lncRNAs are associated with cell growth suppression and 
apoptosis (87). High expression of lncRNA FOXD3‑AS1 in 
cancer tissues has a direct correlation with tumor size increase 
and distant metastasis (88). A high level of lncRNA AWPPH 
in patients' plasma is associated with enhanced cell growth in 
early stage TNBC (89). Overexpression of lncRNA AWPPH 
causes resistance to carboplatin treatment (89). 

Dysregulation of some lncRNAs is also associated with the 
potential of breast tumor cells to metastasize to different organ 
sites (90). The majority of studies have reported an lncRNA 
role in the metastasis of breast cancer to the lungs (91,92). 
LINC00478‑associated cytoplasmic RNA (lacRNA) is a 
cleaved version of lncRNA LINC00478. LINC00478 is signifi‑
cantly downregulated in metastatic breast tumors and promotes 
active transcription of MYC proto‑oncogene (MYC)‑activated 
genes (93). lncRNA overexpression suppresses the metastatic 
and invasive potential of breast cancer cells by stabilizing 
prohibitin‑2 (PHB2) protein. PHB2 then brings about transcrip‑
tional inhibition of MYC target genes (93). Furthermore, its 
overexpression inhibits lung metastasis in mouse models (93). 
lncRNA HOXA11‑AS is also reported to be associated with 
breast cancer metastasis to the lungs; it modulates EMT by 
downregulating E‑cadherin and vimentin expression. In 
mouse models treated with shHOXA11‑AS, the expression 
of HOXA11‑AS is decreased in both primary and secondary 
tumors (94). lncRNA ANCR is downregulated in breast 
tumor cells and induces metastasis via active signal transduc‑
tion through the TGF‑β pathway (95). Upon introduction of 
ANCR‑deficient MDA‑MB‑231‑ANCR cells into BABL/c nude 
mice, these cells metastasize to the lungs (95).

The role of lncRNAs in promoting metastasis in breast 
cancer subtypes with different molecular signatures, such 
as luminal A, luminal B, HER2‑type, normal‑like and 
triple‑negative, has yet to be properly studied. This indicates 
the need for further studies in the area to better understand the 
role of lncRNAs in breast cancer according to the different 
subtypes. This may be helpful in designing more effective 
therapeutics for this disease.

3. Interplay of lncRNA and TRAIL in breast cancer 

lncRNAs have a dual role in cellular homeostasis. Depending 
on their interactive molecular landscape they can either favor 
survival of the cancer cells or apoptosis (84). TRAIL‑mediated 
apoptosis is one such pathway and the alteration in the expres‑
sion of its members shifts the balance of the cell in favor of 
survival (96,97). Recent advances in biomolecular studies have 
hinted towards the association of the interplay of TRAIL and 
lncRNA with breast cancer development (77). The activity of 
caspases is a chief factor that is modulated by most lncRNAs in 
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breast cancer to ensure the rapid multiplication and growth of 
cancerous cells (98). Table I contains a list of lncRNAs whose 
dysregulation in breast cancer disrupts the TRAIL‑induced 
apoptosis pathway by modulating the activity of caspases. 
The modulatory role of lncRNA in the extrinsic pathway is 
illustrated in Fig. 2.

lncRNA‑mediated regulation of the extrinsic apoptotic 
pathway in breast cancer. POU3F3 lncRNA modulates the 
TRAIL pathway by modulating caspase activation (99). Data 
have suggested a positive correlation between tumor prolif‑
eration in TNBC and POU3F3 (99). POU3F3 inhibits the 
proteolytic cleavage‑mediated activation of caspase 9 (99). 
High POU3F3 expression in tumor tissues and in the blood 
plasma of patients suggests its use as a diagnostic marker for 
TNBC (99). 

In addition, in vitro knockdown of POU3F3 leads to 
enhanced cleavage of caspase 9, restoring the intrinsic apop‑
totic pathway, triggering growth arrest, and inhibiting tumor 
migration and invasiveness (100). A previous study showed 
that exogenous induction of procaspase 9 cleavage brings about 
attenuation in the oncogenic effects of overexpressed POU3F3 
and leads to cell apoptosis (99). These findings suggest that 
POU3F3 as a potential therapeutic target for TNBC. 

The extrinsic and intrinsic apoptotic pathways are both 
regulated by the various lncRNAs (101). Death receptor trig‑
gers the activation of caspases. Several lncRNAs serve pivotal 
roles in the regulation of caspase activity (101). HOXAS1/2 is 
involved in inhibition of caspase 8 and 3 (102). NEAT1 inhibits 
the activity of caspase 3 (65) and TUG promotes the activity of 
caspase 8. Signals from caspases are transferred to mitochon‑
dria and lead to apoptosis. lncRNAs such as GAS5/AFAP1‑AS 
and MAG12‑AS3 promote the upregulation of BCL‑2 and FAS 
genes and facilitate apoptosis (103‑105). lncRNA PANDA 
(p21‑associated ncRNA DNA damage activated) downregu‑
lates the expression of proapoptotic proteins such as the Fas 
cell surface death receptor (FAS)/BCL‑2 interacting killer 
(BIK) and apoptotic protease activating factor (APAF)1, thus 
inhibiting apoptosis and promoting cell growth in breast 
cancer cells (106).

BORG (BMP/OP Responsive Gene) is another highly 
expressed oncogenic lncRNA in breast cancer that affects 
caspases activity in order stop the apoptotic pathway of cells and 
promote aggressive tumor proliferation (107). High expression 

of BORG has been reported in TNBC and is also associated 
with chemoresistance and high cancer cell growth (108). The 
activity of caspase 3, 7 and 8 significantly reduces the expres‑
sion of BORG in BORG‑expressing cell lines (107).

Suppression subtractive hybridization in combination 
with reverse dot‑blotting suggests the correlation between 
high expression of lncRNA Z38 and tumorigenesis in breast 
cancer cells. Suppression of Z38 expression via shRNA 
causes inhibition of in vivo tumorigenesis and a reduction in 
cell viability. In addition, the TUNEL assay performed after 
administration of Z38 siRNA reveals induction of apoptosis 
in cancerous cells (109). This study indicated that the admin‑
istration of Z38 siRNA mechanistically activates the intrinsic 
apoptotic pathway. Knockdown of Z38 negatively influences 
cell proliferative rate together with the induction of apoptosis 
in gastric cancer in a similar way in breast cancer (109). Z38 
acts through the activation of caspase 3 and 9 to initiate the 
apoptotic pathway (110). High expression of Z38 and its onco‑
genic influence makes it prognostically significant in cases of 
breast cancer (111).

AFAP1‑AS1 is also among the lncRNAs whose aberrant 
expression in breast cancer leads to the inactivity of various 
caspases. AFAP‑AS1 is mapped on chromosome 4 in humans 
and its transcription occurs in an anti‑sense direction from 
the AFAP1 gene (112). Reverse transcription‑quantitative PCR 
(RT‑qPCR) confirms that AFAP1‑AS1 overexpression is observed 
in breast cancer tissues and MCF‑7, SK‑BR3, MDA‑MB‑231 
and MDA‑MB‑436 breast cancer cell lines. Caspase 3 activity 
assay, cell cycle analysis, and Bax and Bcl‑2 expression analyses 
demonstrate that the rate of apoptosis is increased in AFAP1‑AS1 
siRNA‑transfected cell lines due to the restored activity of 
caspase 3 and increased Bcl‑2 expression (113).

The malignant role of lncRNA TUG1 is controversial. 
However, recent data has reported the association of TUG1 
high expression with malignancy and increased invasive‑
ness in breast cancer (98). TUG1 overexpression is observed 
in malignant breast cancer cell lines such as MDA‑MB‑231, 
MDA‑MB‑436, MCF7 and T47D. TUG1 overexpression is 
reported at the highest levels in the breast cancer highly inva‑
sive MDA‑MB‑231 and MDA‑MB‑436 cell lines (98). TUG1 
promotes cell proliferation by inhibiting caspase 3 and caspase 
9 activities. The knockdown of TUG1 results in augmented 
activity of both caspases, which leads to a reduction in 
metastasis and increased apoptosis (98). Conversely, TUG1 

Table I. lncRNAs whose expression modulates caspase activity.

Author, year lncRNA Affected caspase lncRNA role (Refs.)

Yang et al, 2019 POU3F3 Caspase 9 Enhances proteolytic activation (99)
Zhang et al, 2019 NEAT1 Caspase 3 Inhibits activity (65)
Gooding et al, 2017 BORG Caspase 3, 7, 8 Inhibits activity (107)
Wang et al, 2018 Z38 Caspase 3, 9 Inhibits activity (110)
Li et al, 2017 TUG1 Caspase 3, 9 Inhibits activity (98)
Ma et al, 2019 AFAP1‑AS1 Caspase 3 Inhibits activity (113)

lncRNAs, long non‑coding RNAs.
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expression induced in MDA‑MB‑231 and MCF7 by transfecting 
them with pCDNA‑TUG suggests that the overexpression of 
TUG1 has tumor‑suppressive effect on cancer cells where it 
modulates cell growth by suppressing the expression of cyclin 
D1 and CDK4, and promotes cell apoptosis and retards cancer 
cell growth (114). The tumor‑suppressive role of TUG1 is also 

demonstrated in TNBC. A recent study has reported that lower 
expression of TUG1 induces chemo‑therapy resistance and 
promotes cell proliferation, but whether its high expression 
activates TRAIL‑induced apoptosis is not demonstrated (115). 

Cancer cells manage to grow and survive after hijacking 
TRAIL‑mediated apoptosis (116). Tumor cells use Fas 

Figure 2. Schematic description of TRAIL signaling cascade and interaction of lncRNA. lncRNAs modulate the apoptotic pathway at different levels. 
A few lncRNAs promote apoptosis; for instance, MAGI2‑AS3 enhances Fas ligand expression and APAF1‑AS/GAS5 upregulates Bcl‑2 expression. A few 
lncRNAs halt apoptosis and promote cell survival and growth; PANDA downregulates pro‑apoptotic BIK protein, APAF‑1 and Fas expression, and H19 
downregulates BIK expression. NEAT‑1 and HOXA‑AS1/2 inhibit caspase 3 activity, while POU3F3 causes inhibition of caspase 9. HOXA‑AS1/2 and TUG 
suppress activation of caspase 8. TRAIL, tumor necrosis factor‑related apoptosis‑inducing ligand; lncRNA, long non‑coding RNA; BIK, Bcl2 interacting 
killer; APAF, apoptotic protease‑activating factor‑1; Fas, apoptosis antigen 1.
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receptor as a reserve route to initiate activation of caspase 8 
via proteolytic cleavage and hence induce apoptosis (117,118). 
In breast cancer, the expression levels of Fas and FasL are also 
downregulated, eliminating all apoptotic threats for cancerous 
cells and making their proliferation possible (119). In breast 
cancer tissue, the expression of Fas and FasL is reported 
to be positively correlated with the expression of lncRNA 
MAGI2‑AS3 (105). Using transcript transfection and lentiviral 
approaches, Yang et al (120) reported that MAGI2‑AS3 expres‑
sion facilitates the upregulation of Fas and FasL expression in 
MDA‑MB‑231 and MCF‑7 cell lines. CCK‑8 assay and flow 
cytometry further demonstrated that the lentivirus‑induced 
expression of MAGI2‑AS3 reduces cell viability and promotes 
cell death via activation of the Fas/FasL‑induced apoptotic 
pathway (120).

lncRNA‑mediated regulation of the intrinsic apoptotic 
pathway in breast cancer. A few identified lncRNAs negatively 
modulate the TRAIL‑induced apoptotic pathway by affecting 
the transcription of pro‑apoptotic proteins whose expression 
is triggered by TRAIL signaling (Table II). Among them; 
overexpression of H19 is reported in ERα+ breast cancer cells, 
where it halts apoptotic signaling of the cell by suppressing 
transcription of BIK and NOXA genes (121). Due to its aberrant 
levels in ERα+ breast cancer tissues and patients' plasma, it 
has the potential to be used as a diagnostic marker for this 
breast cancer type (122‑124). lncRNA H19, with the help of 
epigenetic modification, brings about the silencing of the 
BIK gene; it blocks the promoter region of BIK by facilitating 
the recruitment of EZH2, which then induces trimethylation 
of histone H3 at lysine 27 (121). A recent development has 
revealed that the expression of lncRNA H19 is modulated 
by lncRNA PTCSC3 in TNBC (77). The high H19 level in 
TNBC tumor tissues is inversely correlated with PTCSC3 
expression. Wang et al (121,122) transfected the BT‑549 and 
HCC70 cell lines with PTCSC3 vectors and reported that over‑
expression of PTCSC3 attenuates the expression of lncRNA 
H19 and consequently suppresses cancer cell proliferation. 
Considering the role of lncRNA H19 in the rapid proliferation 
and chemo‑resistance of breast cancer (125), treatment with 

PTCSC3 could be a potential strategy to counter the oncogenic 
effects of H19 in breast cancer.

lncRNA PANDA is also highly expressed in breast 
cancer (126). The expression of PANDA in primary breast 
cancer cells is induced in response to DNA damage to 
suppress apoptosis; its expression is reported in cells that 
do not contain p53 mutations, but PANDA elevated expres‑
sion has no effect on p53 expression. Instead, it exerts its 
oncogenic influence in breast cancer cells by hindering the 
expression of pro‑apoptotic proteins, including apoptotic 
protease‑activating factor 1 (APAF1), BIK and FAS (126). 
Mechanistically, it first interacts with nuclear transcription 
factor NF‑YA, restraining the expression of pro‑apoptotic 
activators. Suppression of PANDA expression promotes 
apoptosis by upregulating the expression of APAF‑1, FAS 
and BIK gene (127,128).

It has been demonstrated that the expression of lncRNA 
GAS5 induces apoptosis in breast cancer cells (129). Low 
GAS5 expression in breast cancer is associated with tumor 
progression and suppression of the apoptotic pathway (130). 
It has been found through use of lncRNA RT‑PCR arrays that 
GAS5 expression in breast cancer is modulated by the high 
expression of miR‑21. The exon 4 of GAS5 possesses a binding 
site for miR‑21, and abolition of that site markedly reduces 
miR‑21 affinity for GAS5 and also attenuates suppression 
of apoptosis in MDA‑MB‑231 cells (131). In breast cancer, 
miR‑21 negatively regulates expression of the pro‑apoptotic 
protein Bcl‑2 (132). It is reported that the ectopic expression 
of GAS5 downregulates miR‑21, which negatively affects the 
growth of tumor cells and enhances cellular death (131). More 
data on the tumor‑suppressive capability of GAS5 have been 
provided by Pickard and Williams (129). The study reported 
that GAS5 contains HREM sequences through which it 
interacts with the DNA‑binding domain of the glucocorticoid 
receptor, halting cellular growth and promoting apoptosis. The 
study further demonstrated that HREM oligonucleotides alone 
also have the capability to induce apoptosis in the absence of 
endogenous GAS5 expression in resistant breast cancer cells. 
Unfortunately, the mechanism that is triggered for inducing 
apoptosis upon employment of HREM sequences is not known. 

Table II. TRAIL‑specific lncRNAs involved in breast cancer and their targets.

Author, year lncRNA Expression Target Mechanism (Refs.)

Si et al, 2016 H19 High BIK Blocking promoter region (121)
Hung et al, 2011, PANDA High APAF1, BIK, Interact with NF‑YA (127,128)
Zhang et al, 2014   FAS
He et al, 2015 GAS‑5 Low BIK Expression activation via (133)
    epigenetic modification
Zhang et al, 2019 CASC‑2 Low Smad‑2 Direct inhibition (137)
Si et al, 2016 HOXA‑AS2 High TGFBR2 Expression facilitation via directly (121)
    inhibiting miR‑520c‑3p

BIK, Bcl2 interacting killer; APAF, apoptotic protease‑activating factor‑1; CASC‑2, cancer susceptibility 2; FAS, apoptosis antigen 1; GAS, 
growth arrest‑specific 5; HOXA‑AS2, HOXA cluster antisense 2 RNA; NF‑YA, nuclear transcription factor Y; PANDA, p21‑associated ncRNA 
DNA damage activated; TGFBR2, tumor growth factor β receptor 2.
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GAS5 also gives rise to the small RNA pi‑sno75, which has 
direct correlation with enhanced TRAIL expression in breast 
cancer cells; it utilizes the tool of epigenetic modification to 
enhance the expression of TRAIL ligand. Mechanistically, 
pi‑sno75 binds with PIWIL1/4 protein. The pair then interact 
with WD repeat domain 5, which brings about recruitment of 
human complex of proteins associated with Set 1‑like complexes 
comprising MLL3 and UTX at the promoter region of TRAIL, 
which causes H3K4 methylation and H3K27 demethylation, 
hence facilitating activation of TRAIL transcription (133). 
This finding emphasizes the therapeutic significance of GAS5 
and pi‑sno75, the exogenous administration of which could 
promote apoptosis and reduce cellular viability by initiating 
the TRAIL‑induced apoptotic pathway in breast cancer cells.

A few more involvements of lncRNA in breast cancer have 
been demonstrated to modulate the TRAIL‑mediated apop‑
totic pathway by regulating downstream factors of the TGF‑β 
signaling pathway. It has been well established by various 
studies that TGF‑β induces TRAIL expression, which is neces‑
sary for preventing cancerous cell growth (28,134) By contrast, 
the tumor‑suppressive role of TGF‑β reverses in advanced types 
of cancer, including in breast cancer, where it promotes cancer 
advancement and metastasis by downregulating the expression 
of TRAIL (135). Long intergenic non‑protein coding RNA 
regulator of reprograming (linc‑ROR) lncRNA plays a crucial 
role in the upregulation of TGF‑β expression in advanced stages 
of cancer (136); it is highly expressed in tumor tissue and also in 
the highly invasive breast cancer MCF‑7 and MDA‑MB‑231 cell 
lines. Knockdown of linc‑ROR through siRNA in MCF‑7 and 
MDA‑MB‑231 cells showed that linc‑ROR silencing negatively 
regulates TGF‑β and the expression of its downstream factors, 
which consequently attenuates aggressive tumor growth (136). 
Unlike lncRNA linc‑ROR, the expression of lncRNA CASC2 
is downregulated, which facilitates TGF‑β pathway activa‑
tion in advanced breast cancer (137). Induced expression of 
CASC2 in MCF‑7 and LCC‑9 cell lines via transfection with 
pcDNA‑CASC2 results in CASC2 overexpression in these 
cell lines. Furthermore, CASC2 inhibits cell metastasis and 
promotes cell death by targeting smad‑2 (a downstream factor 
of the TGF‑β pathway) and triggering TRAIL apoptosis (137).

TGF‑β needs to halt the apoptotic pathway in order to ensure 
tumor proliferation and metastasis (138). Through the applica‑
tion of northern blotting and qPCR, it has been determined in 
several mouse breast cancer cell lines, that to prompt suppres‑
sion of the apoptotic pathway, TGF‑β induces the expression 
of a ~3‑kb long transcript of lncRNA Smad7 (139). The results 
from TUNEL staining and RT‑qPCR have established that 
lncRNA Smad7 functions as a downstream anti‑apoptotic factor 
of TGF‑β signaling, the overexpression of which halts apoptosis 
by inhibiting Bim expression and upregulating anti‑apoptotic 
protein differentiated embryonic chondrocyte‑expressed gene 1 
expression in invasive breast cancer cell lines (139,140).

In TNBC, the elevated expression of lncRNA ANRIL has 
also been reported (141). ANRIL uses the TGF‑β signaling 
pathway for tumor exponential growth and suppression of the 
apoptotic pathway (142). CCK‑8 assays in MDA‑MB‑231 and 
MDA‑MB‑468 cell lines have revealed that knocking down 
ANRIL enhances the rate of apoptosis and reduces cellular 
proliferation (141). RNA immunoprecipitation and luciferase 
reporter assays have further demonstrated that ANRIL exerts 

its oncogenic influence in TNBC cell lines by sponging 
tumor‑suppressive miR‑199a, which is reported to downregu‑
late the expression of TGF‑β in TNBC (141,143‑146). These 
findings indicate the prognostic significance of ANRIL, whose 
knockdown in xenografted mice not only attenuates tumor 
proliferation, but also promotes cell apoptosis (94,141).

Elevated lncRNA HOXA‑AS2 expression in tissues and cell 
lines of breast cancer has direct regulatory control over TGF‑β 
signaling via upregulation of the expression of transforming 
growth factor β receptor 2 (TGFBR2), which causes tumor 
proliferation and invasiveness (145). HOXA‑AS2 promotes 
TGFBR2 expression by negatively modulating expression 
of miR‑520c‑3p (146). The silencing of HOXA‑AS2 causes 
an elevation in miR‑520c‑3p levels, which in turn induces 
suppression of TGFBR2 expression (146) The silencing of 
HOXA‑AS2 in model mice by subcutaneously administrating 
siRNA‑HOXA‑AS2‑transfected MCF‑7 cells leads to a recip‑
rocal increase in miR‑520c‑3p expression, which by targeting 
TGFBR2 induces tumor growth inhibition (146). Although this 
finding emphasizes that HOXA‑AS2 could be implemented as a 
therapeutic target for breast cancer, how miR‑520c‑3p inhibits 
TGF‑β signaling and activates TRAIL‑mediated apoptosis 
currently needs to be explored.

4. Conclusion

Breast cancer is a highly complex disease involving a number 
of types and genetics. Thus, an efficient and precise therapeutic 
regimen for breast cancer patients can only be achieved by 
rapid and comprehensive prognosis and diagnosis. lncRNAs 
have crucial implementations in different cancer types; they 
have established themselves as important regulators of tran‑
scription, as well as activators of various signaling cascades. 
These non‑coding RNA molecules are tissue‑specific and 
have the potential to serve as biomarkers for breast cancer. 
However, few studies have elucidated the involvement of 
these micromanagers in regulating apoptosis and even fewer 
have addressed their interplay with TRAIL‑mediated apop‑
tosis. Technological advances in bioinformatics, sequencing 
and mass spectrometry have, to some extent, delineated the 
role of lncRNA in tumor biology. Identifying lncRNA as 
non‑invasive biomarkers that can be robustly detected in liquid 
biopsies could revolutionize the way breast cancer is detected. 
Unearthing the many functions of ncRNAs in cancer develop‑
ment delves into the genomic complexity of cancer and further 
highlights the extensive interplay between various genetic 
elements in the cells.
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